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Abstract

The multilayer perceptron neural network has proved to be a very effective tool for the classification of remote-sensing
images. Unfortunately, the training of such a classifier by using data with very different a priori class probabilities
Ž .imbalanced data is very slow. This paper describes a learning technique aimed at speeding up the training of a multilayer
perceptron when applied to imbalanced data. The results obtained on an optical remote-sensing data set suggest that not only
is the proposed technique effective in terms of training speed but it also allows classification results to be more stable with
respect to initial weights. q 1997 Elsevier Science B.V.
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1. Introduction

At present, growing interest is being devoted to
the supervised classification of remote-sensing im-

Žages by the neural-network approach Bishof et al.,
.1992; Paola and Schowengerdt, 1995 . Several neu-

ral models have been applied for this purpose
Ž .Serpico et al., 1996 . The multilayer perceptron
Ž . Ž .MLP , trained by the error back-propagation EBP

Ž .algorithm Hertz et al., 1991 , is one of the most
widely used supervised classifiers. If properly trained,
it provides approximations to the posterior class
probabilities, given the feature vectors of the samples

Žto be classified Gish, 1990; Richard and Lippmann,
.1991; Rojas, 1996 . Such approximations can be

used to apply the Bayes decision rule, which is
optimal in terms of a minimum classification error
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Ž .Fukunaga, 1990 . The major problems related to
this classifier are the duration and the reliability of
the training process, in particular when the process is

Žperformed in ‘batch mode’ on imbalanced data i.e.,
when the a priori probabilities of the various classes

.considered are very different . Such problems are
encountered in many remote-sensing applications,
and concern both cases in which only two classes are
present in the considered data set and multiclass
cases.

In the literature, several techniques aimed at
speeding up the training of MLPs have been pro-

Žposed Vogl et al., 1988; Tollenaere, 1990; Hertz et
.al., 1991; Bishop, 1996 . However, only few authors

have addressed the problem of training an MLP by
Žusing imbalanced data sets Anand et al., 1993,

. Ž .1995 . Anand et al. 1993 devised a technique suit-
able for two-class cases that is very useful to reduce
the training time for MLPs. The same authors ex-
tended the use of this technique to multiclass cases
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Ž .Anand et al., 1995 . However, this extension re-
quires the definition of as many networks as the
classes considered. In addition, the outputs of MLPs
trained by this algorithm cannot be considered ap-
proximations for the posterior class probabilities op-
timized in accordance with some criterion; therefore,
such an algorithm does not represent an implementa-
tion of the Bayes decision rule for a minimum-error
classification.

This paper describes a two-phase technique for
speeding up the training process of an MLP when it
is applied to imbalanced data. Such a technique
allows MLPs to be trained to obtain an estimate of
the a posteriori class probabilities by minimization of

Ž .the mean squared error MSE criterion . Both two-
class cases and multiclass cases are addressed. Ex-
periments are carried out on optical remote-sensing
data acquired on an agricultural area.

The paper is organized into 5 sections. Section 2
briefly describes the training of MLPs with the MSE
criterion. Section 3 presents the proposed approach
for both two-class and multiclass cases. Experimen-
tal results are presented in Section 4 while conclu-
sions are drawn in Section 5.

2. Training MLPs with the mean squared error
criterion

We first consider the two-class case. Let us as-
sume to use a neural network with one hidden layer
and sigmoidal non-linearities. Let us also assume
that the number of samples from each of the classes
is in proportion to the a priori probability of class
membership. The class v is the dominant one, i.e.,2

the number n of samples of this class is much2

larger than the number n of samples of the class1

v . In order to make the network output provide an1

approximation to the a posteriori probability
Ž .P v rx of the class v , given the feature vector x1 1

of a sample, optimized with respect to the MSE, we
use the EBP training algorithm and MSE as a cost

Ž .function Gish, 1990 :
n11 2Ž1. Ž1.EsE qE s t yo xŽ .Ý1 2 in is1

n21 2Ž2. Ž2.q t yo x , 1Ž .Ž .Ý jn js1

where E is the contribution of the class to the MSE;l

nsn qn is the total number of training samples;1 2

t Ž l . is the target for the samples of the class v andl

o x Ž l . is the network output when the ith sample ofŽ .i

the l th class is presented to the network input. The
targets for the samples of the classes v and v are1 2

t Ž1.s1 and t Ž2.s0, respectively.
Let us recall the reasons why training with imbal-

anced data sets is slow. It is well known that the
EBP algorithm is based on the gradient descent of

