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 Abstract - Due to the tremendous complexity and 
sophistication of software, improving software reliability is an 
enormously difficult task. We study the software defect 
prediction problem, which focuses on predicting which modules 
will experience a failure during operation. Numerous studies 
have applied machine learning to software defect prediction; 
however, skewness in defect-prediction datasets usually 
undermines the learning algorithms. The resulting classifiers will 
often never predict the faulty (minority0 class. This problem is 
well known in machine learning and is often referred to as 
learning from imbalanced datasets. We examine stratification, a 
widely used technique for learning imbalanced data that has 
received little attention in software defect prediction. Our 
experiments are focused on the SMOTE technique, which is a 
method of over-sampling minority-class examples. Our goal is to 
determine if SMOTE can improve recognition of defect-prone 
modules, and at what cost. Our experiments demonstrate that 
after SMOTE resampling, we have a more balanced 
classification. We found an improvement of at least 23% in the 
average geometric mean classification accuracy on four 
benchmark datasets. 
 

I.  INTRODUCTION 

 Accurate defect prediction is enormously important, 
because of the huge economic impact of faulty software. 
According to Jim Johnson, chairman of the Standish Group, 
“Faulty software costs businesses $78 billion per year”[2]. 
Also from the $42 billion that the USA Department of 
Defense spends for the development and maintenance of their 
computer systems, only 17% is spent buying hardware[3]. It is 
generally believed that repairing failures after a software 
system is deployed is 100 times as expensive as repairing 
those faults during development. 

In software, a common rule of thumb is that 80% of the 
problems reside in only 20% of the modules. This skewness is 
one of the main difficulties in software defect prediction; 
when we try to predict the occurrence of faults in software 
where the majority of modules are fault-free, the classifier is 
often unable to detect the faulty modules. This is a well-
known problem in machine learning, often referred to as 
learning from imbalanced datasets. A data set that is heavily 
skewed toward the majority class will sometimes generate 
classifiers that never predict the minority class. In other cases 
the minority class will be predicted, but with a much higher 

rate of error than the majority class. This bias often makes the 
classifier highly accurate (it always correctly classifies the 
majority class examples), and completely useless at the same 
time. 

Our goal in this research is to explore the use of 
stratification-based resampling in software defect prediction. 
Our experiments focus on the SMOTE technique [1], which is 
a method of oversampling minority-class examples by 
generating synthetic examples of the minority class, rather 
than replicating existing examples. SMOTE works by creating 
a new minority-class sample at a random point on the line 
connecting a minority class example with its nearest neighbor 
(of the same class) in feature space. We also simultaneously 
under-sample the majority class through uniform sampling 
without replacement.  

The four benchmark datasets we used in this paper come 
from several NASA projects and are available at the 
PROMISE Repository of Software Engineering Databases [4]. 
Those datasets contain 21 software metrics based on the 
product’s size, complexity and vocabulary, along with a 
binary class variable (module experienced a failure). We used 
a tenfold cross-validation experimental design, repeated for 
each choice of resampling rates in the majority and minority 
classes (hereafter the resampling strategy). Each training set 
was resampled as per the resampling strategy; the test sets 
were not resampled. All experiments used the c4.5 decision 
tree generator, with its default parameters. As overall accuracy 
is a poor measure of classifier performance on imbalanced 
data, we used the geometric mean of the individual class 
accuracies as our performance measure on the test data. After 
resampling the classes we have a more balanced class 
distribution, and the geometric mean accuracy increased by at 
least 23% in all four datasets. 

The remainder of this paper is arranged as follows. We 
start in section II with related work in learning from 
imbalanced datasets, cost-sensitive classification and software 
defect prediction. In section III we describe our experimental 
methodology and performance evaluation. Following in 
section IV are our experimental results, and finally we offer a 
summary and discussion of future work in section V. 
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II.  RELATED WORK 

 Learning from imbalanced datasets is a current, active 
topic of research in the machine learning and data mining 
communities. We will briefly review major results in this area, 
and then provide an overview of software defect prediction. 
 
