Journal Contributions: Published
Jump to Year: 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997
2009 |
|
J. Burez, D. Van den Poel. Handling class imbalance in customer churn prediction. Expert Systems with Applications 36 (2009) 4626-4636 |
|
|
bib |
|
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
S.-J. Yen, Y.-S. Lee. Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications 36 (2009) 5718-5727 |
|
|
bib |
|
2008 |
|
M.-C. Chen, L.-S. Chen, C.-C. Hsu, W.-R. Zeng. An information granulation based data mining approach for classifying imbalanced data. Information Sciences 178:16 (2008) 3214-3227 |
|
|
bib |
|
|
B.H. Cho, H. Yu, K.-W. Kim, T.H. Kim, I.-Y. Kim, S.I. Kim. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine 42:1 (2008) 37-53 |
|
|
bib |
|
|
|
|
|
bib |
|
|
D.-F. Li, W.-C. Hu, W. Xiong, J.-B. Yang. Fuzzy relevance vector machine for learning from unbalanced data and noise. Pattern Recognition Letters 29:9 (2008) 1175-1181 |
|
|
bib |
|
|
T.W. Liao. Classification of weld flaws with imbalanced class data. Expert Systems with Applications 35:3 (2008) 1041-1052 |
|
|
bib |
|
|
J. Liu, Q. Hu, D. Yu. A weighted rough set based method developed for class imbalance learning. Information Sciences 178:4 (2008) 1235-1256 |
|
|
bib |
|
|
J. Liu, Q. Hu, D. Yu. A comparative study on rough set based class imbalance learning. Knowledge Based Systems 21:8 (2008) 753-763 |
|
|
bib |
|
|
J.-H. Xue, D.M. Titterington. Do unbalanced data have a negative effect on LDA?. Pattern Recognition 41:5 (2008) 1558-1571 |
|
|
bib |
|
|
X.-M. Zhao, X. Li, K. Aihara. Protein classification with imbalanced data. Proteins 70:4 (2008) 1125-1132 |
|
|
bib |
|
2007 |
|
H. Ahn, H. Moon, M.J. Fazzari, N. Lim, J.J. Chen, R.L. Kodell. Classification by ensembles from random partitions of high-dimensional data. Computational Statistics and Data Analysis 51:12 (2007) 6166-6179 |
|
|
bib |
|
|
T. Eitrich, A. Kless, C. Druska, W. Meyer, J. Grotendorst. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques. Journal of Chemical Information and Modeling 47:1 (2007) 92-103 |
|
|
bib |
|
|
X. Hong, S. Chen, C.J. Harris. A kernel-based two-class classifier for imbalanced data sets. IEEE Transactions on Neural Networks 18:1 (2007) 28-41 |
|
|
bib |
|
|
B. Lerner, J. Yeshaya, L. Koushnir. On the classification of a small imbalanced cytogenetic image database. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4:2 (2007) 204-215 |
|
|
bib |
|
|
A.B. Owen. Infinitely imbalanced logistic regression. Journal of Machine Learning Research 8 (2007) 761-773 |
|
|
bib |
|
|
C.-T. Su, Y.-H. Hsiao. An evaluation of the robustness of MTS for imbalanced data. IEEE Transactions on Knowledge and Data Engineering 19:10 (2007) 1321-1332 |
|
|
bib |
|
|
Y. Sun, M.S. Kamel, A.K.C. Wong, Y. Wang. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40:12 (2007) 3358-3378 |
|
|
bib |
|
|
J. Xie, Z. Qiu. The effect of imbalanced data sets on LDA: A theoretical and empirical analysis. Pattern Recognition 40:2 (2007) 557-562 |
|
|
bib |
|
|
L. Xu, M.-Y. Chow, L.S. Taylor. Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification E-Algorithm. IEEE Transactions on Power Systems 22:1 (2007) 164-171 |
|
|
bib |
|
|
L. Xu, M.-Y. Chow, J. Timmis, L.S. Taylor. Power distribution outage cause identification with imbalanced data using Artificial Immune Recognition System (AIRS) algorithm. IEEE Transactions on Power Systems 22:1 (2007) 198-204 |
|
|
bib |
|
|
