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Abstract. A commonly encountered problem in MLP (multi-layer per-
ceptron) classification problems is related to the prior probabilities of
the individual classes — if the number of training examples that corre-
spond to each class varies significantly between the classes, then it may
be harder for the network to learn the rarer classes in some cases. Such
practical experience does not match theoretical results which show that
MLPs approximate Bayesian a posteriori probabilities (independent of
the prior class probabilities). Our investigation of the problem shows
that the difference between the theoretical and practical results lies with
the assumptions made in the theory (accurate estimation of Bayesian a
posterior: probabilities requires the network to be large enough, train-
ing to converge to a global minimum, infinite training data, and the a
priori class probabilities of the test set to be correctly represented in
the training set). Specifically, the problem can often be traced to the
fact that efficient MLP training mechanisms lead to sub-optimal solu-
tions for most practical problems. In this chapter, we demonstrate the
problem, discuss possible methods for alleviating it, and introduce new
heuristics that are shown to perform well on a sample ECG classification
problem. The heuristics may also be used as a simple means of adjusting
for unequal misclassification costs.

1 Introduction

It has been shown theoretically that MLPs approximate Bayesian a posteriori
probabilities when the desired network outputs are 1 of M and squared-error or
cross-entropy cost functions are used [6, 11, 12, 15, 23, 25, 26, 28, 29, 32]. This
result relies on a number of assumptions for accurate estimation: the network
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must be large enough and training must find a global minimum, infinite training
data is required, and the a priori class probabilities of the test set must be
correctly represented in the training set.

In practice, MLPs have also been shown to accurately estimate Bayesian a
posteriori probabilities for certain experiments [10]. However, a commonly en-
countered problem in MLP classification is related to the case when the frequency
of the classes in the training set varies significantly®. If the number of training
examples for each class varies significantly between classes then there may be a
bias towards predicting the more common classes [3, 4], leading to worse clas-
sification performance for the rarer classes. In [5] it was observed that classes
with low a priori probability in a speech application were “ignored” (no samples
were classified as these classes after training). Such problems indicate that either
the estimation of Bayesian a posteriori probabilities is inaccurate, or that such
estimation may not be desired (e.g. due to varying misclassification costs (this
is explained further in section 4)). Bourlard and Morgan [7] have demonstrated
inaccurate estimation of Bayesian a posteriori probabilities in speech recogni-
tion. This chapter discusses how the problem may occur along with methods of
dealing with the problem.

2 The Trick

This section describes the tricks for alleviating the aforementioned problem.
Motivation for their use and experimental results are provided in the following
sections. The methods all consider some kind of scaling which is performed on
a class by class basis?.

2.1 Prior Scaling

A method of scaling weight updates on a class by class basis according to
the prior class probabilities is proposed in this section. Consider gradient de-
scent weight updates for each pattern: wl,(new) = wi;(old) + Awl,(p) where

Awt,(p) = —n%]fu(ﬁ ), p is the pattern index, and wy; is the weight between neu-
ron k in layer [ and neuron ¢ in layer [—1. Scaling the weight updates on a pattern
by pattern basis is considered such that the total expected update for patterns
belonging to each class is equal (i.e. independent of the number of patterns in

the class):
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3 For the data in general. Others have considered the case of different class probabilities
between the training and test sets, e.g. [23].

* Anand et al. [2] have also presented an algorithm related to unequal prior class
probabilities. However, their algorithm aims only to improve convergence speed.
Additionally, their algorithm is only for two class problems and batch update.



where p. is the target classification of pattern p, ¢; is a constant, s, is a scaling
factor, z ranges over all classes X, <> denotes expectation, and the p, = =
subscript indicates that the sum is only over the patterns in a particular class
z. This effectively scales the updates for lower frequency classes so that they are
higher — the aim is to account for the fact that lower frequency classes tend to
be “ignored” in certain situations. We assume that the expected weight update
for individual patterns in each class is equal:

(|8 (P)lpe=z) = c2, Vo € X (2)

where ¢y is a constant not related to c¢;. The scaling factor required is therefore:
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where s, is the scaling factor for all weight updates associated with a pattern
belonging to class z, N, is the number of classes, and p, is the prior probability
of class x.