Ž .the MSE. As shown in Anand et al., 1993 , at the
beginning of the training phase, the gradient of the
mean squared error calculated with respect to the
network weights is dominated by the contribution

Ž5 5 5 5.related to the dominant class v = E < = E ;2 1 2

therefore, in this case = Ef= E . Moreover, the2

angle between the two vectors = E and = E is1 2

larger than 908. As a consequence, during the gradi-
ent descent, E tends to decrease, whereas E tends2 1

to increase rapidly. If the value of E approaches its1
Ž .upper limit in our case, E fn rn , convergence1 1 2

becomes slow.

3. The proposed learning technique

3.1. The two-class case

The proposed technique divides the training pro-
cess into two phases in such a way as to reach
convergence, while avoiding a sharp increase in E .1

Phase 1: The EBP algorithm is applied to the
following modified cost function:

n2X X XE sE qE s E qE . 2Ž .1 2 1 2n1

5 5 5 5The mean values of = E and = E , calculated1 2

with respect to the possible values of the network
Žweights, are about equal a proof similar to that of

Ž . .Theorem 3 in Anand et al., 1993 can be provided .
Therefore, in the first phase, the problem of a sharp
increase in is resolved. This phase is discontinued
when the following condition is satisfied:

n2XE ( T ls1,2; T-1 . 3Ž . Ž .l n
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ŽThis ensures that both the overall MSE see Eq.
Ž ..1 and the following class-related MSEs will be
less than or equal to T :

nl1 n2Ž l . Ž l .MSE s t yo x s E (TŽ .Ýl j ln nl ljs1

ls1,2 . 4Ž . Ž .
Phase 2: Unfortunately, the output of the network

obtained in this way does not represent an approxi-
Ž .mation of the a posteriori probability P v rx , due1

Žto the cost modification introduced into Phase 1 see
Ž ..Eq. 2 .

We can then use the network weights obtained at
the end of the first phase as the initial weights of the
second training phase. The latter phase is performed

Ž .using training with the MSE criterion Section 2 , so
that the network output may be used directly as an

Ž .approximation to P v rx . At the beginning of the1

second phase, E generally increases but, as both1
Ž Ž ..MSE and MSE Eq. 4 are small, the amplitudes1 2

Žof the variations of E and E are small, too Anand1 2
.et al., 1993 . If E does not approach its upper limit,1

Žthe situation that leads to slow convergence see
.Section 2 is avoided.

3.2. The multiclass case

In the multiclass case, we can consider MLPs
with as many outputs as the number of classes. The
mean square error to be minimized is

nM M M l1 2Ž l . Ž l .Es E s t yo x ,Ž .Ý Ý Ý Ýl k k inPMls1 ls1 ks1 is1

5Ž .
where M is the number of classes; t Ž l . is the targetk

for the k th output of the network for the samples of
Žthe lth class such a target is equal to 1 if ks l, and
. Ž l .to 0 otherwise ; o x is the k th output of theŽ .k i

network when the ith sample of the lth class is
presented to the input; E is the contribution of classl

v to the mean squared error. In order to obtain1

approximations to the posterior class probabilities,
the sum of the outputs of the network should be

Ž .normalized to 1 Gish, 1990 .
Even though this situation is more complex, the

results of the two-class case can be extended to the
multiclass case as follows. Since at the beginning of

the training phase the contribution of minority classes
to the direction of the gradient E of the error is
negligible, the mean squared error of some of such
classes may increase and approach their upper limit.
Consequently, training may become slow.

To extend the proposed technique to the multi-
class case, the following formula of the modified
cost can be used in the first phase:

M M nmaxX XE s E s E , 6Ž .Ý Ýl lnlls1 ls1

where M is the number of classes and n is themax
Žnumber of samples of the dominant class i.e., the

.class with the largest number of samples . The first
phase is discontinued when the following condition
is satisfied:

nmaxXE ( PT ls1, . . . , M ; T-1 , 7Ž . Ž .l n

where n is the total number of training samples.
Thanks to the modification to the cost function,

5 X 5 Xthe mean values = E of all the contributions E tol

EX are about equal, so that the contribution of minor-
5 X 5ity classes to = E is no longer negligible. This

Žbalance among contributions which is natural for
training with data evenly distributed among all dif-

.ferent classes helps to avoid slow convergence.
The weights obtained at the end of the first phase

are used as starting weights of the second training
phase, which is performed by using the standard
MSE criterion.

