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Abstract. Binary classification is typically achieved by supervised learning methods. Nevertheless, it is also
possible using unsupervised schemes. This paper describes a connectionist unsupervised approach to binary
classification and compares its performance to that of its supervised counterpart. The approach consists of training
an autoassociator to reconstruct the positive class of a domain at the output layer. After training, the autoassociator
is used for classification, relying on the idea that if the network generalizes to a novel instance, then this instance
must be positive, but that if generalization fails, then the instance must be negative. When tested on three real-world
domains, the autoassociator proved more accurate at classification than its supervised counterpart, MLP, on two of
these domains and as accurate on the third (Japkowicz, Myers, & Gluck, 1995). The paper seeks to generalize these
results and concludes that, in addition to learning a concept in the absence of negative examples, 1) autoassociation
is more efficient than MLP in multi-modal domains, and 2) it is more accurate than MLP in multi-modal domains
for which thenegative classcreates a particularlystrongneed for specialization or thepositive classcreates a
particularlyweakneed for specialization. In multi-modal domains for which thepositive classcreates a particularly
strongneed for specialization, on the other hand, MLP is more accurate than autoassociation.

Keywords: unsupervised learning, supervised learning, discrimination, recognition, class imbalance problem,
feedforward neural networks, autoassociation

1. Introduction

Binary-learning can be approached in one of two ways. The first way considers both positive
and negative examples of a concept and learns todiscriminatebetween the two classes. The
second way consists of considering only positive examples of the concept and learning
how to recognizethose examples. Discrimination-based learning falls in the category of
supervised learningsince it requireslabeledexamples ofboththe positive and the negative
class, and derives a discrimination function based on this information. Recognition-based
learning, on the other hand, falls in the category ofunsupervised learningsinceunlabeled
data are fed to the learning system which is left to choose an internal organization on its
own. Supervised and unsupervised approaches to binary-learning are illustrated in figure 1.

Although supervised methods are usually favored in the fields of Pattern Recognition,
Machine Learning, Neural Networks, and Data Mining (e.g., Binary Hypothesis Testing
(Fukunaga, 1990), Multi-Layer Perceptrons (MLP) (Rumelhart, Hinton, & Williams , 1986),
C4.5 (Quinlan, 1993), CART (Breiman et al., 1984), Nearest-Neighbors (Fukunaga, 1990) ,
and IB4 (Aha, Kibler, & Albert, 1991)), an unsupervised connectionist method was recently
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(a) Supervised (b) Unsupervised

Figure 1. The two approaches to binary learning: Supervised versus Unsupervised Learning. In supervised learn-
ing, boundaries are drawnbetweenthe positive and the negative examples. In unsupervised learning, boundaries
are drawnaroundthe positive examples.

shown to be more accurate at classification than its supervised counterpart—MLP—on two
out of three real-world domains and as accurate on the third (Japkowicz, Myers, & Gluck,
1995). This unsupervised approach to classification consists of training a one-hidden layer,
nonlinear autoassociator to reconstruct the positive class of a domain at the output layer.
Once trained, the autoassociator is used for classification, relying on the idea that if the
network generalizes to a novel instance, then this instance must be positive, but that if
generalization fails, then the instance must be negative.

The approach was originally introduced by Hanson and Kegl (1987) and used to learn
a natural language grammar in the absence of negative (i.e., labeled non-grammatical) ex-
amples. The purpose of this study was to model the language acquisition process in its
early stages, when the child is only exposed to grammatical sentences. At this stage, the
child is not yet able utter sentences that could be ungrammatical (and thus corrected), or, in
machine-learning terms, labeled as negative. The success of the approach on this cognitive
task encouraged researchers to test it on practical engineering tasks for which positive exam-
ples are available, but for which negative examples are very expensive or difficult to obtain
(such tasks are said to suffer from theclass imbalance problem(Kubat, Holte, & Matwin,
1998)). The approach proved successful on tasks such as helicopter gearbox fault monitoring
(Japkowicz, Myers, & Gluck, 1995) and motor fault monitoring (Petsche et al., 1996).1

This paper suggests the reasons for the apparent advantage of autoassociation-based
classification over MLP in selected domains. Our methodology consists of, first, verifying
the results obtained in the experiments on real-world domains of Japkowicz, Myers, and
Gluck (1995), and, second, analyzing the flexibility of the autoassociator by testing it and
comparing its performance to that of MLP on a series of synthetic domains with controlled
characteristics. Consequently, the three real-world domains that motivated our study are
analyzed in light of the synthetic domains in an attempt to validate our conclusions and
suggest means of fine-tuning our results.

The study concludes that, in the context of feedforward neural networks, unsupervised
techniques can be more appropriate than supervised ones as far as binary learning is
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concerned. Indeed, there exist a number of abstract domain characteristics for which unsu-
pervised learning is more accurate than supervised learning.

The remainder of this paper is divided into six sections. Section 2 describes the two
connectionist schemes compared in this study. Section 3 describes the results obtained
from re-applying the autoassociator and the MLP network to the three real-world domains
of Japkowicz, Myers, and Gluck (1995), using a more robust experimental framework.
Section 4 states the particular hypotheses studied in this paper. Section 5 discusses the ex-
periments carried out and the results obtained in view of these hypotheses. Section 6 extracts
the domain characteristics of the three real-world domains and matches them to the results
of Section 5, thus, justifying some of our conclusions and deriving new research directions
designed to fine-tune these conclusions. Section 7 discusses additional future work. The re-
search conducted in this paper is based on Chapters 4 and 7 of Japkowicz (1999a) and it con-
stitutes an expanded version of Japkowicz, Myers, and Gluck (1995) and Japkowicz (1999b).

2. Supervised versus unsupervised binary-learning in feedforward neural networks

A formal definition for the task of learning by feedforward neural networks typically involves
an input vectorx j and a response vectory j which are such that the pair(x j , y j ) belongs
to some unknown joint probability distribution,P. The goal of the network is to induce a
function f (x) from a set(x1, y1), (x2, y2), . . . (xN, yN) of training examples ofP, so that
if (x, y) belongs toP, then f (x) approximatesy.

An important property of these networks is that they can be applied to binary-learning
tasks—tasks in which asingleconcept is learned from training data that are either examples
of this concept or counter-examples. Under the supervised paradigm, response vector,y j ,
represents the class of its associated input vector,x j , whereas under the unsupervised
paradigm,y j = x j . This will be discussed in more detail below.

Throughout this study, we restrict our attention to Multi-Layer Perceptrons with a single
hidden layer, i.e., with two layers of weights. Two implementations of the binary-learning
task using feedforward neural networks are illustrated in figure 2. In figure 2(a), the input
layer contains 6 units, the hidden layer, 3 units, and the output layer, a single unit. Figure 2(b)
is similar except for the output layer which contains 6 units. The network of figure 2(a)
can be used for supervised binary-learning as described in Section 2.1 while the network
of figure 2(b) can be used for unsupervised binary-learning as described in Section 2.2.