A. Imbalanced datasets 
 The imbalanced dataset problem is present whenever the 
number of samples for one class in the dataset outnumbers the 
samples for the other class(es). This is common in application 
domains such as such as software defect prediction [4], credit 
card fraud detection [5], and breast cancer detection [6] where 
the number of faulty, fraudulent or positive samples, 
respectively, is considerably reduced in comparison with the 
majority class. However, the minority class samples are the 
ones of greatest interest to an analyst. 
 Estabrooks discusses in [7] the possibility of 
undersampling the majority class, oversampling the minority 
class via replication, or both. After several experiments with 
different datasets they reached the conclusion that 
undersampling is not better than oversampling or vice versa, 
but a combination of both is the best option. They propose a 
3-stage meta-classifier that first stratifies the dataset at 20 
different rates (10 are undersampled, 10 are oversampled), and 
trains a c4.5 decision tree for each one. In the second stage, 
two decision modules (one for undersampled trees, one for 
oversampled trees) output the “best” classification from stage 
1. The third stage is another decision module that selects one 
of the two outputs from the second stage, and returns it as the 
final decision.  
 Kaminsky and Boetticher in [8] utilize genetic 
programming for software defect prediction. To compensate 
for data skewness they apply “equalized learning” considering 
the distribution of training set; they replicate instances in the 
minority class so that the training data will contain an equal 
distribution of instances (a simple oversampling technique, 
criticized in [1]). The dataset is finally shuffled. The 
performance measure reported is the fitness function; this is 
derived from the classification accuracy (measured on the 
training data). 
 Batista, Prati and Monard propose in [9] two methods to 
deal with the imbalanced dataset problem: SMOTE + Tomek 
and SMOTE + ENN. These are extensions of the SMOTE 
algorithm in [1]. According to their results, oversampling 
methods perform better in contrast with undersampling 
methods, with the area under the ROC curve (AUC) as their 
performance measure. This differs sharply from the 
recommendation in [10], where the authors assert that 
oversampling does not provide useful improvements over 
undersampling, while also increasing the time and memory 
requirements for learning algorithms. The authors of [10] 
reach this conclusion after experiments on over 20 datasets, 
which were first undersampled to create controlled class 
distributions.  
    
 

B. Cost-sensitive classification. 
 Numerous algorithms in machine learning assume that all 
errors in classification are equally important. However the 
cost of misclassification errors is often higher when the errors 
are located in the minority class in contrast with the majority 
class [10]. The reason is that, when the minority class samples 
are the interesting ones, mistaking a minority class sample for 
a majority class sample is more costly to the end users of the 
classification. For example, mistaking a fault-prone software 
module (minority class) for a fault-free module (majority 
class) can permit faults to slip through into field use, where 
they are vastly more expensive to fix than they were in the 
testing phase of development. Cost-sensitive classifiers 
explicitly consider these differential costs, and will minimize 
the total expected cost of errors, rather than just the number of 
errors as in most classifiers. Elkan introduces in [11] a 
theorem showing how to change the proportion of negative 
examples in a training set in order to make an optimal cost-
sensitive classification; however it has little effect when using 
Bayesian and decision tree learning algorithms.  Turney 
introduces in [12] a new algorithm for cost sensitive 
classification called ICET that is a hybrid of genetic 
algorithms and decision trees. Ting and Zheng explore in [13] 
boosting techniques for cost-sensitive classification focused 
on decision tree learning; their algorithm has an extra 
computation cost because it needs to create new classifiers 
every time the costs of misclassification change. Domingos 
proposes a method for a cost-sensitive classification called 
MetaCost in [14]. It is based on relabeling training examples 
with their minimal-cost classes based on their class 
probabilities instead of their “optimal” class, and re-applying 
the classifier to the new training set.  

C. Software Defect Prediction 
 Software metrics have been used for software defect 
prediction for decades. They include McCabe’s complexity 
[15] and Halsted’s metrics [16], along with product’s size, 
complexity and vocabulary. For Object Oriented programming 
there are six best-known metrics developed in [17] known as 
the CK metrics: Weighted Methods per Class (WMC), Depth 
of Inheritance Tree (DIT), Number of Children (NOC), 
Response For a Class (RFC), Coupling Between Object 
Classes (CBO), and Lack of Cohesion of Methods (LCOM). 
Research in defect prediction consistently shows a moderately 
strong linear correlation between almost every metric and the 
number of defects per module; however, no parametric model 
has ever been developed that accurately forecasts the number 
or occurrence of faults in a software module.  
 There are also different classes of software metrics. The 
McCabe, Halstead and CK metrics all represent “code” 
metrics, computed directly from source code. There are also 
requirements metrics, test metrics, etc. Rosenberg, Hammer 
and Shaw[21] discuss the integrated use of requirements, code 
and testing metrics at NASA’s Software Assurance 
technology Center (circa 1998).  
 Fenton and Neil [18] provide a critical review of 
software-defect prediction research up  to 1999. They 
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highlighted numerous statistical models (e.g. Akiyama’s [19] 
and Ferdinand’s [20]) developed for this domain, and 
concluded that a variety of methodological problems rendered 
many of them incomparable. Bayesian belief networks were 
proposed in [18] as an alternative to parametric models.    
 Following the same rationale as [18], a number of authors 
have investigated the use of machine-learning techniques as 
non-parametric models for software defect prediction. Some 
examples include neural networks [26], genetic programming 
[8], fuzzy clustering [27] and decision trees [28]. Imbalanced 
class distributions have been significant problems in these 
studies. Recently, Seliya and Khoshgoftaar [22] proposed a 
semi-supervised clustering method to detect failures in 
software modules. Instead of working with the individual 
modules on software, they group modules and label them as 
fault prone or not fault prone. Clustering algorithms -in this 
case the k-means algorithm- are supplemented with a set of 
labeled program modules, resulting in a semi-supervised 
method. With this the domain expert is helped to label further 
clusters as either fault prone or not fault prone.  

