
Applying Novel Resampling Strategies To Software
Defect Prediction*

Lourdes Pelayo (SA) Scott Dick
Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

University of Alberta University of Alberta
Edmonton, AB. T6G 2V4 Canada. Edmonton, AB. T6G 2V4 Canada.

pelayo@ualberta.ca dick@ece.ualberta.ca

* This research was supported in part by NSERC under grant no. G121210906

 Abstract - Due to the tremendous complexity and
sophistication of software, improving software reliability is an
enormously difficult task. We study the software defect
prediction problem, which focuses on predicting which modules
will experience a failure during operation. Numerous studies
have applied machine learning to software defect prediction;
however, skewness in defect-prediction datasets usually
undermines the learning algorithms. The resulting classifiers will
often never predict the faulty (minority0 class. This problem is
well known in machine learning and is often referred to as
learning from imbalanced datasets. We examine stratification, a
widely used technique for learning imbalanced data that has
received little attention in software defect prediction. Our
experiments are focused on the SMOTE technique, which is a
method of over-sampling minority-class examples. Our goal is to
determine if SMOTE can improve recognition of defect-prone
modules, and at what cost. Our experiments demonstrate that
after SMOTE resampling, we have a more balanced
classification. We found an improvement of at least 23% in the
average geometric mean classification accuracy on four
benchmark datasets.

I. INTRODUCTION

 Accurate defect prediction is enormously important,
because of the huge economic impact of faulty software.
According to Jim Johnson, chairman of the Standish Group,
“Faulty software costs businesses $78 billion per year”[2].
Also from the $42 billion that the USA Department of
Defense spends for the development and maintenance of their
computer systems, only 17% is spent buying hardware[3]. It is
generally believed that repairing failures after a software
system is deployed is 100 times as expensive as repairing
those faults during development.

In software, a common rule of thumb is that 80% of the
problems reside in only 20% of the modules. This skewness is
one of the main difficulties in software defect prediction;
when we try to predict the occurrence of faults in software
where the majority of modules are fault-free, the classifier is
often unable to detect the faulty modules. This is a well-
known problem in machine learning, often referred to as
learning from imbalanced datasets. A data set that is heavily
skewed toward the majority class will sometimes generate
classifiers that never predict the minority class. In other cases
the minority class will be predicted, but with a much higher

rate of error than the majority class. This bias often makes the
classifier highly accurate (it always correctly classifies the
majority class examples), and completely useless at the same
time.

Our goal in this research is to explore the use of
stratification-based resampling in software defect prediction.
Our experiments focus on the SMOTE technique [1], which is
a method of oversampling minority-class examples by
generating synthetic examples of the minority class, rather
than replicating existing examples. SMOTE works by creating
a new minority-class sample at a random point on the line
connecting a minority class example with its nearest neighbor
(of the same class) in feature space. We also simultaneously
under-sample the majority class through uniform sampling
without replacement.

The four benchmark datasets we used in this paper come
from several NASA projects and are available at the
PROMISE Repository of Software Engineering Databases [4].
Those datasets contain 21 software metrics based on the
product’s size, complexity and vocabulary, along with a
binary class variable (module experienced a failure). We used
a tenfold cross-validation experimental design, repeated for
each choice of resampling rates in the majority and minority
classes (hereafter the resampling strategy). Each training set
was resampled as per the resampling strategy; the test sets
were not resampled. All experiments used the c4.5 decision
tree generator, with its default parameters. As overall accuracy
is a poor measure of classifier performance on imbalanced
data, we used the geometric mean of the individual class
accuracies as our performance measure on the test data. After
resampling the classes we have a more balanced class
distribution, and the geometric mean accuracy increased by at
least 23% in all four datasets.

The remainder of this paper is arranged as follows. We
start in section II with related work in learning from
imbalanced datasets, cost-sensitive classification and software
defect prediction. In section III we describe our experimental
methodology and performance evaluation. Following in
section IV are our experimental results, and finally we offer a
summary and discussion of future work in section V.