2.1. Supervised learning

The network of figure 2(a), which we refer to as “MLP” or “the MLP network”, is the
most commonly used network in the field of connectionist systems. It is typically used to
implement a supervised approach to binary learning. Using this scheme, single outputy j

1,
the response vector associated with input vectorx j , is assigned the value of “1” or “0”
according to whether or notx j is an instance of the concept the network is trying to learn.

After training the network to approximate the functionf (x) from which the training
examples are believed to have been generated, it is expected that, if the training set was
appropriately designed, the network will be able to compute the appropriate label (“1” or
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(a) MLP (b) Autoassociator

Figure 2. Examples of Feedforward Neural Networks: The network of figure (a) can be used in a supervised
fashion while the network of figure (b) can be used in an unsupervised fashion for the task of binary-learning.

“0”) for any input vector of the size of the input layer, even if that vector did not appear in
the training set. In all the experiments reported in this article, training was performed using
the backpropagation procedure (Rumelhart, Hinton, & Williams, 1986).

2.2. Unsupervised learning

The network of figure 2(b) is not as universal as the previous network, but it has been used
previously to implement a compression scheme (Cottrell, Munro, & Zipser, 1987; Elman
& Zipser, 1988). This network also can be used to implement an unsupervised approach
to binary learning as proposed by Hanson and Kegl (1987). In this scheme, each response
vectory j is set tox j , its corresponding input vector. In other words, the network is trained
to reproduce the input at the output layer. Such a network is called an autoassociator (or
autoencoder) and was originally introduced in Rumelhart, Hinton, and Williams (1986).
For binary-learning to take place, the network is trained to reconstruct positive data only
and classification is performed on a new vectorxTestby comparing itsreconstruction error2

to a threshold, and assigning it to the positive class if the reconstruction error is smaller than
this threshold and to the negative class, otherwise. The idea behind this recognition-based
unsupervised classification scheme is that since the autoassociator is trained to compress
and decompress examples of the positive class only, when tested on a novel data point, it
will compress and decompress it appropriately if this example belongs to the positive class,
but it will not do so appropriately if the example does not belong to the positive class. As
in the case of the MLP network, the autoassociator is trained using the backpropagation
procedure (Rumelhart, Hinton, & Williams, 1986).
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3. A comparison of supervised and unsupervised learning by feedforward neural
networks on three practical domains

In this section, MLP and autoassociation-based classification are compared and contrasted
on a series of three real-world domains: helicopter gearbox fault monitoring, DNA pro-
moter recognition, and sonar target recognition. Although the experiments reported here
are heavily based on the work of Japkowicz, Myers, and Gluck (1995), this section extends
its results in two ways. First it eliminates the bias created by the introduction in Japkowicz,
Myers, and Gluck (1995) of a threshold-determination procedure. And, second, it justifies
the choices made in Japkowicz, Myers, and Gluck (1995) of which class to consider as the
“positive” class, i.e., the class to be recognized by the autoassociative process.

This section is divided into three subsections. Section 3.1 describes the three domains
considered in our study, Section 3.2 discusses the experimental strategy used for our exper-
iments and Section 3.3 lists their results.

3.1. Domain description

To evaluate the performance of classification systems reliably, it is necessary to test them on
several domains. The domains used in this section for such an evaluation are now described.

CH46 helicopter gearbox The CH46 Helicopter problem is a monitoring problem that
consists of discriminating between faulty and non-faulty CH46 helicopter gearboxes,
according to the whining sound they emit during their operation. These data were obtained
from NRaD (Kolesar & NRaD, 1994). The sudden, unexpected failure of CH46 helicopter
gearboxes can be very costly both in terms of lives and equipment. The development of
a monitoring system that can identify imminent failures before takeoff or when in flight
is of paramount importance. The data for this problem were obtained by pre-processing
the vibration time signal of the gearboxes of various faulty and non-faulty helicopters.
The complete data set is composed of 18 non-faulty instances and 46 faulty ones which
come in the form of 256 long vectors of real numbers. In this particular problem, the
non-faulty examples were chosen to represent the positive class.

Promoter The promoter recognition problem takes as input, segments of DNA, some
of which represent promoters. A promoter is a sequence that signals to the chemical
processes acting on the DNA where a gene begins. The goal of the problem is to train a
classifier to recognize promoters, which are taken to be the positive class. The training set
is composed of 100 examples (47 promoters and 53 non-promoters), each composed of a
set of 51 nucleotides, where each nucleotide can take one of the four values{a, c, g, or t}.
The promoter data were obtained from the U.C. Irvine Repository of Machine Learning
and was modified in response to Norton’s critique of the biological flaws underlying the
original formulation of the data (Norton, 1994). In addition, as is usual for this problem
when run on a connectionist system, each example was converted into a 204-bit long
vector where each nucleotide was represented with 4 bits.

Sonar target The sonar target detection problem takes as input the signals returned by a
sonar system in the cases where mines and rocks were used as targets. The sonar data was
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obtained from the U.C. Irvine Repository of Machine Learning though only a subset of
100 instances (47 positive and 53 negative) from these data was used in this particular case
study. The transmitted sonar signal is a frequency-modulated chirp, rising in frequency.
The data set contains signals obtained from a variety of different aspect angles. Each
instance of this data is represented as a 60-bit long vector spanning 90 degrees for the
mine and 180 degrees for the rock. Each instance is a set of 60 numbers in the range
0.0–1.0. In this particular case study, the signals returned by the mine targets were the
positive class.

3.2. Experimental strategy

The technique used to assess the capabilities of the unsupervised versus the supervised
scheme on the task of classification consisted of running both networks on a pre-defined
space of possible capacity and stopping point values, evaluating the two methods over all
possible threshold settings and reporting the best results obtained in both cases using a
five-fold cross-validation testing scheme (Weiss & Kulikowski, 1991).

Our experiments divide the data from each domain into the same five-fold cross-validation
sets as those used in Japkowicz, Myers and Gluck (1995), and within each fold of each do-
main both networks were trained using backpropagation on the training partition—although
the negative examples were removed in the case of the autoassociator—with 1, 2, 4, 8, 16,
32 and 64 hidden units for 500 epochs. Each network considered was then tested on the
testing partition at epoch 10, 20, 30, etc. until epoch 500.

Within each paradigm (supervised or unsupervised) and within each fold of each domain,
Receiving Operating Curve (ROC) Analyses were performed comparing all the combina-
tions of network capacity and stopping point in order to select the optimal one. A ROC curve
for a fold was built by successively recording the number of positive examples that would
be correctly classified if the threshold between positive and negative data were such that
only then negative examples with highest output value (for the MLP network) and lowest
reconstruction error (for the autoassociator) were misclassified. In these experiments,n was
successively set to 1, 2, . . . ,Max NegwhereMax Negrepresents the number of negative
examples available in the testing set. The results obtained by each system and for each fold
within a domain were averaged and these averaged results for both systems on that domain
were then plotted on the same graph.3 Within this graph, the curve located above the other
represents the most accurate system.