K. Yoon, S. Kwek. A data reduction approach for resolving the imbalanced data issue in functional genomics. Neural Computing and Applications 16:3 (2007) 295-306 |
|
|
bib |
|
2006 |
|
Y. Liu, N.V. Chawla, M.P. Harper, E. Shriberg, A. Stolcke. A study in machine learning from imbalanced data for sentence boundary detection in speech. Computer Speech and Language 20:4 (2006) 468-494 |
|
|
bib |
|
|
H. Shin, S.B. Cho. Response modeling with support vector machines. Expert Systems with Applications 30:4 (2006) 746-760 |
|
|
bib |
|
|
C.T. Su, L.S. Chen, T.L. Chiang. A neural network based information granulation approach to shorten the cellular phone test process. Computers in Industry 57:5 (2006) 412-423 |
|
|
bib |
|
|
Z.H. Zhou, X.Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18:1 (2006) 63-77 |
|
|
bib |
|
2005 |
|
P. Campadelli, E. Casiraghi, G. Valentini. Support vector machines for candidate nodules classification. Neurocomputing 68 (2005) 281-288 |
|
|
bib |
|
|
G.M. Fung, O.L. Mangasarian. Multicategory proximal support vector machine classifiers. Machine Learning 59:1-2 (2005) 77-97 |
|
|
bib |
|
|
S. Tan. Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Systems with Applications 28:4 (2005) 667-671 |
|
|
bib |
|
|
G. Wu, E.Y. Chang. KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Transactions on Knowledge and Data Engineering 17:6 (2005) 786-795 |
|
|
bib |
|
2004 |
|
G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29 |
|
|
bib |
|
|
N.V. Chawla, N. Japkowicz, A. Kolcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6:1 (2004) 1-6 |
|
|
bib |
|
|
M.D. del Castillo, J.I. Serrano. A multistrategy approach for digital text categorization from imbalanced documents. SIGKDD Explorations 6:1 (2004) 70-79 |
|
|
bib |
|
|
H. Guo, H.L. Viktor. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. SIGKDD Explorations 6:1 (2004) 30-39 |
|
|
bib |
|
|
T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49 |
|
|
bib |
|
|
Y.L. Murphey, H. Guo, L.A. Feldkamp. Neural learning from unbalanced data. Applied Intelligence 21:2 (2004) 117-128 |
|
|
bib |
|
|
C. Phua, D. Alahakoon, V. Lee. Minority report in fraud detection: classification of skewed data. SIGKDD Explorations 6:1 (2004) 50-59 |
|
|
bib |
|
|
P. Radivojac, N.V. Chawla, A.K. Dunker, Z. Obradovic. Classification and knowledge discovery in protein databases. Journal of Biomedical Informatics 37:4 (2004) 224-239 |
|
|
bib |
|
|
B. Raskutti, A. Kowalczyk. Extreme re-balancing for SVMs: a case study. SIGKDD Explorations 6:1 (2004) 60-69 |
|
|
bib |
|
|
G.M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explorations 6:1 (2004) 7-19 |
|
|
bib |
|
|
Z. Zheng, X. Wu, R.K. Srihari. Feature selection for text categorization on imbalanced data. SIGKDD Explorations 6:1 (2004) 80-89 |
|
|
bib |
|
2003 |
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
D.J. Hand, V. Vinciotti. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters 24:9-10 (2003) 1555-1562 |
|
|
bib |
|
|
S. Kotsiantis, P. Pintelas. Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & TeleInformatics 1:1 (2003) 46-55 |
|
|
bib |
|
|
S. Merler, C. Furlanello, B. Larcher, A. Sboner. Automatic model selection in cost-sensitive boosting. Information Fusion 4:1 (2003) 3-10 |
|
|
bib |
|
|
G.M. Weiss, F.J. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research 19 (2003) 315-354 |
|
|
bib |
|
2002 |
|
N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16 (2002) 321-357 |
|
|
bib |
|
|
N. Japkowicz, S. Stephen. The class imbalance problem: a systematic study. Intelligent Data Analysis 6:5 (2002) 429-449 |
