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Abstract. Several aspects may influence the performance achieved by
a classifier created by a Machine Learning system. One of these aspects
is related to the difference between the numbers of examples belonging
to each class. When this difference is large, the learning system may
have difficulties to learn the concept related to the minority class. In this
work1, we discuss several issues related to learning with skewed class
distributions, such as the relationship between cost-sensitive learning
and class distributions, and the limitations of accuracy and error rate
to measure the performance of classifiers. Also, we survey some methods
proposed by the Machine Learning community to solve the problem of
learning with imbalanced data sets, and discuss some limitations of these
methods.
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1 Introduction

Supervised learning is the process of automatically creating a classification model
from a set of examples, called the training set, which belong to a set of classes.
Once a model is created, it can be used to automatically predict the class of
other unclassified examples.

In other words, in supervised learning, a set of n training examples is given
to an inducer. Each example X is an element of the set F1×F2× . . .×Fm where
Fj is the domain of the jth feature. Training examples are tuples (X, Y ) where
Y is the label, output or class. The Y values are typically drawn from a discrete
set of classes {1, . . . ,K} in the case of classification. Given a set of training
examples, the learning algorithm (inducer) outputs a classifier such that, given
a new example, it accurately predicts the label Y .

1 This work was previously published in LAPTEC-2002, Frontiers in Artificial Intelli-
gence and its Applications, IOS Press.
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In this work, we reserve our discussion to concept-learning2, so Y can assume
one of two mutually exclusive values. We use the general labels positive and
negative to discriminate between the two class values.

For a number of application domains, a huge disproportion in the number
of cases belonging to each class is common. For instance, in detection of fraud
in telephone calls [7] and credit card transactions [15], the number of legitimate
transactions is much higher than the number of fraudulent transactions. In in-
surance risk modelling [12], only a small percentage of the policyholders file one
or more claims in any given time period. Also, in direct marketing [11], it is com-
mon to have a small response rate (about 1%) for most marketing campaigns.
Other examples of domains with intrinsic imbalance can be found in the liter-
ature. Thus, learning with skewed class distributions is an important issue in
supervised learning.

Many traditional learning systems are not prepared to induce a classifier that
accurately classifies the minority class under such situation. Frequently, the clas-
sifier has a good classification accuracy for the majority class, but its accuracy
for the minority class is unacceptable. The problem arises when the misclassifi-
cation cost for the minority class is much higher than the misclassification cost
for the majority class. Unfortunately, that is the norm for most applications
with imbalanced data sets, since these applications aim to profile a small set of
valuable entities that are spread in a large group of “uninteresting” entities.

In this work we discuss some of the most frequently used methods that aim
to solve the problem of learning with imbalanced data sets. These methods can
be divided into three groups:

1. Assign misclassification costs. In a general way, misclassify examples of
the minority class is more costly than misclassify examples of the major-
ity class. The use of cost-sensitive learning systems might aid to solve the
problem of learning from imbalanced data sets;

2. Under-sampling. One very direct way to solve the problem of learning
from imbalanced data sets is to artificially balance the class distributions.
Under-sampling aim to balance a data set by eliminating examples of the
majority class;

3. Over-sampling. This method is similar to under-sampling. But it aims to
achieve a more balanced class distributions by replicating examples of the
minority class.

This work is organised as follows: Section 2 discusses why accuracy and er-
ror rate are inadequate metrics to measure the performance of learning sys-
tems when data have asymmetric misclassification costs and/or class imbalance;
Section 3 explains the relationship between imbalanced class distributions and
cost-sensitive learning; Section 4 discusses which class distributions are best for
learning; Section 5 surveys some methods proposed by the Machine Learning
community to balance the class distributions; Section 6 presents a brief discus-

2 However some of the methods discussed here can be applied to multi-class problems.
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sion about some evidences that balancing a class distributions has little effect in
the final classifier; finally, Section 7 shows the conclusions of this work.