It is worth noting that our methodology is slightly different from standard ones. Indeed,
rather than determining, a-priori, a set of parameter and threshold values assumed to be
optimal, and returning cross-validation error-rate results, we compared all the possible
network parameter and threshold values of the MLP network to all the possible network
parameter and threshold values of the autoassociator prior to reporting the optimal cross-
validation error-rate results (note that we did, however, restrict the number of network
parameters that could vary. In particular, only the network capacity and stopping point
were allowed to vary. The learning rate and momentum were kept constant as is customary
in the neural network literature). While it can be argued that our methodology does not
guarantee that the results obtained can easily be mapped into practical situations, it has
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the advantage over the standard methodology of separating the issues of concept-learning,
on the one hand, and capacity, stopping point and threshold determination, on the other. It
thus eliminates many of the biases introduced by possibly arbitrary a-priori parameter and
threshold selection. Given the small amount of data available for this study, these biases
would have been particularly pronounced and, therefore, the results returned by our proposed
a-posteriori method are much more reliable than those that would have been obtained using
an alternate approach. In addition, this methodology has the advantage of providing us
with a unified framework within which very different approaches such as a supervised and
an unsupervised scheme can be compared fairly. The question of determining, a-priori, an
optimal set of parameter and threshold values is, nonetheless, discussed in our section on
Future Work. In particular, Section 7 will survey this issue in the case of the autoassociator
when negative examples are missing.

3.3. Results

The results obtained by comparing the performance of the autoassociator to that of the MLP
network on each of the three real-world domains described in Section 3.1 are displayed in
figure 3. Figure 4 displays the results obtained when inverting the roles of the positive and
the negative class. In particular, figure 3(a) displays the results obtained on the helicopter
gearbox domain when training the autoassociator on the non-faulty class; figure 3(b) displays
those obtained on the promoter data when training the autoassociator on the promoter
class; while figure 3(c) displays the results obtained on the sonar data when training the
autoassociator on the mine class. Conversely, figure 4(a) displays the results obtained on the
helicopter domain when training the autoassociator on the faulty class; figure 4(b) displays
the results obtained on the promoter domain when training the autoassociator on the non-
promoter class; and figure 4(c) displays the results obtained on the sonar domain when
training the autoassociator on the rock class.4

(a) Helicopter Domain (b) Promoter Domain (c) Sonar Domain

Figure 3. The result of a ROC analysis of MLP and the autoassociator on the three domains of Japkowicz,
Myers, and Gluck (1995). MLP is represented by a broken curve while the autoassociator is represented by a full
curve. The results show that MLP has the capability of being slightly more accurate than the autoassociator on the
helicopter domain, but that the autoassociator has the capability of being more accurate than MLP on the other
two domains.
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Table 1. Capacity and Stopping points selected for each of the experiments reported in figure 3.

Type of parameter Autoassociator MLP

Helicopter: capacity 1, 64, 1, 8, 1 1, 4, 1, 2, 1

Helicopter: stopping point 10, 310, 10, 70, 10 50, 370, 70, 40, 160

Promoter: capacity 2, 4, 8, 1, 2 1, 8, 1, 1, 8

Promoter: stopping point 30, 170, 100, 240, 150 20, 190, 20, 270, 100

Sonar: capacity 16, 32, 16, 32, 16 1, 32, 1, 1, 2

Sonar: stopping point 190, 40, 380, 140, 150 40, 30, 20, 200, 310

The five values listed in each cell correspond to the figures for each of the five folds
of each domain. The capacity values are expressed in terms of the number of hidden
units while the stopping points correspond to number of epochs.

(a) Helicopter Domain (b) Promoter Domain (c) Sonar Domain

Figure 4. The result of a ROC analysis of MLP and the autoassociator on the three domains of Japkowicz,
Myers, and Gluck (1995) where the autoassociator is trained on the negative rather than the positive class. MLP is
represented by a broken curve while the autoassociator is represented by a full curve. The results show that MLP
is more accurate than the autoassociator on all domains which demonstrates that the choice of the class on which
the autoassociator is to be trained is extremely important.

The capacity and stopping criteria selected for each fold of each domain and by each
network associated with figure 3 are reported in Table 1 while those associated with figure 4
are reported in Table 2. Each cell in these tables contains the parameters selected for each
of the domains’ five folds.

For the results illustrated in figure 3, the MLP network is capable of obtaining slightly
better classification results than the autoassociator in the helicopter gearbox domain, but
the autoassociator has the capability of outperforming the MLP network in the other two
domains. This means that if a good capacity, a good stopping point and a good threshold
can be established using only the training set (i.e., using only positive data in the case of
the autoassociator), then the autoassociator is quite capable of learning a binary problem’s
classification in the absence of counter-examples. In addition, our experiment demonstrates
that the autoassociator can even be more accurate than MLP which uses a supervised
paradigm relying on both the positive and negative class. On the other hand, the results of
figure 4 show that when the faulty helicopter gearboxes, the non-promoters, and the rocks
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Table 2. Capacity and Stopping points selected for each of the experiments reported in figure 4.

Type of parameter Autoassociator MLP

Helicopter: capacity 8, 16, 8, 8, 16 1, 4, 1, 2, 1

Helicopter: stopping point 110, 280, 350, 210, 150 50, 370, 70, 50, 160

Promoter: capacity 1, 1, 16, 8, 8 1, 8, 1, 1, 8

Promoter: stopping point 140, 30, 490, 20, 240 20, 190, 20, 270, 100

Sonar: capacity 4, 16, 4, 8, 8 1, 32, 1, 1, 2

Sonar: stopping point 20, 20, 310, 50, 60 40, 30, 20, 200, 310

The five values listed in each cell correspond to the figures for each of the five folds
of each domain. The capacity values are expressed in terms of the number of hidden
units while the stopping points correspond to number of epochs.

are considered to be the “positive” classes, MLP is capable of more accurate performance
than the autoassociator in all three domains.

The results reported in figure 3 are interesting and a bit surprising as they suggest that
additional information brought in by the negative class may sometimes be more of a liability
than an asset. As seen in the context of the experiments reported in figure 4, however, this is
not always the case: knowledge of the opposite class may sometimes be highly beneficial.5

The question of when negative examples are an asset and when they are a liability is studied
in Sections 4 and 5.

4. Hypotheses

To find out whether or not the results reported in Section 3.3 are meaningful in a more
general context, we reflect on the nature of binary-learning when using a supervised or an
unsupervised paradigm. A useful framework for understanding the induction process of a
generic classifier is to decompose it into two opposing processes in search of an equilibrium.
The first process seeks togeneralizefrom the positive examples of the concept given to the
classifier, while the second one seeks tospecializethese examples. Generalization amounts
to seeking a concept description which characterizes all the positive examples of the concept
while specialization consists of seeking a concept description which excludes all its negative
examples. This framework is illustrated in figure 5 and it is formalized in Mitchell (1982),
using the notion of “Version Spaces”.