|
|
bib |
|
2001 |
|
G. Dupret, M. Koda. Bootstrap re-sampling for unbalanced data in supervised learning. European Journal of Operational Research 134:1 (2001) 141-156 |
|
|
bib |
|
|
N. Japkowicz. Supervised versus unsupervised binary-learning by feedforward neural networks. Machine Learning 42:1-2 (2001) 97-122 |
|
|
bib |
|
|
F.J. Provost, T. Fawcett. Robust classification for imprecise environments. Machine Learning 42:3 (2001) 203-231 |
|
|
bib |
|
2000 |
|
S.S. Lee. Noisy replication in skewed binary classification. Computational Statistics & Data Analysis 34:2 (2000) 165-191 |
|
|
bib |
|
1998 |
|
M. Kubat, R.C. Holte, S. Matwin. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30:2-3 (1998) 195-215 |
|
|
bib |
|
|
S. Ramanan, T.G. Clarkson, J.G. Taylor. Adaptive algorithm for training pRAM neural networks on unbalanced data sets. Electronics Letters 34:13 (1998) 1335-1336 |
|
|
bib |
|
1997 |
|
L. Bruzzone, S.B. Serpico. Classification of imbalanced remote-sensing data by neural networks. Pattern Recognition Letters 18:11 (1997) 1323-1328 |
|
|
bib |
|
Contributions to Books Chapters
Jump to Year: 1996
Conference Contributions
Jump to Year: 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996
2008 |
|
|
|
|
bib |
|
|
D.A. Cieslak, N.V. Chawla. Learning decision trees for unbalanced data. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD08). Antwerp (Belgium, 2008) 241-256 |
|
|
bib |
|
|
J. Doucette, M.I. Heywood. GP classification under imbalanced data sets: active sub-sampling and AUC approximation. 11th European Conference on Genetic Programming (EuroGP08). Naples (Italy, 2008) 266-277 |
|
|
bib |
|
|
|
|
|
bib |
|
|
S. Gazzah, N.E.B. Amara. New oversampling approaches based on polynomial fitting for imbalanced data sets. The Eighth IAPR International Workshop on Document Analysis Systems (DAS08). (2008) 677-684 |
|
|
bib |
|
|
X. Guo, Y. Yin, C. Dong, G. Yang, G. Zhou. On the class imbalance problem. Fourth International Conference on Natural Computation (ICNC08). (2008) 192-201 |
|
|
bib |
|
|
S. Hido, H. Kashima:. Roughly balanced bagging for imbalanced data. SIAM International Conference on Data Mining (SDM08). Atlanta (USA, 2008) 143-152 |
|
|
bib |
|
|
P. Lenca, S. Lallich, T.-N. Do, N.-K. Pham. A comparison of different off-centered entropies to deal with class imbalance for decision trees. 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD08). Osaka (Japan, 2008) 634-643 |
|
|
bib |
|
|
P. Li, P.-L. Qiao, Y.-C. Liu. A hybrid re-sampling method for svm learning from imbalanced data sets. Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD08). Shandong (China, 2008) 65-69 |
|
|
bib |
|
|
Z. Lu, A.I. Rughani, B.I. Tranmer, J. Bongard. Informative sampling for large unbalanced data sets. Genetic and Evolutionary Computation Conference (GECCO08). Atlanta (USA, 2008) 2047-2054 |
|
|
bib |
|
|
|
|
|
bib |
|
|
N. Seliya, Z. Xu, T.M. Khoshgoftaar. Addressing class imbalance in non-binary classification problems. 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI08). Dayton (USA, 2008) 460-466 |
|
|
bib |
|
|
J. Stefanowski, S. Wilk. Selective pre-processing of imbalanced data for improving classification performance. 10th International Conference on Data Warehousing and Knowledge Discovery (DaWaK08). Turin (Italy, 2008) 283-292 |
|
|
bib |
|
|
G. Tepvorachai, C.A. Papachristou. Multi-label imbalanced data enrichment process in neural net classifier training. International Joint Conference on Neural Networks (IJCNN08). Hong Kong (China, 2008) 1301-1307 |