4. Experimental results

For all the experiments reported, we considered a
data set with reference to an agricultural area near

Ž .the village of Feltwell UK . We selected a section
Ž .250=350 pixels of a scene acquired by a multi-

Žspectral optical sensor an airborne thematic mapper
Ž . Ž ..ATM with eleven spectral bands Richards, 1993
mounted on board an aircraft. For our experiments,
we considered only the six spectral bands that corre-
spond to the bands provided by the thematic mapper

Žsensor installed on Landsat satellites except for the
.thermal band . Each pixel of the multispectral image

was considered as an input pattern. The six bands
utilized were associated with each pixel to form the
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Table 1
Classes and related numbers of pixels in the considered remote-
sensing training set

Class Number of pixels A priori probability

Wheat 90 0.06
Sugar beets 728 0.51
Potatoes 90 0.06
Carrots 319 0.23
Stubble 191 0.14

feature vector that was used as input to the neural
classifier.

For the selected section, we prepared a reference
map by using the available data on the ground truth.
Such a map was used to extract the information
necessary to train the neural classifier. For our exper-
iments, we considered the following agricultural
classes: wheat, sugar beets, potatoes, carrots, and
stubble. The training-set pixels were obtained by
sampling the related fields. In order to assess the
advantages of the proposed technique in the presence
of classes with low a priori probabilities, we reduced
the number of samples of the wheat and the potatoes
classes. This was accomplished by further subsam-
pling the fields of these classes. Table 1 shows the
numbers of samples obtained in the resulting training
set.

For each experiment, we defined an MLP and
compared the numbers of iterations required by the
standard EBP algorithm with the MSE criterion and
the proposed technique. The same learning rate was

Žused for both training techniques and for both phases
.of the proposed technique . The final convergence

criterion was also the same for both training tech-
niques, and was given by fixing the number of
misclassified samples below which training can be
discontinued. The intermediate convergence criterion

Žfor the proposed technique to stop the first training
.phase was given by fixing the value of the threshold

T.
A fully-connected MLP with 6, 10, and 5 units in

the input, hidden and output layers, respectively, was
trained to classify our data set using the learning rate
hs0.01. As a final convergence criterion, training
was discontinued when the number of misclassified

Žsamples was less than or equal to 64 i.e., 4.5% of
.the training samples . To stop the first training phase

of the proposed technique, the parameter T was set
to 0.2.

Five experiments were carried out on the above
data set, starting from the same five randomly gener-
ated sets of weights for both the standard and the
proposed techniques. Results are given in Table 2.
As can be noticed, the proposed method allowed

Ž .notable speed-ups an average of 41.5 times with
more homogeneous distributing of the number of
iterations with respect to the initial weights. These
improvements remain significant even if one disre-
gards experiment 2, which is particularly un-
favourable for the standard EBP algorithm.

Tables 3 and 4 show the accuracies provided at
convergence for each class by both the networks
trained by the standard EBP algorithm and the net-
works trained by the proposed technique. If one
analyzes the standard deviation of the classification
accuracies obtained for each single class in the five
experiments, one can deduce that the proposed train-
ing technique exhibits a more stable behaviour than
the standard EBP technique. In addition, the errors
incurred are more evenly distributed among the
classes. This was obtained thanks to the first phase
of our technique which allowed the errors on all the
classes to decrease in a more balanced manner. In
particular, one of the two classes with the lowest a

Ž .priori probabilities i.e., wheat was much better
classified by the neural network trained by the pro-
posed technique. On the contrary, only a slight im-
provement was obtained for the other minority class
Ž .i.e., potatoes . In order to interpret this situation, we

Žapplied another well-known classifier i.e., the k-
Ž ..nearest neighbour Fukunaga, 1990 to the same

data set. Analysis of the error matrix pointed out that

Table 2
Numbers of iterations required to reach an overall classification
error less or equal to 4.5% for the five experiments carried out.
The speed-ups provided by the proposed technique are reported

Experiment Standard EBP Proposed Speed-up provided by
technique the proposed technique