In this generalization/specialization framework, supervised classifiers learn concepts by
generalizing from positive examples while specializing using negative examples. While
unsupervised learners are also able to generalize from positive examples, they do not,
however, have access to negative examples for specialization. Their ability to specialize
comes from a particular internal capability of theirs to bias the generalization process the
way negative examples would, if considered.6

Given the nature of the supervised and the unsupervised paradigms, it is expected that the
MLP network should be better suited than the autoassociator to learning domains that require
astrongspecialization bias caused by thepositiveclass. Examples of such domains are those
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Figure 5. The Generalization/Specialization Framework: Inductive processes seek a balance between their gen-
eralization thrust and their specialization strive.

in which, when viewed separately from the negative class, a multi-modal positive class can
be wrongly interpreted as uni-modal. In such domains, the MLP network’s ability to rely
on the negative examples during the inductive process allows it to discriminate between
the unimodal and the multimodal interpretation. On the contrary, if domain requirements
for a strongspecialization come from thenegativeclass, then the autoassociator should
not be affected whereas the MLP network, should. Examples of such domains are those
for which, although the positive class should rightly be interpreted as a multi-modal class,
the negative class can be wrongly interpreted as a uni-modal one. There, knowledge of
the negative class is, thus, a greater liability than its ignorance. Finally, in cases where a
weakspecialization is required, we expect that the autoassociator is more likely to learn
this subconcept than the MLP network. Examples of such domains are those for which a
multi-modal positive class should rightly be interpreted as multi-modal, but certain of its
subcomponents are represented by very few examples and, thus, are very faint. The reason
why the unsupervised scheme is expected to perform better than the supervised scheme
on such domains is because, once again, the autoassociator focuses on characterizing the
positive class independently of the negative class, whereas the MLP network may overlook
a particularly small (or under-represented) subconcept, especially if the negative class is
not under-represented. Illustrations of such domains will be presented in the next section
and the remainder of this paper is devoted to the experimental testing of the hypotheses just
described and to suggestions as to how they can be further refined.

5. Experimental hypothesis testing

The hypotheses stated in the previous section are now turned into concrete questions by
creating matching synthetic test domains. The resulting synthetic domains are then tested
in accordance with the hypotheses.
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5.1. Test domains generated

To test the hypotheses described in Section 4, MLP and the autoassociator were compared on
a series of synthetic domains presenting the three types of characteristics deemed significant
in the above discussion:

• Domains withstrongspecialization needs coming from thepositiveclass.
• Domains withstrongspecialization needs coming from thenegativeclass.
• Domains withweakspecialization needs coming from thepositiveclass.

These domains were obtained by applying certain transformations to aneutral domain,
labeled as such since it can be classified almost as accurately by the MLP network and the
autoassociator.

5.1.1. The neutral domain. The neutral domain is illustrated in figure 6(a) and (b). More
specifically, figure 6(a) represents the complete domain which is composed of four positive
and nine negative components corresponding to clusters of data points normally distributed
around some given means, and of varianceσ 2 = 0.01. The exact location of each component
mean is specified in figure 6(b) which shows that the means of the positive components
are located at points:(.2, .2), (.2, .8), (.8, .2), and(.8, .8); and the means of the negative
components are located at points:(.5, .5), (.1, .1), (.1, .9), (.9, .1), (.9, .9), (.5, .2), (.2, .5),
(.5, .8), and(.8, .5). This domain was inspired from the 2-D projection of the real-world
domains used in Section 3 and plotted in figure 11 of Section 6, as described in Japkowicz
(1999a).

The relative average classification performance of MLP and the autoassociator is reported
in figure 6(c) which represents the ROC curves obtained by the two systems on this domain.

(a) Neutral Domain (b) Means Only (c) ROC Analysis

Figure 6. (a) and (b): The Original Artificial Domain and (c) the result of a ROC analysis of MLP and the
autoassociator on this domain. MLP is represented by a broken curve while the autoassociator is represented by a
full curve. Since the two curves are almost co-located, the two systems are about as accurate on this domain.
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As described in Section 3.2, the ROC curve technique we used plots the percent of positive
instances of the concept correctly characterized versus the actual number of false negatives
for each classification method considered. Once again, the curves representing different
systems are plotted on the same graph and the curve located above the others represents the
most accurate classifier. In figure 6(c), the ROC curve for the MLP network is represented
by a broken curve while the ROC curve for the autoassociator is represented by a full curve.
Each curve represents the average performance obtained after repeating the experiment five
times on different realizations of the domain for each system. The fact that the two curves
are almost co-located indicates that the two systems are practically equally accurate on this
neutral domain.

For the experiment reported in figure 6(c), the momentum and learning rates of the two
systems were set to the standard values of 0.9 and 0.05, respectively. As in the experi-
ments of Section 3, a posteriori experimental methodology was followed which compares
the average performance of the two networks over all possible capacities within the set
of {1, 2, 4, 8, 16, 32, 64} hidden units and returns the optimal results obtained by both
networks. Because we are now dealing with artificial domains, there was no need to run
cross-validation experiments since any amount of data could be generated at will. Instead,
5 different pairs of training and testing sets were generated from the same backbone model
of figure 6(b) and the results obtained in each of these domains were averaged. The same
capacity of 16 hidden units was found to be optimal for both networks and on all domains.7

Since overfitting is a minor issue in large, well-behaved noiseless domains, there was no
need to look for a specific optimal stopping point in every realization of the domain: a
single stopping point was selected beyond the average time of convergence observed for
each system on all domains. This stopping point was set at 2000 epochs for the autoasso-
ciator and at 5000 epochs for the MLP network based on observing the average learning
curves obtained by the two systems on the neutral domain and reported in figure 7. These
curves plot the average percentage error, over the same 5 domain realizations used in the
experiments reported in Figure 6(c), obtained by each system as a function of the number
of epochs for which it was trained.8 Aside from indicating an adequate stopping point for
use in the ROC analysis, these plots indicate that while the autoassociator converges almost
immediately (as early as by epoch 500), the MLP network takes between 3000 and 3500
epochs to converge. This shows that, in addition to being as accurate or more accurate
than MLP in certain domains, the autoassociator can also be significantly more efficient
than MLP. This observation has been analyzed in more detail in Japkowicz (1999a) and
Japkowicz and Hanson (1999c). To rectify this discrepancy and improve MLP’s efficiency
on our artificial domains, its learning rate was increased to 0.2 in all the experiments reported
in the remainder of this paper.

5.1.2. The modified domains.The transformations applied to the neutral domain in view
of the hypotheses of Section 4 are illustrated in figures 8 and 9. Specifically,

• Modifications (a), (b) and (c) represent three domains in need of strong specialization
coming from the positive class. These three modifications can be thought of as void
reduction methods in that they all—in one way or another—decrease the void occurring
between the four positive clusters of the original domain. Decreasing this void calls
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Figure 7. Average classification error rates (as a function of the number of epochs) obtained by MLP and the
autoassociator on the neutral domain. Although MLP is slightly more accurate than the autoassociator on this
domain, the autoassociator is much more efficient than MLP.