|
|
bib |
|
|
D. Ye, Z. Chen. A rough set based minority class oriented learning algorithm for highly unbalanced data sets. IEEE International Conference on Granular Computing (GrC08). (2008) 736-739 |
|
|
bib |
|
|
Y. Zhang, B. Luo. Parallel classifiers ensemble with hierarchical machine learning for imbalanced classes. International Conference on Machine Learning and Cybernetics (ICMLC08). Kunming (China, 2008) 94-99 |
|
|
bib |
|
|
S. Zou, Y. Huang, Y. Wang, J. Wang, C. Zhou. SVM learning from imbalanced data by GA sampling for protein domain prediction. 9th International Conference for Young Computer Scientists (ICYCS08). Zhang Jia Jie (China, 2008) 982-987 |
|
|
bib |
|
2007 |
|
|
|
|
bib |
|
|
M. Beigi, A. Zell. Synthetic protein sequence oversampling method for classification and remote homology detection in imbalanced protein data. 1st International Conference on Bioinformatics Research and Development (BIRD07). Berlin (Germany, 2007) 263-277 |
|
|
bib |
|
|
X. Hao, X. Tao, C. Zhang, Y. Hu. An effective method to improve kNN text classifier. 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD07). Qingdao (China, 2007) 379-384 |
|
|
bib |
|
|
L. Pelayo, S. Dick. Applying novel resampling strategies to software defect prediction. Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS07). (2007) 69-72 |
|
|
bib |
|
|
J. Van Hulse, T.M. Khoshgoftaar, A. Napolitano. Experimental perspectives on learning from imbalanced data. 24th International Conference on Machine Learning (ICML07). Corvalis (USA, 2007) 935-942 |
|
|
bib |
|
2006 |
|
B. Arunasalam, S. Chawla. CCCS: a top-down associative classifier for imbalanced class distribution. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (No Data). ACM. Philadelphia (USA, 2006) 517-522 |
|
|
bib |
|
|
|
|
|
bib |
|
|
H.-j. Lee, S. Cho. The novelty detection approach for different degrees of class imbalance. 13th International Conference on Neural Information Processing. Lecture Notes in Computer Science 4233, Springer 2006, Hong Kong (China, 2006) 21-30 |
|
|
bib |
|
|
Y. Liu, A. An, X. Huang. Boosting prediction accuracy on imbalanced datasets with SVM ensembles. 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD06). Lecture Notes in Computer Science 3918, Springer 2006 (Singapore, 2006) 107-118 |
|
|
bib |
|
|
|
|
|
bib |
|
|
S. Pang, I. Havukkala, N. Kasabov. Two-class SVM trees (2-SVMT) for biomarker data analysis. 3rd International Symposium on Neural Networks (ISNN06). Lecture Notes in Computer Science 3973, Springer 2006, Chengdu (China, 2006) 629-634 |
|
|
bib |
|
|
Y. Sun, M.S. Kamel, Y. Wang. Boosting for learning multiple classes with imbalances class distribution. 6th IEEE International Conference on Data Mining (ICDM06). Hong Kong (China, 2006) 592-602 |
|
|
bib |
|
|
J. Wang, M. Xu, H. Wang, J. Zhang. Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding. 8th International Conference on Signal Processing (No Data). IEEE. No Data (No Data, 2006) 0-0 |
|
|
bib |
|
|
S.-J. Yen, Y.-S. Lee. Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. International Conference on Intelligent Computing (No Data). Springer. No Data (No Data, 2006) 731-740 |
|
|
bib |
|
|
S.-J. Yen, Y.-S. Lee, C.-H. Lin, J.-C. Ying. Investigating the effect of sampling methods for imbalanced data distributions. IEEE International Conference on Systems, Man and Cybernetics (ICSMC06). (2006) 4163-4168 |
|
|
bib |
|
2005 |
|