Scaling as defined above invalidates the Bayesian a posteriori probability
proofs (for example, scaling a class by two can be compared with duplicating
every pattern in the data for that class — causing changes in probability distribu-
tions), i.e. there is no reason to expect that the scaling strategy will be optimal.
This, and the empirical result that the scaling may improve performance, leads
to the hypothesis that there may be a point between no prior scaling and prior
scaling as defined above which produces performance better than either of the
two extremes. The following scaling rule can be used to select a degree of scaling
between the two extremes:
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Pz N )

sh=1—cs+

where 0 < ¢; < 1 is a constant specifying the amount of prior scaling to use.
¢s = 0 corresponds to no scaling according to prior probabilities, and ¢; = 1
corresponds to scaling as above. Prior scaling in this form can be expressed as
training with the following alternative cost function®:

Definition 1.
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5 A cost function with similar motivation, the “classification figure-of-merit” (CFM)
proposed by Hampshire and Waibel [13], has been suggested as a possible improve-
ment when prior class probabilities vary [3]. In [13], the CFM cost function leads to
networks which make different errors to those trained with the MSE criterion, and
can therefore be useful for improving performance by combining classifiers trained
with the CFM and the MSE. However, networks trained with the CFM criterion do
not result in higher classification performance than networks trained with the MSE
criterion for the experiments reported in [13].



where the network has one output for each of the V. classes, IV, is the number
of patterns, d is the desired or target output, y is the predicted output, and z is
the class of pattern k.

When using prior scaling as defined in this section, the individual s!, val-
ues can be large for classes with low prior probability. This may lead to the
requirement of decreasing the learning rate in order to prevent the relatively
large weight updates interfering with the gradient descent process. Comparing
the use of prior scaling and not using prior scaling then becomes problematic
because the optimal learning rate is different for each case. An alternative is
to normalize the s/, values so that the maximum is 1. Another possibility is to
present patterns repeatedly to the network instead of scaling weight updates,
i.e. for a class with a scaling factor of 2 each pattern would be presented twice.
This would have the advantage of reducing the range of weight updates in terms
of magnitude, e.g. an update of magnitude z might be repeated twice rather
than using a single update of magnitude 2z. This may allow the use of a higher
learning rate, and therefore reduce the number of epochs required. However, a
disadvantage of repeating patterns is that the effective training set would be
larger, resulting in longer training times for the same number of epochs. Such
a technique could be done probabilistically, and this is the subject of the next
technique.

2.2 Probabilistic Sampling

Yaeger et al. [33] have proposed a method called frequency balancing which is
similar to the prior scaling method above. In frequency balancing, Yaeger et al.
use all training samples in random order for each training epoch and allow each
sample to be presented to the network a random number of times, which may be
zero or more and is computed probabilistically. A balancing factor is included,
which is analogous to the scaling factor above (cs).

We introduce a very similar method here called probabilistic sampling whereby
training patterns are chosen randomly in the following manner: the class is cho-
sen randomly with the probability of choosing each class z, being (1—¢;)p, + 3£-
A training sample is then chosen randomly from among all training samples for
the chosen class.

2.3 Post Scaling

Instead of scaling weight updates or altering the effective class frequencies, it is
possible to train the network as usual and then scale the outputs of the network
after training. For example, the network could be trained as usual and then the
outputs scaled according to the prior probabilities in a similar fashion to the
prior scaling method (using equation 3 or 4). Experiments with this technique
alone show that it is not always as successful as prior scaling of the weight
updates. This may be because the estimation of the lower frequency classes can
be less accurate than that of the higher frequency classes [24] (the deviations



of the network outputs from the true values in regions with a higher number of
data points influence the squared error cost function more than the deviations
in regions with a lower number of points [23]).

The post scaling technique introduced here can also be used to optimize a
given criterion, e.g. the outputs may be scaled so that the probability of pre-
dicting each class matches the prior probabilities in the training set as closely
as possible. Post scaling to minimize a different criterion is demonstrated in the
results section. For the results in this chapter, the minimization is performed
using a simple hill-climbing algorithm which adjusts a scaling factor associated
with each of the outputs of the network.