(a) (b) (c)

Figure 8. Modifications of the neutral domain that create strong specialization needs caused by the positive class.
These domains are expected to be more accurately classified by MLP than by the autoassociator.

for a stronger specialization effect since it creates a tendency for classifiers to integrate
the various positive clusters into a single larger cluster, a step that would cause a high
classification error to occur since internal negative examples would be misclassified as
positive rather than negative.
• Modifications (d) and (e) represent two domains in need of strong specialization coming

from the negative class. More specifically, the purpose of modification (d) is to increase the
amount of surface of each positive cluster surrounded by negative data. This modification
calls for greater specialization strength because the negative data are not all located in a
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(d) (e) (f)

Figure 9. Modifications of the neutral domain that create strong specialization needs caused by the negative
class (figures (d) and (e)) and weak specialization needs caused by the positive class (figure (f)). These domains
are expected to be more accurately classified by the autoassociator than by MLP.

few localized spots, as in the neutral domain, but rather, they wrap around the positive
clusters. The purpose of modification (e) is to decrease the density of each negative cluster,
thereby decreasing the amount of external specialization provided to systems which take
such information into consideration, and calling for increased internal specialization.
• Modification (f) represents a domain in need of weak specialization coming from the

positive class. This modification was applied by decreasing the cardinality of one of the
four positive clusters in order to test whether or not, in case of imbalance in the density
of the positive clusters, the small cluster is correctly identified or misclassified as a noisy
occurrence.

Modification (a) was implemented by creating a concave, but connected pattern. It con-
sisted of turning the central internal negative cluster of figure 6(b) into a positive one.
Modification (b) was implemented by moving the positive clusters to a distance of 0.2 units
from each other (we recall that the original distance between each positive cluster was of
0.6 units). Modification (c) was implemented by increasing the variances of each positive
cluster to 0.04 (we recall that the variance was 0.01 in the original domain). Modification (d)
was implemented by increasing the variance of each negative cluster to 0.04 (we recall that
the variance was also 0.01 in the original domain). Modification (e) was implemented by
decreasing the size of the negative clusters to 5 examples each (we recall that each cluster
contained 50 data points in the original domain). Finally, modification (f) was implemented
by decreasing the cardinality of the left top positive cluster of figure 6(a) and (b) from 50 to
5 in order to test whether or not, in case of imbalance in the density of the positive clusters,
the small cluster gets correctly identified.

According to the hypotheses of Section 4, the domains of figure 8 should get more
accurately classified by the MLP network and the domains of figure 9 should get more
accurately classified by the autoassociator. The next section describes the experiments
conducted on these domains in order to test these hypotheses, and then discusses their results.
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5.2. Experiments and results

In this section, the experiments are first described followed by a discussion of the results
obtained.

5.2.1. Experiments. The results of the comparisons of MLP with the autoassociator on
each of the domains of figures 8 and 9 are displayed in figure 10. As in figure 6(c), these
results are reported in the form of ROC curves. Again, for each domain, the curves for
the MLP network and autoassociator are plotted on the same graph and the curve located
above the other represents the most accurate classifier on that domain. The autoassociator’s
performance is represented by a full curve while MLP’s is represented by a broken curve. As
in previous experiments, all the experiments were repeated five times on domains emanating
from the same backbone models of figures 8 and 9 and the curves displayed represent the
average results obtained on these five domains.

Optimal capacities were determined as in the experiments reported in figure 6(c) (they
are reported in Table 3) and the optimal stopping criteria were once again set to 2000 for the
autoassociator and 5000 for the MLP network. The momentum of the networks was set to
the standard value of 0.9 for each system, but, while the learning rate of the autoassociator
was set to the standard value of 0.05, as mentioned previously, it was increased to 0.2 in the
MLP network, in order to speed up learning.

5.2.2. Results. The results of the experiments performed on the six domains described in
Section 5.1 are reported in the graphs of figure 10.

These graphs show that, according to the expectations expressed in Section 4, MLP
outperforms the autoassociator in the domains in need of strong specialization caused by the
positive class (figure 10(a), (b) and (c)); the autoassociator outperforms MLP in the domains
in need of strong specialization caused by the negative class (figure 10(d)9 and (e)); and the

Table 3. Optimal Capacities for the autoassociator and MLP network on the different domains considered in this
study.

Domain Autoassociator MLP

Neutral 16 16

(a) 4 64

(b) 16 16

(c) 8 64

(d) 64 16

(e) 64 16

(f) 16 4

The first column lists the optimal capac-
ities for the autoassociator and the sec-
ond column lists the optimal capacities
for MLP.
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(a) (b) (c)

(d) (e) (f)

Figure 10. ROC Analysis for all the domains. The autoassociator’s performance is represented by a full curve
while MLP’s is represented by a broken one. As expected from the hypotheses of Section 4, MLP is shown to be
more accurate than the autoassociator in domains (a), (b) and (c), while the autoassociator is shown to be more
accurate in domains (d), (e) and (f).

autoassociator outperforms MLP in the domain in need of weak specialization caused by
the positive class (figure 10(f)).10

The results obtained in this section thus demonstrate that, at least on synthetic domains,
autoassociation-based classification is more accurate than MLP in multi-modal domains
presenting certain well-defined characteristics. The autoassociator’s marked efficiency on
the neutral domain relative to MLP also suggests that autoassociation-based classification
is better disposed towards multi-modal domains than MLP.

The question of whether these results are dependent upon overall problem sizes was
also considered, though in the context of a different study focused on thebetween-class
class imbalanced problem of the type illustrated by the domain of figure 6(e).11 This study
suggested that no relationship between an increase in problem size (with a constant class
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imbalance ratio) and an increase in classification error could be established for either the
autoassociator or the MLP network in such problems (Japkowicz, 2000b).

6. Suggested framework for fine-tuning the current results

The observations made in the previous section will now be used to explain the results
obtained on real-world domains in Section 3.3 and suggest new research directions to fine-
tune our current results in case of a mismatch. This study is divided into three parts. In the
first part, the domains of Section 3 are plotted and a number of statistics gathered. In the
second part, the salient characteristics of these statistics are listed and they are analyzed
and discussed in the last part.