X.W. Chen, B. Gerlach, D. Casasent. Pruning support vectors for imbalanced data classification. International Joint Conference on Neural Networks (IJCNN05). IEEE. Montreal (Canada, 2005) 1883-1888 |
|
|
bib |
|
|
C. Drummond, R.C. Holte. Severe class imbalance: why better algorithms aren't the answer. 16th European Conference on Machine Learning (ECML05). Lecture Notes in Computer Science 3720, Springer 2005, Porto (Portugal, 2005) 539-546 |
|
|
bib |
|
|
T. Eitrich, B. Lang. Parallel tuning of support vector machine learning parameters for large and unbalanced data sets. Ist International Symposium on Computational Life Sciences (CompLife'05). Lecture Notes in Computer Science 3695, Springer-Verlag 2005, Konstanz (Germany, 2005) 253-264 |
|
|
bib |
|
|
H. Han, W.Y. Wang, B.H. Mao. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. International Conference on Intelligent Computing (ICIC'05). Lecture Notes in Computer Science 3644, Springer-Verlag 2005, Hefei (China, 2005) 878-887 |
|
|
bib |
|
|
C.H. Nguyen, T.B. Ho. An imbalanced data rule learner. 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD05). Lecture Notes in Computer Science 3721, Springer 2005, Porto (Portugal, 2005) 617-624 |
|
|
bib |
|
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
E. Scheurmann, C. Matthews. Neural network classifers in arrears management. XVth International Conference on Artificial Neural Networks: Formal Models and Their Applications (ICANN'05). Lecture Notes in Computer Science 3697, Springer-Verlag 2005, Warsaw (Poland, 2005) 325-330 |
|
|
bib |
|
|
Y. Sun, A.K.C. Wong, Y. Wang. Parameter inference of cost-sensitive boosting algorithms. IVth International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM'05). Lecture Notes in Computer Science 3587, Springer-Verlag 2005, Leipzig (Germany, 2005) 21-30 |
|
|
bib |
|
|
S. Visa, A. Ralescu. The effect of imbalanced data class distribution on fuzzy classifiers - experimental study. XIVth IEEE International Conference on Fuzzy Systems (FUZZ'05). Reno (USA, 2005) 749-754 |
|
|
bib |
|
|
K. Yoon, S. Kwek. An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics. 5th International Conference on Hybrid Intelligent Systems (HIS05). IEEE. Rio de Janeiro (Brazil, 2005) 303-308 |
|
|
bib |
|
|
D. Zhuang, B. Zhang, Q. Yang, J. Yan, Z. Chen, Y. Chen. Efficient text classification by weighted proximal SVM. 5th IEEE International Conference on Data Mining (ICDM05). IEEE. Houston (USA, 2005) 538-545 |
|
|
bib |
|
|
L. Zhuang, H. Dai, X. Hang. A novel field learning algorithm for dual imbalance text classification. IInd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'05). Lecture Notes in Computer Science 3614, Springer-Verlag 2005, Changsha (China, 2005) 39-48 |
|
|
bib |
|
2004 |
|
R. Akbani, S. Kwek, N. Japkowicz. Applying support vector machines to imbalanced datasets. XVth European Conference on Machine Learning (ECML'04). Lecture Notes in Computer Science 3201, Springer-Verlag 2004, Pisa (Italy, 2004) 39-50 |
|
|
bib |
|
|
|
|
|
bib |
|
|
|
|
|
bib |
|
|
J.X. Chen, T.H. Cheng, A.L.F. Chan, H.Y. Wang. An application of classification analysis for skewed class distribution in therapeutic drug monitoring - the case of vancomycin. Workshop on Medical Information Systems (IDEAS-DH'04). IEEE. Beijing (China, 2004) 35-39 |
|
|
bib |
|
|
G. Cohen, M. Hilario, C. Pellegrini. One-class support vector machines with a conformal kernel. A case study in handling class imbalance. Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition (SSPR/SPR'04). Lecture Notes in Computer Science 3138, Springer-Verlag 2004, Lisbon (Portugal, 2004) 850-858 |