1 5851 603 9.7
2 129258 825 156.7
3 7246 603 12.0
4 4581 659 7.0
5 12637 574 22.0
Average 31915 653 41.5



( )L. Bruzzone, S.B. SerpicorPattern Recognition Letters 18 1997 1323–1328 1327

Table 3
Class-by-class errors in the classification of training pixels by using the standard EBP algorithm. The overall classification error was smaller
or equal to 4.5% for each of the five experiments

Ž .Experiment Classification error % provided by the standard EBP

Wheat Sugar beets Potatoes Carrots Stubble

1 2.22 2.47 37.77 1.25 3.14
2 48.89 1.1 5.56 0.94 2.09
3 13.3 2.19 28.88 1.88 2.09
4 2.22 2.2 36.67 2.19 3.14
5 23.33 2.33 18.89 1.88 1.57
Average 17.99 2.06 25.55 1.63 2.41
Standard deviation 19.38 0.55 13.49 0.51 0.70

the potato class was quite overlapped with the
sugar-beet and carrot classes. This overlapping pre-
vented our technique from a sharp recovery of the
error.

5. Conclusions

In this paper, a technique to speed up the training
of MLPs in the case of imbalanced remote-sensing
data sets has been presented and compared with the
standard EBP algorithm. For the remote-sensing data
set considered, several experiments were carried out,
starting from the same randomly generated set of
weights for both the standard and the proposed tech-
niques. Results pointed out that the proposed method
attained the objectives of our research by allowing
notable speed-ups in comparison with the standard
EBP technique for all the randomly generated

weights. In addition, in the experiments performed,
the proposed technique seemed to make the training
process more reliable, as it provided a more stable
behaviour, with respect to the initial weights, from
the viewpoints of both the number of iterations
required and the single-class classification accura-
cies; it also resulted in a better balanced distribution
of the classification errors among the classes.

Finally, an MLP trained by our technique can be
regarded as an implementation of the Bayes rule for
minimum-error classification, as the network outputs
provide approximations for posterior class probabili-
ties.

Ž .Discussion paper presented by Serpico

Caelli: It just occurs to me that what you are doing
may have some implications for the reformulation of
the V–C dimensionality. The number of hidden units

Table 4
Class-by-class errors in the classification of training pixels by using the proposed technique. The overall classification error was smaller or
equal to 4.5% for each of the five experiments

Ž .Experiment Classification error % provided by the proposed technique

Wheat Sugar beets Potatoes Carrots Stubble

1 1.11 4.67 20.00 1.88 2.62
2 2.22 4.53 15.55 1.88 3.14
3 2.22 3.07 25.55 1.57 3.14
4 2.22 3.57 27.78 1.88 2.62
5 2.22 4.8 17.78 1.57 3.14
Average 2.00 4.13 21.33 1.76 2.93
Standard deviation 0.50 0.76 5.18 0.17 0.28
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you are using and the so called V–C dimensionality
of the model are relative to the data size. Have you
given any thought to implications of this work to
actually rethinking about the number of hidden units
you use. And as I said, rethinking about V–C dimen-
sionality?

Serpico: I did not consider these implications of this
work, but I will think this over. Thank you.

Mao: The number of training patterns is fairly large
in the case you presented. The output of feedforward
networks can be interpreted as the a posteriori proba-
bility estimate. In the situation were you have an
imbalanced population, and the training set cannot be
considered as representative of the prior probabili-
ties, do you suggest to use the measure that you
propose? Suppose in some application we need the a
posteriori probability estimate.

Serpico: In some sense you can use the test set and
make the estimation of prior probabilities on the test
set, or in a real application on the unknown set. You
can apply your network and then iteratively modify
the classifier in order to estimate the prior probabili-
ties. We have applied this kind of estimation in a
different problem of classification, assuming that the
starting point is not very different from the final
point. When you start with a classifier, there is
always some underlying hypothesis about prior prob-
abilities, at least implicitly. If the starting point is not
very far from the correct values, then with some
iterative technique you can try to estimate and obtain
reasonable results.

Mao: If you have a larger sample size, you probably
need to keep the prior distribution. You don’t want
to change it. Otherwise you cannot interpret your
result as an a posteriori probability estimate. In your
technique you basically change the a priori distribu-
tion.

Serpico: Yes, just in the first phase, while in the
second phase, I use normal MSE. So, I don’t change
the prior probabilities in the second phase.
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