691-4244-1214-5/07/$25.00 ©2007 IEEE

II. RELATED WORK

 Learning from imbalanced datasets is a current, active
topic of research in the machine learning and data mining
communities. We will briefly review major results in this area,
and then provide an overview of software defect prediction.

A. Imbalanced datasets
 The imbalanced dataset problem is present whenever the
number of samples for one class in the dataset outnumbers the
samples for the other class(es). This is common in application
domains such as such as software defect prediction [4], credit
card fraud detection [5], and breast cancer detection [6] where
the number of faulty, fraudulent or positive samples,
respectively, is considerably reduced in comparison with the
majority class. However, the minority class samples are the
ones of greatest interest to an analyst.
 Estabrooks discusses in [7] the possibility of
undersampling the majority class, oversampling the minority
class via replication, or both. After several experiments with
different datasets they reached the conclusion that
undersampling is not better than oversampling or vice versa,
but a combination of both is the best option. They propose a
3-stage meta-classifier that first stratifies the dataset at 20
different rates (10 are undersampled, 10 are oversampled), and
trains a c4.5 decision tree for each one. In the second stage,
two decision modules (one for undersampled trees, one for
oversampled trees) output the “best” classification from stage
1. The third stage is another decision module that selects one
of the two outputs from the second stage, and returns it as the
final decision.
 Kaminsky and Boetticher in [8] utilize genetic
programming for software defect prediction. To compensate
for data skewness they apply “equalized learning” considering
the distribution of training set; they replicate instances in the
minority class so that the training data will contain an equal
distribution of instances (a simple oversampling technique,
criticized in [1]). The dataset is finally shuffled. The
performance measure reported is the fitness function; this is
derived from the classification accuracy (measured on the
training data).
 Batista, Prati and Monard propose in [9] two methods to
deal with the imbalanced dataset problem: SMOTE + Tomek
and SMOTE + ENN. These are extensions of the SMOTE
algorithm in [1]. According to their results, oversampling
methods perform better in contrast with undersampling
methods, with the area under the ROC curve (AUC) as their
performance measure. This differs sharply from the
recommendation in [10], where the authors assert that
oversampling does not provide useful improvements over
undersampling, while also increasing the time and memory
requirements for learning algorithms. The authors of [10]
reach this conclusion after experiments on over 20 datasets,
which were first undersampled to create controlled class
distributions.

B. Cost-sensitive classification.
 Numerous algorithms in machine learning assume that all
errors in classification are equally important. However the
cost of misclassification errors is often higher when the errors
are located in the minority class in contrast with the majority
class [10]. The reason is that, when the minority class samples
are the interesting ones, mistaking a minority class sample for
a majority class sample is more costly to the end users of the
classification. For example, mistaking a fault-prone software
module (minority class) for a fault-free module (majority
class) can permit faults to slip through into field use, where
they are vastly more expensive to fix than they were in the
testing phase of development. Cost-sensitive classifiers
explicitly consider these differential costs, and will minimize
the total expected cost of errors, rather than just the number of
errors as in most classifiers. Elkan introduces in [11] a
theorem showing how to change the proportion of negative
examples in a training set in order to make an optimal cost-
sensitive classification; however it has little effect when using
Bayesian and decision tree learning algorithms. Turney
introduces in [12] a new algorithm for cost sensitive
classification called ICET that is a hybrid of genetic
algorithms and decision trees. Ting and Zheng explore in [13]
boosting techniques for cost-sensitive classification focused
on decision tree learning; their algorithm has an extra
computation cost because it needs to create new classifiers
every time the costs of misclassification change. Domingos
proposes a method for a cost-sensitive classification called
MetaCost in [14]. It is based on relabeling training examples
with their minimal-cost classes based on their class
probabilities instead of their “optimal” class, and re-applying
the classifier to the new training set.