|
|
bib |
|
|
J.W. Grzymala-Busse, J. Stefanowski, S. Wilk. A comparison of two approaches to data mining from imbalanced data. VIIIth International ConferenceKnowledge-Based Intelligent Information and Engineering Systems (KES'04). Lecture Notes in Computer Science 3213, Springer-Verlag 2004, Wellington (New Zealand, 2004) 757-763 |
|
|
bib |
|
|
K. Huang, H. Yang, I. King, M.R. Lyu. Learning classifiers from imbalanced data based on biased minimax probability machine. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04). Washington DC (USA, 2004) 558-563 |
|
|
bib |
|
|
M. Muhlbaier, A. Topalis, R. Polikar. Incremental learning from unbalanced data. IEEE International Joint Conference on Neural Networks (ICJNN'04). Budapest (Hungary, 2004) 1057-1062 |
|
|
bib |
|
|
D.L. Olson. Data Set Balancing. Chinese Academy of Sciences Symposium on Data Mining and Knowledge Management (CASDMKM'04). Lecture Notes in Computer Science 3327, Springer-Verlag 2004, Beijing (China, 2004) 71-80 |
|
|
bib |
|
|
R.C. Prati, G.E.A.P.A. Batista, M.C. Monard. Learning with class skews and small disjuncts. XVIIth Brazilian Symposium on Artificial Intelligence (SBIA'04). Lecture Notes in Computer Science 3171, Springer-Verlag 2004, Sao Luis (Brazil, 2004) 296-306 |
|
|
bib |
|
|
R.C. Prati, G.E.A.P.A. Batista, M.C. Monard. Class imbalances versus class overlapping: an analysis of a learning system behavior. III Mexican International Conference on Artificial Intelligence (MICAI'04). Lecture Notes in Computer Science 2972, Springer-Verlag 2004, Mexico City (Mexico, 2004) 312-321 |
|
|
bib |
|
|
J. Zhang, E. Bloedorn, L. Rosen, D. Venese. Learning rules from highly unbalanced data sets. IVth IEEE International Conference on Data Mining (ICDM'04). Brighton (UK, 2004) 571-574 |
|
|
bib |
|
2003 |
|
|
|
|
bib |
|
|
H. Bian, L. Mazlack. Fuzzy-rough nearest-neighbor classification approach. XXIInd International Conference of the North American Fuzzy Information Processing Society (NAFIPS'03). Chicago (USA, 2003) 500-505 |
|
|
bib |
|
|
N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer. SMOTEBoost: improving prediction of the minority class in boosting. Knowledge Discovery in Databases. VIIth European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'03). Lecture Notes in Computer Science 2838, Springer-Verlag 2003, Cavtat Dubrovnik (Croatia, 2003) 107-119 |
|
|
bib |
|
|
N.V. Chawla. C4.5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
G. Cohen, M. Hilario, H. Sax, S. Hugonnet. Data imbalance in surveillance of nosocomial infections. IVth International Symposium on Medical Data Analysis (ISMDA'03). Lecture Notes in Computer Science 2868, Springer-Verlag 2003, Berlin (Germany, 2003) 109-117 |
|
|
bib |
|
|
|
|
|
bib |
|
|
C. Drummond, R.C. Holte. C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
R. Hickey. Learning rare class footprints: the REFLEX algorithm. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
M.A. Maloof. Learning when data sets are imbalanced and when costs are unequal and unknown. Workshop on Learning from Imbalanced Data Sets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
P. Radivojac, U. Korad, K.M. Sivalingam, Z. Obradovic. Learning from class-imbalanced data in wireless sensor networks. LVIII Vehicular Technology Conference (VTC'03-Fall). IEEE. Orlando (USA, 2003) 3030-3034 |
|
|
bib |
|
|
S. Visa, A. Ralescu. Learning imbalanced and overlapping classes using fuzzy sets. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