III. EXPERIMENTAL METHODOLOGY 

 The datasets used for our experiments are referred to as 
CM1, KC1, KC2 and PC1. They come from several NASA 
projects and are available at the PROMISE Repository of 
Software Engineering Databases [4]. CM1 is made up of 
20,000 lines of C code, KC1 contains 43,000 lines of C++ 
code, KC2 contains over 43,000 lines of C++ code, and PC1 
consists of 40,000 lines of C code. Each dataset contain 21 
software metrics based on the product size, complexity and 
vocabulary, along with a binary class variable (module 
experienced a failure). These datasets were also used in [8]. 
 We used the well-known C4.5 [23] decision tree classifier 
for our experiments. It provides a simple and useful 
environment to perform classification on datasets. Several 
recent studies of stratification [7], [9], [10] use C4.5 and its 
default parameters to measure classification performance after 
stratification; we adopt this same approach. We utilized a 10-
fold cross validation design to test each stratification 
“strategy”. A “strategy” is a class-by-class specification of the 
degree of undersampling or oversampling to be applied [24]. 
We stratify the training set for each fold, and evaluate the 
classifier on the unaltered test dataset.  
 Each fold was resampled with the SMOTE algorithm [1]. 
SMOTE is a proposed oversampling approach in which the 
minority class is oversampled by creating “synthetic” 
examples rather than by oversampling with replacement. To 
create a synthetic example, SMOTE searches for the nearest 
neighbors (having the same class label) of a minority-class 
example. A new synthetic example is then created at a random 
point on the line connecting the two genuine samples (this 
assumes that each dimension of feature space belongs forms a 
ratio scale), and class label for the new example is the 
minority class. Different synthetic examples are based on 
different neighbor pairs. SMOTE also uses uniform selection 
without replacement to undersample the majority class. 

 We calculated the geometric mean of the class accuracies 
from the confusion matrix for each fold. The geometric mean 
is highly sensitive to imbalance in the individual class 
accuracies. It has been used as a performance measure for 
learning in imbalanced datasets in [25]. We determine the 
average and standard deviation of the geometric mean 
accuracy across all ten folds for each dataset. 
 

IV. EXPERIMENTAL RESULTS 

 We first used SMOTE to achieve a uniform class 
distribution for each dataset. However, having approximately 
the same number of samples per class did not yield the highest 
geometric mean accuracy. We explored other resampling 
strategies using trial-and-error, and finally arrived at the 
highest geometric mean accuracies. The percentage of over-
sampling and under-sampling was according the behavior of 
each dataset, confirming the proposal of Weiss and Provost in 
[10], that the resampling rates will be determined according to 
each dataset. We also observed that over-sampling the 
minority class more than 300% was not useful. We present 
our experimental results in Table 1. 
 

TABLE I 
EXPERIMENTAL RESULTS 

Dataset Under-sample 
majority class 

(%) 

Over-sample 
minority 
class (%) 

Average 
Geometric 

Mean 
Accuracy (%) 

Standard 
Deviation 

0 (original) 0 13.69 0.22 
25 200 55.34 0.11 
50 300 47.87 0.19 CM1 

75 300 62.20 0.14 
0 0 52.30 0.07 
50 300 69.20 0.08 
85 100 69.39 0.03 KC1 

75 300 71.25 0.04 
0 0 60.13 0.12 
50 100 72.55 0.08 
50 200 73.33 0.04 KC2 

75 200 74.09 0.07 
0 0 47.00 0.12 
75 200 70.00 0.10 
75 300 68.24 0.09 PC1 

85 300 74.26 0.09 
 
 As we can see in Table 1, there are substantial 
improvements reflected in higher average geometric mean 
accuracy. The most dramatic example is where the dataset 
CM1 showed 0% classification accuracy for the minority class 
in several folds. Stratification improved the average geometric 
mean accuracy of CM1 from 13.69% to 62.20%. Across all 
four datasets, we were able to improve the geometric mean 
accuracy by at least 23%. We also note that the standard 
deviations were simultaneously reduced, indicating more 
consistent classification results. 

V.  SUMMARY AND FUTURE WORK 

 We applied the SMOTE algorithm to software defect 
prediction. This resampling technique allowed us to create 
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more balanced training datasets, and the geometric mean 
classification accuracy (using c4.5 decision trees) on the 
unmodified test sets was substantially improved in our tenfold 
cross-validation experiments. Imbalanced class distributions 
are a major problem in applying machine learning techniques 
to software defect prediction, and there has been very little 
investigation of stratification as a solution to this very 
important problem.  
 In our future work, we will seek to quantify the 
contribution of SMOTE and undersampling, in response to 
Weiss & Provost’s assertion that undersampling alone is 
sufficient. We will use a full factorial design with over-
sampling and undersampling as the two factors to test Weiss 
and Provost’s claim against a larger set of software defect 
prediction datasets. We will also investigate the application of 
Response Surface Methodology as a structured methodology 
to identify the best resampling strategy for a given dataset.  
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