2 Why Accuracy and Error Rate are Inadequate
Performance Measures for Imbalanced Data Sets

Different types of errors and hits performed by a classifier can be summarised
in a confusion matrix. Table 1 illustrates a confusion matrix for a two class
problem, with classes labelled positive and negative:

Positive Prediction Negative Prediction

Positive Class True Positive (a) False Negative (b)

Negative Class False Positive (c) True Negative (d)

Table 1. Different types of errors and hits for a two classes problem.

From such matrix it is possible to extract a number of metrics to measure the
performance of learning systems, such as error rate E = (c+b)

(a+b+c+d) and accuracy

Acc = (a+d)
(a+b+c+d) = 1− E.

The error rate (E) and the accuracy (Acc) are widely used metrics for measur-
ing the performance of learning systems. However, when the prior probabilities
of the classes are very different, such metrics might be misleading. For instance,
it is straightforward to create a classifier having 99% accuracy (or 1% error rate)
if the data set has a majority class with 99% of the total number of cases, by
simply labelling every new case as belonging to the majority class.

Other fact against the use of accuracy (or error rate) is that these metrics
consider different classification errors as equally important. For instance, a sick
patience diagnosed as healthy might be a fatal error while a healthy patience
diagnosed as sick is considered a much less serious error since this mistake can be
corrected in future exams. On domains where misclassification cost is relevant,
a cost matrix could be used. A cost matrix defines the misclassification cost,
i.e., a penalty for making a mistake for each different type of error. In this case,
the goal of the classifier is to minimize classification cost instead of error rate.
Section 3 discusses more about the relationship between cost-sensitive learning
and imbalanced data sets.

It would be more interesting if we could use a performance metric that dis-
associates the errors (or hits) occurred in each class. From Table 1 it is possible
to derive four performance metrics that directly measure the classification per-
formance on the positive and negative classes independently, they are:

– False negative rate: FN = b
a+b is the percentage of positive cases mis-

classified as belonging to the negative class;
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– False positive rate: FP = c
c+d is the percentage of negative cases misclas-

sified as belonging to the positive class;

– True negative rate: TN = d
c+d = 1 − FP is the percentage of negative

cases correctly classified as belonging to the negative class;

– True positive rate: TP = a
a+b = 1 − FN is the percentage of positive

cases correctly classified as belonging to the positive class;

These four class performance measures have the advantage of being indepen-
dent of class costs and prior probabilities. It is obvious that the main objective
of a classifier is to minimize the false positive and negative rates or, similarly,
to maximize the true negative and positive rates. Unfortunately, for most “real
world” applications, there is a tradeoff between FN and FP and, similarly, be-
tween TN and TP . The ROC3 graphs [13] can be used to analyse the relationship
between FN and FP (or TN and TP ) for a classifier.

Consider that the minority class, whose performance will be analysed, is the
positive class. On a ROC graph, TP (1 − FN) is plotted on the Y axis and
FP is plotted on the X axis. Some classifiers have parameter for which different
settings produce different ROC points. For instance, a classifier that produces
probabilities of an example being in each class, such as Naive Bayes classifier,
can have a threshold parameter biasing the final class selection4. Plotting all
the ROC points that can be produced by varying these parameters produces a
ROC curve for the classifier. Typically this is a discrete set of points, including
(0,0) and (1,1), which are connected by line segments. Figure 1 illustrates a
ROC graph of 3 classifiers: A, B and C. Several points on a ROC graph should
be noted. The lower left point (0,0) represents a strategy that classifies every
example as belonging to the negative class. The upper right point represents
a strategy that classifies every example as belonging to the positive class. The
point (0,1) represents the perfect classification, and the line x = y represents the
strategy of random guessing the class.