C. Software Defect Prediction
 Software metrics have been used for software defect
prediction for decades. They include McCabe’s complexity
[15] and Halsted’s metrics [16], along with product’s size,
complexity and vocabulary. For Object Oriented programming
there are six best-known metrics developed in [17] known as
the CK metrics: Weighted Methods per Class (WMC), Depth
of Inheritance Tree (DIT), Number of Children (NOC),
Response For a Class (RFC), Coupling Between Object
Classes (CBO), and Lack of Cohesion of Methods (LCOM).
Research in defect prediction consistently shows a moderately
strong linear correlation between almost every metric and the
number of defects per module; however, no parametric model
has ever been developed that accurately forecasts the number
or occurrence of faults in a software module.
 There are also different classes of software metrics. The
McCabe, Halstead and CK metrics all represent “code”
metrics, computed directly from source code. There are also
requirements metrics, test metrics, etc. Rosenberg, Hammer
and Shaw[21] discuss the integrated use of requirements, code
and testing metrics at NASA’s Software Assurance
technology Center (circa 1998).
 Fenton and Neil [18] provide a critical review of
software-defect prediction research up to 1999. They

70

highlighted numerous statistical models (e.g. Akiyama’s [19]
and Ferdinand’s [20]) developed for this domain, and
concluded that a variety of methodological problems rendered
many of them incomparable. Bayesian belief networks were
proposed in [18] as an alternative to parametric models.
 Following the same rationale as [18], a number of authors
have investigated the use of machine-learning techniques as
non-parametric models for software defect prediction. Some
examples include neural networks [26], genetic programming
[8], fuzzy clustering [27] and decision trees [28]. Imbalanced
class distributions have been significant problems in these
studies. Recently, Seliya and Khoshgoftaar [22] proposed a
semi-supervised clustering method to detect failures in
software modules. Instead of working with the individual
modules on software, they group modules and label them as
fault prone or not fault prone. Clustering algorithms -in this
case the k-means algorithm- are supplemented with a set of
labeled program modules, resulting in a semi-supervised
method. With this the domain expert is helped to label further
clusters as either fault prone or not fault prone.

III. EXPERIMENTAL METHODOLOGY

 The datasets used for our experiments are referred to as
CM1, KC1, KC2 and PC1. They come from several NASA
projects and are available at the PROMISE Repository of
Software Engineering Databases [4]. CM1 is made up of
20,000 lines of C code, KC1 contains 43,000 lines of C++
code, KC2 contains over 43,000 lines of C++ code, and PC1
consists of 40,000 lines of C code. Each dataset contain 21
software metrics based on the product size, complexity and
vocabulary, along with a binary class variable (module
experienced a failure). These datasets were also used in [8].
 We used the well-known C4.5 [23] decision tree classifier
for our experiments. It provides a simple and useful
environment to perform classification on datasets. Several
recent studies of stratification [7], [9], [10] use C4.5 and its
default parameters to measure classification performance after
stratification; we adopt this same approach. We utilized a 10-
fold cross validation design to test each stratification
“strategy”. A “strategy” is a class-by-class specification of the
degree of undersampling or oversampling to be applied [24].
We stratify the training set for each fold, and evaluate the
classifier on the unaltered test dataset.
 Each fold was resampled with the SMOTE algorithm [1].
SMOTE is a proposed oversampling approach in which the
minority class is oversampled by creating “synthetic”
examples rather than by oversampling with replacement. To
create a synthetic example, SMOTE searches for the nearest
neighbors (having the same class label) of a minority-class
example. A new synthetic example is then created at a random
point on the line connecting the two genuine samples (this
assumes that each dimension of feature space belongs forms a
ratio scale), and class label for the new example is the
minority class. Different synthetic examples are based on
different neighbor pairs. SMOTE also uses uniform selection
without replacement to undersample the majority class.

 We calculated the geometric mean of the class accuracies
from the confusion matrix for each fold. The geometric mean
is highly sensitive to imbalance in the individual class
accuracies. It has been used as a performance measure for
learning in imbalanced datasets in [25]. We determine the
average and standard deviation of the geometric mean
accuracy across all ten folds for each dataset.