6.1. Statistics gathering

The real-world domains of Section 3 are first projected onto their first two principal com-
ponents, thus reducing them to 2-Dimensional representations like the synthetic domains
of Section 5. A simple graphical analysis method was used to cluster the positive and neg-
ative data of these 2-D domains. This graphical analysis method—which falls beyond the
scope of this paper—is described in Japkowicz (1999a). The resulting representations are
illustrated in figure 11. In this figure, black triangles correspond to non-faulty gearboxes,
promoters and mines, respectively and white circles correspond to faulty gearboxes, non-
promoters and rocks, respectively. The polygons drawn on the graphs represent the limits
of the various clusters formed from these data. These 2-D projections account for 39.4%

(a) Helicopter (b) Promoter (c) Sonar

Figure 11. 2-D Plot and Analysis of the three real-world domains of Section 3. Black triangles represent non-
faulty helicopter gearbox, DNA promoters, and mine data, respectively (Class1) and white circles represent faulty
helicopter gearbox, non promoters and rock data, respectively (Class2). The convex hulls surrounding various sets
of data points represent the boundaries of the Class1 and Class2 clusters computed by the graphical clustering
method described in Japkowicz, (1999a).
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of all the helicopter gearbox monitoring domain information; for 23.4% of all the sonar
target detection domain information and for only 4.22% of all the DNA promoter recog-
nition domain information. Because of the extremely small amount of information carried
by the 2-D projection in the DNA domain, the projections for this domain were deemed
insignificant and no further analysis was conducted.

Once the domain projections and analyses were completed, a certain number of domain
characteristics, which correspond to the domain characteristics tested on the synthetic do-
mains of the previous section, were then computed from the plots for the helicopter gearbox
monitoring and the sonar detection domains. These characteristics are:

• Class1AvgV ar, the average variance of the various clusters constituting Class1.
• Class2AvgV ar, the average variance of the various clusters constituting Class2.
• AvgMeanDist, the average mean distance between the means of the clusters constituting

Class 1 and the clusters constituting Class 2.
• AvgDist, the average actual distance between the clusters of Class1 and Class2, respec-

tively.12

• Class1AvgSampleSize, the average sample size of the clusters constituting Class1.
• Class2AvgSampleSize, the average sample size of the clusters constituting Class2.
• Class1AvgV ar Size, the variance in the sample size of the clusters constituting Class1.
• Class2AvgV ar Size, the variance in the sample size of the clusters constituting Class2.

For both the helicopter and sonar domains depicted in figure 11, the quantities just listed were
evaluated assuming that Class1 corresponds to the black triangles and Class2 corresponds
to the white circles. The values obtained by doing so are displayed in Table 4.

6.2. Salient characteristics

The next part of this study consisted of listing, for each of the two domains considered, the
most salient observations listed in Table 4.

Table 4. Values for the domain characteristics of the two significant real-world domains of Section 3 where
Class1 represents non-faulty gearboxes and mines, respectively and Class2 represents faulty gearboxes and rocks,
respectively.

Characteristics Helicopter Sonar

Class1AvgV ar 0.0151 0.027

Class2AvgV ar 0.21 0.0718

AvgMeanDist 1.149 1.217

AvgDist 0.568 0.785

Class1AvgSampleSize 6.5 7.17

Class2AvgSampleSize 20.5 7.2

Class1AvgV ar Size 12.5 18.97

Class2AvgV ar Size 180.5 7.7
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For the Helicopter Gearbox Monitoring domain, we observe that:

1. The average variance of the Class1 clusters is about 14 times smaller than that of the
Class2 clusters (see the values ofClass1AvgV ar versusClass2AvgV ar)

2. The average sample size of the Class1 clusters is about 3 times smaller than that of the
Class2 clusters (see the values ofClass1AvgSampleSizeversusClass2AvgSample
Size)

3. The variance of the Class1 sample size is between 14 and 15 times smaller than that of the
Class2 sample size (see the values ofClass1AvgV ar SizeversusClass2AvgV ar Size)

4. The domain is not strongly multi-modal: Class1 seems to belong roughly to a single
cluster “sandwiched” between the only two Class2 clusters.

For the Sonar detection domain, we observe that:

1. The average variance of the Class1 clusters is between 2 and 3 times smaller than that
of the Class2 clusters (see the values ofClass1AvgV ar versusClass2AvgV ar)

2. The variance of the Class1 sample size is between 2 and 3 times larger than that of the
Class2 sample size (see the values ofClass1AvgV ar SizeversusClass2AvgV ar Size)

3. The domain is very clearly multi-modal: several pairs of Class1 clusters are separated by
Class2 clusters and a couple of pairs of Class1 clusters are separated by Class1 clusters.

6.3. Analysis and discussion

We now analyze the observations regarding the real-world domains in light of Section 5’s
results.

6.3.1. Helicopter domain. In the case of the helicopter domain, the first observation can
be related to the results obtained for modification (d) in Section 5 for the situation where
Class1 represents the positive class and Class2, the negative one and for modification (c) in
Section 5 for the situation where Class1 represents the negative class and Class2 represents
the positive one. This suggests that, according to the results of Section 5, the autoassociator
should be more accurate than MLP in the first situation, but that MLP should be more
accurate than the autoassociator in the second. However, the results of Section 3 suggest
that this is not the case in the first situation. Indeed, in the situation where Class1 (i.e., the
non-faulty gearboxes) represents the positive class, MLP was shown to be slightly more
accurate than the autoassociator (except if only a single negative misclassification can be
tolerated). In the reverse case, both the analytical results of Section 5 and the practical
results of Section 3 agree.

Similarly, the second observation for the helicopter gearbox domain can be related to
the results obtained for modification (e) in Section 5. This suggests that when Class1
represents the positive class, the autoassociator should be more accurate than MLP. Once
again, however, the results of Section 3 contradict the expectations raised in Section 5 in
the case where Class1 represents the positive class (except, again, if only a single negative
misclassification can be tolerated). Since no results were established in Section 5 for the case
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where the positive class is under-represented, no conclusion can be drawn for the situation
where Class2 represents the positive class.

The third observation for the helicopter gearbox can again be related to some results
from Section 5. This time, it can be related to modification (f) which suggests that the
autoassociator should be more accurate than MLP when Class2 represents the positive class.
When Class1 represents the positive class we also expect the autoassociator to outperform
MLP since figure 12(f) suggests that the autoassociator’s superiority in this case is caused
by a deterioration of MLP’s accuracy rather than an improvement of the autoassociator’s. In
both cases, however, the results of Section 3 contradict the expectations raised in Section 5.

The last observation does not correspond to any of the experiments performed in Section 5.
Rather, it corresponds to the implicit assumption, in that section, that the domain of interest
is strongly multi-modal. The observation that this assumption is violated in the case of
the helicopter domain suggests that the great number of mismatches observed between
the results of Section 3.3 and those of Section 5 on this domain may be caused by this
disagreement. Indeed, figure 9 indicated MLP’s difficulty in dealing with highly multimodal
domains by its need for many more epochs of training than the autoassociator (at least, six
times more) or a larger learning rate. Although MLP’s performance on non highly multi-
modal domains has not been documented, we suspect that it is very good and that the
autoassociator shows classification superiority only in cases of high multi-modality. If this
is truly the case, then the results obtained on the helicopter gearbox domain could be
justified, as we just suggested, by the domain’s low multi-modality.