G. Wu, E.Y. Chang. Class-boundary alignment for imbalanced dataset learning. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
J. Zhang, I. Mani. kNN approach to unbalanced data distributions: a case study involving information extraction. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
|
Z. Zheng, R.K. Srihari. Optimally combining positive and negative features for text categorization. Workshop on Learning from Imbalanced Datasets (ICML'03). Washington DC (USA, 2003) 0-0 |
|
|
bib |
|
2002 |
|
X. Fu, L. Wang, K.S. Chua, F. Chu. Training RBF neural networks on unbalanced data. IX International Conference on Neural Information Processing (ICONIP'02). Singapore (Republic of Singapore, 2002) 1016-1020 |
|
|
bib |
|
|
M.V. Joshi, R.C. Agarwal, V. Kumar. Predicting rare classes: can boosting make any weak learner strong?. VIIIth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'02). Edmonton (Canada, 2002) 297-306 |
|
|
bib |
|
|
M.C. Monard, G.E.A.P.A. Batista. Learning with skewed class distributions. Advances in Logic, Artificial Intelligence and Robotics (LAPTEC'02). Sao Paulo (Brazil, 2002) 173-180 |
|
|
bib |
|
|
A.T. Quang, Q.L. Zhang, X. Li. Evolving support vector machine parameters. International Conference on Machine Learning and Cybernetics (ICMLC'02). IEEE. Beijing (China, 2002) 548-551 |
|
|
bib |
|
2001 |
|
A. An, N. Cercone, X. Huang. A case study for learning from imbalanced data sets. XIV Biennial Conference of the Canadian Society for Computational Studies of Intelligence (AI'01). Lecture Notes in Computer Science 2056, Springer-Verlag 2001, Ottawa (Canada, 2001) 1-15 |
|
|
bib |
|
|
A. An, Y. Wang. Comparisons of classification methods for screening potential compounds. IEEE International Conference on Data Mining (ICDM'01). San Jose (USA, 2001) 11-18 |
|
|
bib |
|
|
C. Elkan. The foundations of cost-sensitive learning. XVII International Joint Conference on Artificial Intelligence (IJCAI'01). Washington DC (USA, 2001) 973-978 |
|
|
bib |
|
|
A. Estabrooks, N. Japkowicz. A mixture-of-experts framework for learning from imbalanced data sets. IV International Conference Advances in Intelligent Data Analysis (IDA'01). Lecture Notes in Computer Science 2189, Springer-Verlag 2001, Cascais (Portugal, 2001) 34-43 |
|
|
bib |
|
|
L.O. Hall. Data mining from extreme data sets: very large and/or very skewed data sets. IEEE International Conference on Systems, Man, and Cybernetics (SMC'01). Tucson (USA, 2001) 2555-2555 |
|
|
bib |
|
|
N. Japkowicz. Concept-learning in the presence of between-class and within-class imbalances. XIV Conference of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence (AI'01). Lecture Notes in Computer Science 2056, Springer-Verlag 2001, Ottawa (Canada, 2001) 67-77 |
|
|
bib |
|
|
M.V. Joshi, V. Kumar, R.C. Agarwal. Evaluating boosting algorithms to classify rare classes: comparison and improvements. IEEE International Conference on Data Mining (ICDM'01). San Jose (USA, 2001) 257-264 |
|
|
bib |
|
|
M.V. Joshi, R.C. Agarwal, V. Kumar. Mining needles in a haystack: classifying rare classes via two-phase rule induction. Conference on Management of Data (SIGMOD'01). Santa Barbara (USA, 2001) 0-0 |
|
|
bib |
|
|
P. Latinne, M. Saerens, C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: evidence from a multi-class problem in remote sensing. XVIII International Conference on Machine Learning (ICML'01). Williamstown (USA, 2001) 298-305 |
|
|
bib |
|