From a ROC graph is possible to calculate an overall measure of quality,
the under the ROC curve area (AUC). The AUC is the fraction of the total
area that falls under the ROC curve. This measure is equivalent to several other
statistical measures for evaluating classification and ranking models [8]. The
AUC effectively factors in the performance of the classifier over all costs and
distributions.

3 ROC is an acronym for Receiver Operating Characteristic, a term used in signal
detection to characterize the tradeoff between hit rate and false alarm rate over a
noisy channel.

4 In a similar way, other learning system can be adapted to produce such posterior
probabilities estimates. In decision trees, the class distributions at the leaves can
be use as an estimate. Rule learning systems can make similar estimates. Neural
networks produce continuous outputs that can be mapped to probability estimates.

4



Learning with Skewed Class Distributions

Fig. 1. A ROC graph for 3 classifiers.

3 Imbalance and Cost-Sensitive Learning

A classifier induced from an imbalanced data set has, typically, a low error rate
for the majority class and an unacceptable error rate for the minority class. The
problem arises when the misclassification cost for the minority class is much
higher than the misclassification cost for the majority class. In this situation,
it is important to accurately classify the minority class in order to reduce the
overall cost.

A cost-sensitive learning system can be used in applications where the mis-
classification costs are known. Cost-sensitive learning systems attempt to reduce
the cost of misclassified examples, instead of classification error.

Unfortunately, some learning systems are not able to integrate cost informa-
tion into the learning process. However, there is a simple and general method
to make any learning system cost-sensitive for a concept-learning problem [2].
The idea is to change the class distributions in the training set towards the most
costly class. Suppose that the positive class is five times more costly than the
negative class. If the number of positive examples are artificially increased by a
factor of five, then the learning system, aiming to reduce the number of classifi-
cation errors, will come up with a classifier that is skewed towards the avoidance
of error in the positive class, since any such errors are penalised 5 times more.
In [6] is provided a theorem that shows how to change the proportion of positive
and negative examples in order to make optimal cost-sensitive classifications for
a concept-learning problem. Moreover, a general method to make learning sys-
tem cost-sensitive is presented in [4]. This method has the advantage of being
applicable to multi-class problems.

Thus, class imbalance and cost-sensitive learning are related to each other.
One way to learn with an imbalanced data set is to train a cost-sensitive learning
system with the misclassification cost of the minority class greater than the ma-
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jority class. One way to make a learning system cost-sensitive is to intentionally
imbalance the training set.

Most methods that deal with imbalanced data sets aim to improve the learn-
ing of the minority concept by balancing the data set. In this way, the minority
class becomes more costly, and we can expect it will be better classified. From
this point, two different situations can be identified: first, there are plenty of data,
and the problem can be understood as “which proportion of positive/negative
examples is the best for learning?”; second, data are scarce, and there is another
additional problem: “how discard negative examples/duplicate positive exam-
ples without introducing much bias in the learning process?”. In the following
sections these two questions are discussed in more detail.

4 Which Proportion of Positive/Negative Examples is
the Best for Learning?

The problem of determining which proportion of positive/negative examples
is the best for learning goes beyond the problem of learning from imbalanced
data sets. Much of the Machine Learning community has assumed that the
naturally occurring class distributions are the best for learning. However, because
of leaning from the naturally occurring class distributions yield bad results for
highly imbalanced data sets, this assumption started to be studied in deep.

In [17] is made a throughout study about the proportion of positive/negative
examples in learning. This study analyses the scenario that there are plenty of
data, however because of computational restriction, the training set should be
limited to n examples. In this scenario, which class distributions should be the
best for training?

Using the area under the ROC curve (AUC) as performance measure, [17]
shows that the optimal distribution generally contains between 50% and 90% of
minority class examples. Also, allocating 50% of the training examples to the
minority class, while it will not always yield optimal results, will generally lead
to results which are no worse than, and often superior to, those which use the
natural class distributions.