6.3.2. Sonar domain. For the sonar domain, the first observation can again be related to the
results obtained for modification (d) in Section 5 for the situation where Class1 represents
the positive class and Class2 represents the negative one, and for modification (c) in Section 5
for the situation where Class1 represents the negative class and Class2 represents the positive
one. This suggests that, according to the results of Section 5, the autoassociator should be
more accurate than MLP in the first case, but that MLP should be more accurate than the
autoassociator in the second. According to the results of Section 3 for the sonar domain,
this is precisely the case.

The second observation for the sonar domain can be related to modification (f) which
suggests that, once again, the autoassociator should be more accurate than MLP when
Class1 represents the positive class. As previously, when Class2 represents the positive
class we also expect the autoassociator to outperform MLP since figure 10(f) suggests that
the autoassociator’s superiority in this case is caused by a deterioration of MLP’s accuracy
rather than an improvement of the autoassociator. In the situation where Class1 represents
the positive class, the results of Section 3 agree with those of Section 5, but in the situation
where Class2 represents the positive class, they do not.

The last observation for the sonar domain does not directly correspond to any of the
experiments of Section 5, but it does suggest that, in the case of the Sonar domain, the
assumption made in Section 5 regarding the multi-modality of the domain of interest does
apply. This may, therefore, explain why the results of Section 5 match those obtained on
the sonar domain better than those obtained on the helicopter gearbox domain.
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6.3.3. Discussion. Attempting to match the results of Section 5 to those of Section 3 is a
useful exercise as it allows us to view the worthy aspects of our study on artificial domains
while revealing its shortcomings. These worthy aspects are reflected by the fact that, in
the sonar domain which is highly multi-modal (like the artificial domains of Section 5),
the results of Section 5 apply almost perfectly: only one out of four expected results was
not observed. On the other hand, there are many shortcomings to the study of Section 5 as
revealed by the fact that one out of four expected results was not observed in the case of the
sonar domain and, more notably, four out of five expected results did not occur in the case
of the helicopter gearbox domain.

We suggest that the mismatch we encountered when attempting to apply the results
obtained on artificial domains to real-world domains had to do with the following factors,
mostly related to the fact that our results are, to this point, qualitative rather than quantitative:

Lack of multi-modality quantification:As suggested in our analysis, one of the reasons
why a mismatch between our theoretical expectations based on artificial domains and
the practical results may be related to the amount of multi-modality associated with
the domain under study. A study based on artificial domains varying the amount of
multi-modality present would be useful for fine-tuning our current results and reliably
explaining the mismatches in the helicopter domain.

Lack of internal quantification:Some of the mismatch between the results obtained in the
artificial domains and the real-world domains may also be caused by the fact that internal
quantifications were not taken into consideration. For example, while in figure 8(c) the
difference in variance between the positive and negative class is a factor of 4, it is a
factor of 14 in the helicopter gearbox domain. Such differences may be a factor in the
discrepancies between our results on artificial and real-world domains.

Lack of external quantification:While the artificial domain experiments of Section 5 stud-
ied the effect of different and separate domain characteristics upon the accuracy of the
autoassociator relative to that of MLP, it did not combine the different characteristics it
considered. Consequently, the study has not been able to describe the relative importance
of the different characteristics it surveyed. This is of utmost importance since real-world
domains have combined characteristics, which, if yielding theoretically opposite conclu-
sions, must be weighted against one another.

Lack of error rate quantification:In our study, we only considered qualitative rather than
quantitative error rates. i.e., we only concluded that one system outperformed the other
without mentioning by what amount. For example, it is important to note that MLP
outperforms the autoassociator by only a few percent error in the helicopter gearbox
domain whereas the autoassociator outperforms MLP by around 20% and even more in
the sonar domain (See figure 3). These ratio should also be taken into consideration in
our analysis.

Limited domain knowledge:As mentioned earlier, our real-world domain projections in
2-D plots did not conserve all the domain information contained in the original domains.
It would be useful to employ a different visualization technique that would allow us not
to give up all this information. For example, we could use a visualization technique such
as that of Inselberg and Dimsdale (1990).
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Qualitative restrictions:Our study was restricted to certain types of characteristics. For
example, we did not consider the opposite case to that of figure 9(e) in which the positive
class would be under-represented while the negative one would be well-represented.
As well, we did not consider cases where clusters of opposite classes overlap or where
clusters are not normally distributed.

Altogether, the observations of this section suggest that the results obtained by the au-
toassociator and MLP on the helicopter gearbox and sonar target detection domains were
not coincidental. Rather, especially in the case of the sonar domain, they seem rooted in a
number of intrinsic differences between the two systems that favor the classes of domains
to which the domains belong. Nevertheless, although the experiments of this paper have
managed to isolate some of these characteristics, more work could be carried out in order
to refine our study and fully explain the two system’s performance on real-world data.

7. Future work

We have shown that unsupervised learning by feedforward neural networks can be as accu-
rate, if not more accurate, than supervised learning by feedforward networks on real world
domains, but, to this point, we ignored the issue of a-priori parameter and threshold deter-
mination which are important aspects of recognition-based systems for practical settings.
Such a question can be very delicate, especially when negative examples are not available.
The purpose of this section is to illustrate the fact that although in some cases parameter
and threshold determination in the absence of negative examples can be more complicated
than in others, it is always possible provided that enough positive examples are available.

To illustrate this observation, the results of two case studies were plotted in figures 12
and 13. The plots of figure 12 correspond to the results obtained by the autoassociator on
Fold 4 of the helicopter gearbox monitoring domain where the positive class is taken to be
the non-faulty class. This case represents a situation where many different combinations
of parameters will succeed and where no big risk is taken by not using negative examples

(a) 1 HU (b) 16 HU (c) 32 HU

Figure 12. Reconstruction Errors as a function of the Epoch Number of the examples in the testing set of Fold
4 of the Helicopter Gearbox Domain. Positive examples are represented by full lines while negative examples are
represented by broken lines. For presentation purposes, the epoch numbers displayed were divided by 10.
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(a) 1 HU (b) 16 HU (c) 32 HU

Figure 13. Reconstruction Errors as a function of the Epoch Number of the examples in the testing set of Fold 2
of the Promoter Domain. Positive examples are represented by full lines while negative examples are represented
by broken lines. For presentation purposes, the epoch numbers displayed were divided by 10.

in the parameter setting process. The plots of figure 13, on the other hand, illustrate a
case where parameter setting is not straightforward and in which lack of knowledge of the
negative class can yield a suboptimal result. These plots correspond to the results obtained
by the autoassociator on Fold 2 of the promoter domain in the case where the positive class
corresponds to the promoter class.

In more detail, each plot in figures 12 and 13 displays the reconstruction error curve
obtained by the instances of the testing set as a function of the epoch number and for a
given network capacity, after the network has been trained on the corresponding training
set. The capacities considered in these figures are 1, 16 and 32 hidden units and each
capacity corresponds to a single plot. Within each plot, positive examples are represented
by a full-curve whereas negative examples are represented by a broken-curve. Ideally, all
the full-curves should be located at the bottom of the graphs and separated by a gap from
all the broken-curves which should be located at the top of the graphs.