2.4 Equalizing Class Membership

A simple method for alleviating difficulty with unequal prior class probabilities is
to adjust (e.g. equalize) the number of patterns in each class, either by subsam-
pling [24] (removing patterns from higher frequency classes), or by duplication
(of patterns in lower frequency classes)®. For subsampling, patterns can be re-
moved randomly, or heuristics may be used to remove patterns in regions of low
ambiguity. Subsampling involves a loss of information which can be detrimen-
tal. Duplication involves a larger dataset and longer training times for the same
number of training epochs (the convergence time may be longer or shorter).

3 Experimental Results

Results on an ECG classification problem are reported in this section after dis-
cussing the use of alternative performance measures. Results on a simple artificial
problem are also included in the explanation section.

3.1 Performance Measures

When the interclass prior probabilities of the classes vary significantly, then the
overall classification error may not be the most appropriate performance crite-
rion. For example, a model may always predict the most common class and still
provide relatively high performance. Statistics such as the Sensitivity, Positive
Predictivity, and False Positive Rate can provide more meaningful results [1].
These are defined on a class by class basis as follows:

The Sensitivity of a class is the proportion of events labelled as that class
which are correctly detected. For the two class confusion matrix shown in table
1 the sensitivity of class 1is —H—.

The Positive Predictivity of a class is the proportion of events which
were predicted to be the class and were labelled as that class. For the two class

confusion matrix shown in table 1 the positive predictivity of class 1 is 2 —.

5 The heuristic of adding noise during training [22] could be useful here as with the
other techniques in this chapter.



The False Positive Rate of a class is the proportion of all patterns for other
classes which were incorrectly classified as that class. For the two class confusion

matrix shown in table 1 the false positive rate of class 1 is C11Cj-1621-

1 |ciui|ci2
2 |ca1|c22

Table 1. A sample confusion matrix which is used to illustrate sensitivity, positive
predictivity, and false positive rate. Rows correspond to the desired classes and columns
correspond to the predicted classes.

No single performance criterion can be labelled as the best for comparing
algorithms or models because the best criterion to use is problem dependent.
Here, we take the sensitivity as defined above, and create a single performance
measure, the mean squared sensitivity error (MSSE). We define the MSSE as
follows:

Definition 2.

Ne

MSSE = (1-25;)? (6)

1
N, :
where N. = the number of classes and S; = sensitivity of class i as defined
earlier.

Sensitivities range from 0 (no examples of the class correctly classified) to 1
(all examples correctly classified). Thus, a lower MSSE corresponds to better per-
formance. We choose this criterion because each class is given equal importance
and the square causes lower individual sensitivities to be penalized more (e.g. for
a two class problem, class sensitivities of 100% and 0% produce a higher MSSE
than sensitivities of 50% and 50%). Note that this is only one possible criterion,
and other criterion could be used in order to reflect different requirements, e.g.
specific misclassification costs for each class. The post scaling heuristic can be
used with any criterion (and doing so may be simpler than reformulating the
neural network training algorithm for the new criterion).

3.2 ECG Classification Problem

This section presents results using the beforementioned techniques on an ECG
classification problem. The database used is the MIT-BIH Arrhythmia database
[21] — a common publicly available ECG database which contains a large number
of ECG records that have been carefully annotated by experts. Detection of



the following four beat types is considered: Normal (N), Premature Ventricular
Contraction (PVC), Supraventricular Contraction (S), and Fusion (F) [21], i.e.
there are four output classes. The four classes are denoted 1 (N), 2 (PVC), 3 (S),
and 4 (F). An autoregressive model is calculated for a window of 200 samples
centered over the peak of the R-wave of each beat. The inputs are the polar
coordinates of each pole in the z-plane, i.e. frequency changes are reflected in
the angular variation of the poles and damping is reflected in the magnitude
variations. The model order was four corresponding to eight input variables.
The prior probability of the classes (according to the training data) is (0.737,
0.191, 0.0529, 0.0196) corresponding to beat types (N, PVC, S, F).

MLPs with 20 hidden units were trained with stochastic backpropagation
(update after each pattern) using an initial learning rate of 0.02 which was
linearly reduced to zero over the training period of 500,000 updates. We used
5,000 points in each of the training, validation and test sets. The validation
set was used for early stopping. The following algorithms were used — a) prior
scaling with the degree of scaling, ¢, varied from 0 to 1, b) probabilistic sampling
with the degree of scaling, c;, varied from 0 to 1, c¢) as per a) and b) with the
addition of post scaling, and d) equalizing the number of cases in each class by
removing cases in more common classes. The post scaling attempted to minimize
the MSSE on the training set”. 10 trials were performed for each case.