5 How to Discard Negative Examples/Duplicate Positive
Examples Without Introducing Much Bias in the
Learning Process?

As already mentioned, one of the most direct ways for dealing with class im-
balance is to alter the class distributions toward a more balanced distribution.
There are two basic methods for balancing the class distributions:

1. Under-sampling: these methods aim to balance the data set by eliminating
examples of the majority class, and;

2. Over-sampling: these methods replicate examples of the minority class in
order to achieve a more balanced distribution.
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Both, under-sampling and over-sampling, have known drawbacks. Under-
sampling can throw away potentially useful data, and over-sampling can increase
the likelihood of occurring overfitting, since most of over-sampling methods make
exact copies of the minority class examples. In this way, a symbolic classifier, for
instance, might construct rules that are apparently accurate, but actually, cover
one replicated example.

Some recent research has focused in overcoming the drawbacks of both under-
sampling and over-sampling. In [3] under-sampling and over-sampling methods
are combined, and, instead of over-sampling by replicating minority class exam-
ples, new minority class examples are formed by interpolating between several
minority class examples that lie together. Thus, they avoid the overfitting prob-
lem and cause the decision boundaries for the minority class to spread further
into the majority class space.

In [10, 1] an under-sampling technique is analysed in order to minimize the
amount of potentially useful data discarded. The majority class examples are
classified as “safe”, “borderline” and “noise” examples. Borderline and noisy
cases are detected using Tomek links [16], and are removed from the data set.
Only safe majority class examples and all minority class examples are used for
training the learning system. A Tomek link can be defined as follows: given
two examples x and y belonging to different classes, and be d(x, y) the distance
between x and y. A (x, y) pair is called a Tomek link if there is not a case z,
such that d(x, z) < d(x, y) or d(y, z) < d(y, x). Figure 2 illustrates the process
of cleaning a data set with Tomek links.
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Fig. 2. Applying Tomek links to a data set. Original data set (a), Tomek links identified
(b), and Tomek links removed (c).

Other methods for reducing the training set size based on k-nearest neighbor,
like Tomek links, are surveyed in [18].

6 Discussion

Much of research done to solve the problem of learning from imbalanced data sets
is based on balancing the class distributions. However, recent research has shown
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that many learning systems are insensitive to class distributions. Drummond and
Holte [5] showed that there are decision tree splitting criteria that are relatively
insensitive to a data set class distributions. Elkan [6] makes similar statements for
Naive Bayes and decision tree learning systems. If a learning system is insensitive
to the class distributions, then changing the class distributions — or balancing
a data set — might have little effect in the induced classifier.

On the other hand, under- and over-sampling have been empirically anal-
ysed in several domains, with good results. In [9] several approaches for dealing
with imbalanced data sets are compared, and it concludes that under- and over-
sampling are very effective methods for dealing with imbalanced data sets.

Moreover, Drummond and Holte [5] stated that under- and over-sampling
should be reconsidered in terms of how they affect pruning and leaf labelling
of decision trees. However, on several experiments performed in [14], classifiers
generated from balanced distributions obtained results that were, frequently,
better than those obtained from the naturally occurring distributions. These
experiments were conducted with no pruning, and adjusting the leaf labelling to
account the changes made in class distributions.

7 Conclusion

Learning from imbalanced data sets is an important issue in Machine Learn-
ing. A direct method to solve the imbalance problem is to artificially balance
the class distributions. This balance can be obtained by under-sampling the
majority class, over-sampling minority class, or both. There are several works
in the literature that confirm the efficiency of these methods in practice. How-
ever, there is some evidence that re-balancing the class distributions artificially
does not have much effect on the performance of the induced classifier, since
some learning systems are not sensitive to differences in class distributions. It
seems that we still need a clearer understanding of how class distributions af-
fect each phase of the learning process. For instance, in decision trees, how class
distributions affect the tree construction, pruning and leaf labelling. A deeper
understanding of the basics will permit us to design better methods for dealing
with the problem of learning with skewed class distributions.
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