The plots of figure 12 suggest that, in certain cases, parameter setting can take place
relatively safely in the absence of counter-examples. Indeed, these graphs suggest a policy
by which a network capacity and stopping point are selected soon after the occurrence of a
drop in the reconstruction error of the set of positive examples, as in figure 12(b), but not
too late after that. Once optimal parameters are established following this policy, selecting
a threshold boundary slightly larger than the reconstruction error of the positive example
with largest reconstruction error is a safe bet.

The plots of figure 13, on the other hand, suggest that, in certain cases, parameter setting
is a fairly difficult task and cannot be safely undertaken in the absence of counter-examples
or, at least, of a very sophisticated clustering component. Indeed, in figure 13(c), it can be
argued that a good clustering strategy could detect that the positive example with highest
reconstruction error is atypical and thus that the threshold boundary could be placed closer
to the positive example with second highest reconstruction error.

If many positive examples are available, then a good clustering process able to discard
atypical examples while recognizing where the bulk of the reconstruction errors lies, is
likely to be successful. If, however, like in the case studies of this work, little positive data
is available, then negative examples, sometimes, play a very important role in setting a
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threshold. In these cases, however, very few negative examples are typically sufficient as
demonstrated by Japkowicz, Myers, and Gluck (1995).

8. Conclusion

This paper originated from the observation that autoassociation-based classification was
reported to be more accurate than the MLP discrimination network on two out of three
real-world domains and as accurate as MLP on the third, despite the fact that the autoasso-
ciator learns a concept in the absence of negative examples (Japkowicz, Myers, & Gluck,
1995). The purpose of this paper was to find out whether this result was purely coinci-
dental or whether it could be expected in other domains. The results obtained suggest that
the autoassociator is more accurate than MLP in domains that require particularly strong
specialization coming from the negative class or particularly weak specialization coming
from the positive class, in order to be accurately classified. The main analysis of the paper
is conducted on synthetic domains, but a preliminary attempt at confirming its results is
presented on two real-world domains.

The results of this study thus suggest that unsupervised learning techniques, which are
often dismissed in favor of supervised ones in the context of binary classification, may
present an interesting array of classification strengths. This observation comes in addition
to the fact that unsupervised techniques learn concepts in the absence of negative data and
may thus be useful—assuming that parameter and threshold setting can also be performed
accurately in the absence of negative data—for a whole range of practical domains that
cannot even be considered by supervised learning methods.
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Notes

1. Related to these studies, athree-hidden layernonlinear autoassociator was also successfully applied to a
multi-classcharacter-recognition task, using one autoassociator per class (Schwenk & Milgram, 1995).

2. The reconstruction error corresponds to6d
i=1[xTest

i − fi (xTest)]2, wherexTest
i and fi (xTest) represent input

and output uniti of the network, respectively, andd is the length of the input and output vectors.
3. Note that since, within every domain considered, 1) the number of negative testing examples available in each

fold, N fi is different and 2) the length of the ROC graph’sx-axis is equal toN fi , we reported the average
results obtained over all folds by consideringNCommon, the largest common number of negative examples
available in all folds within each domain. i.e.,NCommon= mini=1..5 N fi .
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4. In the plots of figure 3, thex-axis represents the number of negative examples (faulty gearboxes, non-promoters,
and rocks) misclassified while they-axis represents the number of positive examples (non-faulty gearboxes,
promoters and mines) recognized. Conversely, in the plots of figure 4, thex-axis represents the number of
positive examples(non-faulty gearboxes, promoters and mines) misclassified while they-axis represents the
number of negative examples (faulty gearboxes, non-promoters, and rocks) recognized. As mentioned before,
in order to be able to compute the average ROC results obtained over all folds within a domain, the largest
common number of negative testing examples available in all the folds,NCommon, had to be selected. For
example, since in one fold of the helicopter gearbox problem, the number of non-faulty testing patterns is 2,
thex-axis of figure 4(a) only spans interval [1, 2] andy values are only reported forx-values of 1 and 2, even
though the number of non-faulty testing patterns in all the other folds is greater than 2.

5. Although the results of this paper are slightly different from those obtained in Japkowicz, Myers, and Gluck
(1995)—in Japkowicz, Myers, and Gluck (1995), the autoassociator, trained on the configuration used in
figure 3, outperformed the MLP network on both the helicopter gearbox and sonar domain and the two
systems were equally accurate on the promoter domain—the same qualitative conclusions hold. We believe
that the difference between the two studies is due to the biases introduced in Japkowicz, Myers, and Gluck
(1995) by means of an a-priori parameter and threshold setting strategies. These biases were eliminated in the
experiments of this paper through the use of our posteriori methodology.

6. Note that different unsupervised learning systems use different internal biases. Japkowicz, Hanson, and Gluck
(2000a) and Japkowicz (1999a) extract the particular internal bias used by the autoassociator.

7. In this set of experiments, because of the small variability from domain to domain (there was much more
variability from one fold to the other in the real-world experiments), the a-posteriori optimal capacity was
determined as a function of the best average results over the five runs, rather than on a trial-per-trial basis.

8. In figure 7, threshold boundaries for the MLP network were established by setting a boundary atM =
mean(NegativeT uningSet) + (mean(PositiveT uningSet) − mean(NegativeT uningSet))/2 (where
Positive and Negative Tuning Set are fresh sets of positive and negative data not used to train the network nor
to test it). For the autoassociator, they were established by fitting the reconstruction errors obtained by the
elements of PositiveTuningSet to a Gaussian distribution and determining its 97% confidence interval (97%
was chosen arbitrarily).

9. Note that in the case of figure 10(d), the difference in accuracy of the two systems is very slight. However,
since MLP was slightly more accurate than the autoassociator in the neutral domain, the difference in accuracy
observed in domain (d) is relatively meaningful.

10. Given that our artificial domains are noiseless and that their training sets are generated using the same backbone
model as their testing sets, MLP should eventually be able to converge on all these domains given long enough
training times. The fact that it does not do so in domains (e) and (f) despite the already large training time
imparted to it and its increased learning rate shows that it has a very difficult time doing so, especially in
comparison to the autoassociator which does not require increased training times or learning rates.

11. Domains 5(e) and 5(f) can be cast as two different expressions of the class imbalance problem. Domain 5(e)
illustrates the case of abetween-classimbalance, where all the subclusters belonging to the same class are
represented by the same number of examples but there is a difference in the size of the subclusters belonging
to two different classes, while fomain 5(f) illustrates the case of awithin-classimbalance where not all the
subclusters within the same class are necessarily represented by the same number of examples.

12. The previous characteristic,AvgMeanDist, focuses on the distance between the means of the various clusters.
This characteristic subtracts the average standard deviations of the Class1 and Class2 components from the
results of the previous question.
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