IV. EXPERIMENTAL RESULTS

 We first used SMOTE to achieve a uniform class
distribution for each dataset. However, having approximately
the same number of samples per class did not yield the highest
geometric mean accuracy. We explored other resampling
strategies using trial-and-error, and finally arrived at the
highest geometric mean accuracies. The percentage of over-
sampling and under-sampling was according the behavior of
each dataset, confirming the proposal of Weiss and Provost in
[10], that the resampling rates will be determined according to
each dataset. We also observed that over-sampling the
minority class more than 300% was not useful. We present
our experimental results in Table 1.

TABLE I
EXPERIMENTAL RESULTS

Dataset Under-sample
majority class

(%)

Over-sample
minority
class (%)

Average
Geometric

Mean
Accuracy (%)

Standard
Deviation

0 (original) 0 13.69 0.22
25 200 55.34 0.11
50 300 47.87 0.19 CM1

75 300 62.20 0.14
0 0 52.30 0.07
50 300 69.20 0.08
85 100 69.39 0.03 KC1

75 300 71.25 0.04
0 0 60.13 0.12
50 100 72.55 0.08
50 200 73.33 0.04 KC2

75 200 74.09 0.07
0 0 47.00 0.12
75 200 70.00 0.10
75 300 68.24 0.09 PC1

85 300 74.26 0.09

 As we can see in Table 1, there are substantial
improvements reflected in higher average geometric mean
accuracy. The most dramatic example is where the dataset
CM1 showed 0% classification accuracy for the minority class
in several folds. Stratification improved the average geometric
mean accuracy of CM1 from 13.69% to 62.20%. Across all
four datasets, we were able to improve the geometric mean
accuracy by at least 23%. We also note that the standard
deviations were simultaneously reduced, indicating more
consistent classification results.

V. SUMMARY AND FUTURE WORK

 We applied the SMOTE algorithm to software defect
prediction. This resampling technique allowed us to create

71

more balanced training datasets, and the geometric mean
classification accuracy (using c4.5 decision trees) on the
unmodified test sets was substantially improved in our tenfold
cross-validation experiments. Imbalanced class distributions
are a major problem in applying machine learning techniques
to software defect prediction, and there has been very little
investigation of stratification as a solution to this very
important problem.
 In our future work, we will seek to quantify the
contribution of SMOTE and undersampling, in response to
Weiss & Provost’s assertion that undersampling alone is
sufficient. We will use a full factorial design with over-
sampling and undersampling as the two factors to test Weiss
and Provost’s claim against a larger set of software defect
prediction datasets. We will also investigate the application of
Response Surface Methodology as a structured methodology
to identify the best resampling strategy for a given dataset.

REFERENCES
[1] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, "SMOTE: Syntethic Minority Over-Sampling
Technique," Journal of Artificial Intelligence Research,
vol. 16, pp. 321-357, June 2002.

[2] J. Johnson, "Let’s Stop Wasting $78 Billion per Year," CIO
Magazine, October 15, 2001 2001.

[3] N. Brown, "Industrial-strength management strategies,"
IEEE Software, vol. 13, pp. 94-103, July 1996.

[4] J. Sayyad Shirabad and T. J. Menzies, "The PROMISE
Repository of Software Engineering Databases. School of
Information Technology and Engineering," University of
Ottawa, 2005.

[5] T. Fawcett and F. Provost, "Adaptive Fraud Detection,"
Data Mining and Knowledge Discovery, vol. 1, September
1997.

[6] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz,
"UCI Repository of machine learning databases," Irvine,
CA: University of California, Department of Information
and Computer Science, 1998.

[7] A. Estrabooks, T. Jo, and N. Japkowicz, "A Multiple
Resampling Method for Learning from Imbalanced
Datasets," Computational Intelligence, vol. 20, 2004.

[8] K. Kaminsky and G. D. Boetticher, "Better Software
Defect Prediction using Equalized Learning with Machine
Learners," in Proceeding (430) Knowledge Sharing and
Collaborative Engineering St. Thomas, US Virgin Islands.