The median test set MSSE for d) was 0.195. The results for probabilistic sam-
pling and probabilistic sampling plus post scaling are shown with box-whiskers
plots® in figure 1. For probabilistic sampling, the best scaling results correspond
to a degree of scaling in between no scaling and scaling according to the prior
probabilities (cs; & 0.8). When ¢, is larger, the sensitivity of class 1 drops signif-
icantly and results in higher false positive rates for the other classes. When ¢,
is lower, the sensitivity of classes 3 and 4 drops significantly. It can be seen that
the addition of post scaling appears to almost always improve performance for
this problem. The optimal degree of scaling, cs &~ 0.8, is difficult to determine a
priori. However, it can be seen that the addition of post scaling makes the se-
lection of ¢, far less critical (¢s = 0.3 to ¢s = 1.0 result in similar performance).
Figure 2 shows confusion matrices (in graphical form). Without scaling (¢, = 0),

7 400 steps were used for the hill climbing algorithm where each step corresponded to
either multiplying or dividing an individual output scale factor by a constant which
was reduced linearly over time from 1.5 to 1. The time taken was short compared to
the overall training time.

8 The distribution of results is often not Gaussian and alternative means of presenting
results other than the mean and standard deviation can be more informative. Box-
whiskers plots show the interquartile range (IQR) with a box and the median as a
bar across the box. The whiskers extend from the ends of the box to the minimum
and maximum values. The median and the IQR are simple statistics which are not
as sensitive to outliers as the mean and the standard deviation [31]. The median is
the value in the middle when arranging the distribution in order from the smallest to
the largest value. If the data is divided into two equal groups about the median, then
the IQR is the difference between the medians of these groups. The IQR contains
50% of the points.



it can be seen that classes 3 & 4 have low sensitivity. With scaling using ¢; = 1
all classes are now recognized, however the sensitivity of class 1 is worse and the
false positive rate of classes 3 & 4 is significantly worse.

The results for prior scaling and prior scaling combined with post scaling
were very similar but slightly worse than the results with probabilistic sampling.
The prior scaling results are not plotted in order to make the graph easier to
follow, however the qualitative results are as follows: for low ¢, prior scaling and
probabilistic sampling perform very similarly. However, for high c,, probabilistic
sampling has a clear advantage for this problem. This is perhaps just as expected
— the relatively high variation in prior class probabilities leads to a high variation
in weight update magnitudes across the classes when using high ¢;. Results for
all methods can be seen in table 2.

Method Prior |Prior Scaling + |Probabilistic| Probabilistic| Equalizing
Scaling | Post Scaling | Sampling |Sampling + |Membership
Post Scaling
Average MSSE| 0.10 0.096 0.099 0.089 0.195
(for best ¢;) |(cs =0.8)] (cs =0.6) (cs =0.8) | (cs =0.3)
Average MSSE| 0.19 0.10 0.18 0.099 0.195
(over all ¢s)

Table 2. Results for the various methods. We show the average results for the best
selection of ¢, and also an average across all selections of c¢s;. Note that selection of
the optimal value of ¢ is less critical when using post scaling in addition to either the
prior scaling or probabilistic sampling methods.

4 Explanation

This section discusses why the techniques presented can be useful, limitations of
the techniques, and how they relate to the theoretical result that MLPs approx-
imate Bayesian a posteriori probabilities under certain conditions.

4.1 Convergence and Representation Issues

We first list four possible situations:

1. The proofs regarding estimation of Bayesian a posteriori probabilities assume
networks with an infinite number of hidden nodes in order to obtain accurate
approximation. For a given problem, it can be seen that a network which
is too small will be unable to estimate the probabilities accurately due to
limited resources.
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Fig. 1. Box-whiskers plots (on the left in each case) along with the usual mean plus
and minus one standard deviation plots (on the right in each case) showing the test
set MSSE for probabilistic sampling and for probabilistic sampling plus post scaling.
Each result is derived from 10 trials with different starting conditions. The probabilistic
sampling plus post scaling case is offset by 0.03 to aid viewing. It can be seen that the
selection of the scaling degree for the best performance is not as critical when using
the combination of probabilistic sampling and post scaling.
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Fig. 2. Confusion matrices for the test set as the degree of prior scaling, c,, is varied
from O (left) to 1 (right). The columns correspond to the predicted classes and the rows
correspond to the desired classes. The classes are (left to right and top to bottom) N,
PVC, S, F. For each desired class, the predicted classes are shaded in proportion to
the number of examples which are labelled as the desired class. White indicates no
predictions. A general trend can be observed where classes S & F are recognized as
normal when ¢, = 0, and progressively more of the normal class examples are recognized
as classes PVC, S, & F as ¢; approaches 1.