|
K.K. Lee, S.R. Gunn, C.J. Harris, P.A.S. Reed. Classification of imbalanced data with transparent kernels. International Joint Conference on Neural Networks (IJCNN'01). Washington DC (USA, 2001) 2410-2415 |
|
|
bib |
|
|
A. Nickerson, N. Japkowicz, E. Milios. Using unsupervised learning to guide re-sampling in imbalanced data sets. VIII International Workshop on AI and Statitsics (AIStats'01). Key West (USA, 2001) 261-265 |
|
|
bib |
|
|
B. Zadrozny, C. Elkan. Learning and making decisions when costs and probabilities are both unknown. VII ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'01). San Francisco (USA, 2001) 204-213 |
|
|
bib |
|
2000 |
|
C. Drummond, R.C. Holte. Exploiting the cost (in)sensitivity of decision tree splitting criteria. VII International Conference on Machine Learning (ICML'00). Standord (USA, 2000) 239-246 |
|
|
bib |
|
|
N. Japkowicz. Learning from imbalanced data sets: a comparison of various strategies. AAAI Workshop on Learning from Imbalanced Data Sets (AAAI'00). Austin (USA, 2000) 10-15 |
|
|
bib |
|
|
N. Japkowicz. The class imbalance problem: significance and strategies. International Conference on Artificial Intelligence (IC-AI'00). Las Vegas (USA, 2000) 111-117 |
|
|
bib |
|
1999 |
|
D. Carvalho, B. Avila, A.A. Freitas. A hybrid genetic algorithm/decision tree approach for coping with unbalanced classes. III International Conference on the Practical Applications of Knowledge Discovery and Data Mining (PADD'99). London (UK, 1999) 61-70 |
|
|
bib |
|
|
P. Domingos. MetaCost: a general method for making classifiers cost-sensitive. Vth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'99). San Diego (USA, 1999) 155-164 |
|
|
bib |
|
|
G. Dong, X. Zhang, L. Wong, J. Li. CAEP: Classification by Aggregating Emerging Patterns. IInd International Conference Discovery Science (DS'99). Lecture Notes in Computer Science 1721, Springer-Verlag 1999, Tokyo (Japan, 1999) 30-42 |
|
|
bib |
|
|
W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan. AdaCost: misclassification cost-sensitive boosting. XVIth International Conference on Machine Learning (ICML'99). Bled (Slovenia, 1999) 97-105 |
|
|
bib |
|
1998 |
|
P.K. Chan, S.J. Stolfo. Toward scalable learning with non-uniform class and cost distributions: a case study in credit card fraud detection. International Conference on Knowledge Discovery and Data Mining (KDD'98). New York City (USA, 1998) 164-168 |
|
|
bib |
|
1997 |
|
C. Cardie, N. Howe. Improving minority class prediction using case-specific feature weights. XIVth International Conference on Machine Learning (ICML'97). Nashville (USA, 1997) 57-65 |
|
|
bib |
|
|
M. Kubat, R.C. Holte, S. Matwin. Learning when negative examples abound. IX European Conference on Machine Learning (ECML'97). Lecture Notes in Computer Science 1224, Springer-Verlag 1997, Prague (Czech Republic, 1997) 146-153 |
|
|
bib |
|
|
M. Kubat, S. Matwin. Addressing the curse of imbalanced training sets: one-sided selection. XIV International Conference on Machine Learning (ICML'97). Nashville (USA, 1997) 179-186 |
|
|
bib |
|
|
F.J. Provost, T. Fawcett. Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. IIIrd International Conference on Knowledge Discovery and Data Mining (KDD'97). Newport Beach (USA, 1997) 43-48 |
|
|
bib |
|
1996 |
|
K.J. Ezawa, M. Singh, S.W. Norton. Learning goal oriented bayesian networks for telecommunications risk management. XIII International Conference on Machine Learning (ICML'96). Bari (Italy, 1996) 139-147 |
|
|
bib |
|
|