[9] G. Batista, R. Prati, and M. C. Monard, "A study of the
Behavior of Several Methods for Balancing Machine
Learning Training Data," Sigkdd Explorations, vol. 6, pp.
20-29.

[10] G. Weiss and F. Provost, "Learning when training data are
costly: The effect of class distribution on tree induction,"
Journal of Artificial Intelligence Research, vol. 19, pp. 315
- 354, 2003.

[11] C. Elkan, " The Foundations of Cost-Sensitive Learning "
in Proceedings of the Seventeenth International Joint
Conference in Artificial Intelligence, 2001.

[12] P. D. Turney, "Cost-Sensitive Classification: Empirical
Evaluation of a Hybrid Genetic Decision Tree Induction
Algorithm," Journal of Artificial Intelligence Research 2,
pp. 369-409, 1995.

[13] K. M. Ting and Z. Zheng, "Boosting trees for cost-sensitive
classifications," in Proc. 10th European Conf. on Machine
Learning, Chemnitz, Germany, 1998, pp. 191-195.

[14] P. Domingos, "MetaCost: A General Method for Making
Classifiers Cost-Sensitive," in Proceedings of the Fifth
International Conference on Knowledge Discovery and
Data Mining (KDD-99), 1999.

[15] T. J. McCabe, "A Complexity Measure," IEEE Trans.
Software Eng, vol. 2, pp. 308 - 320, 1976.

[16] M. H. Halstead, Elements of Software Science. North-
Holland: Elsevier, 1975.

[17] S. R. Chidamber and C. F. Kemerer, "A metrics suite for
object oriented design," Software Engineering, IEEE
Transactions on, vol. 20, pp. 476-493, 1994.

[18] N. E. Fenton and M. Neil, "A Critique of Software Defect
Prediction Models," IEEE Transactions on Software
Engineering, vol. 25, September/October 1999, 675-689.

[19] F. Akiyama, "An Example of Software System
Debugging," Information Processing, vol. 71, pp. 353-379,
1971.

[20] A. E. Ferdinand, "A Theory of System Complexity," Int’l
J. General Systems, vol. 1, pp. 19-33, 1974.

[21] L. Rosenberg, T. Hammer, and J. Shaw, "Software Metrics
and Reliability," in 9th International Symposium on
Software Reliability Engineering, 1998.

[22] N. Seliya and T. M. Khoshgoftaar, "Software Quality
Analysis of Unlabeled Program Modules With
Semisupervised Clustering," Systems, Man and
Cybernetics, Part A, IEEE Transactions on, vol. 37, pp.
201-211, 2007.

[23] J. R. Quinlan, C4.5: Programs for machine learning. San
Mateo, CA: Morgan Kaufmann Publishers, 1993.

[24] S. Dick and A. Kandel, "Computational Intelligence in
Software Quality Assurance," M. Last, A. Kandel, Eds.,
Artificial Intelligence Methods in Software Testing, World
Scientific Press 2004.

[25] M. Kubat, R. Holte, and S. Matwin, "Machine Learning for
the Detection of Oil Spills in Satellite Radar Images,"
Machine Learning, vol. 30, pp. 195-215, 1997.

[26] N. Karunanithi, Y.K. Malaiya, “Neural networks for
software reliability engineering,” in M.R. Lyu, Ed.,
Handbook of Software Reliability Engineering, New York:
McGraw-hill, 1996, pp. 699-728.

[27] S. Dick, A. Sadia, " Fuzzy Clustering of Open-Source
Software Quality Data: A Case Study of Mozilla," in
Proceedings of IJCNN 2006, Vancouver, BC, Canada, pp.
4089-4096.

[28] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, J.P.
Hudepohl, “Classification-tree models of software-quality
over multiple releases,” IEEE Transactions on Reliability,
v. 49 no. 1, Mar. 2000, pp. 4-11.

72

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /LucidaConsole
 /LucidaSansUnicode
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Sshlinedraw
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