2. Training an MLP is NP-complete in general and it is well known that prac-
tical training algorithms used for MLPs often result in sub-optimal solutions
(e.g. due to local minima). Often, a result of attaining a sub-optimal solution
is that not all of the network resources are efficiently used. Experiments with
a controlled task have indicated that the sub-optimal solutions often have
smaller weights on average [17].

3. Weight decay [16] or weight elimination [30] are often used in MLP training
and aim to minimize a cost function which penalizes large weights. These
techniques tend to result in networks with smaller weights.

4. A commonly recommended technique with MLP classification is to set the
training targets away from the bounds of the activation function (e.g. (-0.8,
0.8) instead of (-1, 1) for the tanh activation function) [14].



These four situations can all lead to a bias towards smaller weights, or
“smoother” models?. The possibility of such a bias is not taken into account
by the proofs regarding posterior probabilities, i.e. the difference between the-
ory and practice may, in part, be explained by violation of the assumption that
sufficient convergence is obtained.

When a network is biased towards a “smoother” solution, and accurate fitting
of the optimal function is not possible, the result may be a tendency to “ignore”
lower frequency classes'?, e.g. if a network has the choice of fitting either a high
frequency class or a low frequency class then it can provide a lower MSE by
fitting the high frequency class''. We demonstrate by example.

We generated artificial training data using the following distributions: class 1:
N(-5,1,2)+N(0,1,2)+N(5,1,2), class 2: N(—2.5,0.25,0.5)+ N(2.5,0.25,0.5),
where N(u,0,2x) is a normal distribution with mean u, standard deviation o,
and is truncated to lie within (u — z, u + ). We generated 500 training and test
examples from these distributions with the probability of selection for classes
(1,2) being (0.9,0.1), i.e. the training and test sets have nine times as many
samples of class 1 as they do of class 2. Note that there is no overlap between
the classes. Figure 3 shows typical output probability plots for training an MLP
with 10 hidden nodes'? with and without probabilistic sampling. 10 trials were
performed in each case with very similar results (see table 3). It can be seen that
the network “ignores” class two without the use of probabilistic sampling.

It should be noted that using conjugate gradient training for this simple
problem results in relatively accurate estimation of both classes with standard
training (alternate parameters with backpropagation may also be successful).
Rather than arguing for either backpropagation or conjugate gradient here (nei-
ther training algorithm is expected to always find a global minima in general),
we simply note that our experience and the experience of others [7, 18, 19, 27]
suggests that conjugate gradient is not superior for many problems — i.e. back-
propagation works better on one class of problems and conjugate gradient works
better on another class. Conjugate gradient resulted in significantly worse per-
formance when tested on the ECG problem. It should be noted that there are
many options when implementing a conjugate gradient training algorithm and
that poor performance may be attributed to the implementation used. We have
used a modified implementation of the algorithm from Fletcher [9].

% In general, smaller weights correspond to smoother functions, however this is not
always true. For example, this is not the case when fitting the function sech(z) using
two tanh sigmoids [8] (because sech(x) = limg—,o(tanh(z + d) — tanh(z))/d, i.e. the
weights become indefinitely large as the approximation improves).

10 Tn relation to the representational capacity (size of the network), Barnard and Botha
[3] have observed that MLP networks have a tendency to guess higher probability
classes when a network is too small to approximate the decision boundaries reason-
ably well.

! Lyon and Yaeger [20] find that their frequency balancing technique reduces the effect
of the prior class probabilities on the network and effectively forces the network to
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Fig. 3. Network outputs for the artificial problem with (below) and without (above)
probabilistic sampling. It can be seen that the network “ignores” the lower frequency
class without the use of probabilistic sampling. Note that the input has been normal-
ized.

| Classification Error |Mean|Standard Deviation
Standard Training 114 0.02
With Probabilistic Sampling| 0.8 0.004

Table 3. Mean and standard deviation of the classification error for the artificial
problem both with and without the use of probabilistic sampling.

4.2 Overlapping Distributions

Consider figure 4. If classes 1 and 2 have distributions differing only by trans-
lation (¢; and ¢)) then the decision threshold between these classes should be
chosen at x;. Equal percentages of each of these classes will be classified as the
other class. Now, if the distribution of class 2 is as shown (c2) then the decision
threshold between the classes should be chosen at z5. In this case, a higher per-
centage of class 2 will be classified as class 1 than the reverse. If it is desirable to
maximize the class by class sensitivity then scaling such that the effective distri-
bution of ¢; is ¢, might be appropriate. Similarly, class 3 (¢3) will be “ignored”
without any scaling.

allocate more resources to the lower frequency classes.
12 500,000 stochastic training updates with backpropagation, initial learning rate 0.02
reduced linearly to zero.



Scaling on a class by class basis may be desired when i) the distribution of
samples in the training set does not match the true distribution (e.g. it may be
more expensive to collect samples of a particular class)'®, or ii) the distribution
of the classes does not represent their relative importance, e.g. in a medical
classification problem the cost of misclassifying a diseased case as normal may
be much higher than the cost of classifying a normal case as a (possibly) diseased
case [24]. The importance of each class may be independent of the class prior
probabilities. Note that scaling such that lower frequency classes are made to
be artificially more important can be useful when considering a higher level
problem. For example, the training data from natural English words and phrases
exhibit very non-uniform priors for different characters. Yaeger et al. [33] find
that reducing the effect of these priors on the network using frequency balancing
improves the performance of the higher level word recognition training.

Observations. a) There is no intrinsic problem if the distributions do not
overlap. b) When distributions overlap, it is desirable to preprocess the data in
a manner that results in reduced overlap. However, it is often not possible to
obtain zero overlap (due to noise, for example).

&Ly Ly

Fig. 4. Overlapping distributions.

4.3 Limitations

We note a couple of limitations with the heuristics considered herein:

1. Local issues. The heuristics presented counteract biases in the network, train-
ing algorithm and/or training data. There is no reason for these biases to

13 Tt may be possible to obtain more accurate estimates of class probabilities using data
that has class labels without input information. For example, word frequency infor-
mation can be obtained from text databases and the frequency of various diseases
can be obtained from health statistics [23].



be constant throughout the input space, e.g. scaling may be helpful in one
region but detrimental in another.

2. Nonlinear calibration. There is no reason for the linear scaling heuristics used
here to be optimal (in the sense that they best counteract the biases).

4.4 A Posteriori Proofs

Theoretically it is possible to show that the scaling techniques invalidate the a
posteriori proofs — when performing scaling on a class by class basis the deci-
sion thresholds which are used to determine the winning class should be altered
accordingly. This indicates another possible use of the prior scaling and proba-
bilistic sampling techniques when the conditions given above do not exist. This
use is related to the problem whereby lower frequency classes may be estimated
less accurately than higher frequency classes (see section 2.3) — training may be
performed with the heuristically altered problem (e.g. so that the class frequen-
cies are effectively equal) and the outputs or decision thresholds can be altered
accordingly.

5 Conclusions

In practice, training issues or characteristics of a given classification problem can
mean that scaling the predicted class probabilities may improve performance in
terms of overall classification error and/or in terms of an alternative criterion.
We introduced algorithms which a) scale weight updates on a class by class basis
according to the prior class probabilities, b) alter class frequencies probabilisti-
cally (very similar to the frequency balancing technique of Yaeger et al. [33]),
and c) scale outputs after training in order to maximize a given performance
criterion. For an electrocardiogram (ECG) classification problem, we found that
the prior scaling, probabilistic sampling, and post scaling techniques provided
better performance in comparison to a) no heuristics, and b) subsampling in
order to equalize the number of cases in each class. The best performance for
prior scaling and probabilistic sampling was obtained with a degree of scaling in
between no scaling and scaling according to the prior probabilities. The optimal
degree was difficult to determine a priori. However, it was found that the using
prior scaling or probabilistic sampling in combination with post scaling made
the selection of the optimal degree far less critical.
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