
Classification of Highly Unbalanced CYP450 Data of Drugs Using Cost Sensitive
Machine Learning Techniques

T. Eitrich,† A. Kless,*,‡ C. Druska,† W. Meyer,† and J. Grotendorst†

Central Institute for Applied Mathematics, Research Centre Ju¨lich, Germany, and Gru¨nenthal GmbH,
Drug Discovery, Aachen, Germany

Received June 22, 2006

In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data
set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in
the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from
annotated public data and calculated physicochemical properties with chemoinformatics methods. On top
of this data, we have built classifiers based on machine learning methods. Data sets with different class
distributions lead to the effect that conventional machine learning methods are biased toward the larger
class. To overcome this problem and to obtain sensitive but also accurate classifiers we combine machine
learning and feature selection methods with techniques addressing the problem of unbalanced classification,
such as oversampling and threshold moving. We have used our own implementation of a support vector
machine algorithm as well as the maximum entropy method. Our feature selection is based on the unsupervised
McCabe method. The classification results from our test set are compared structurally with compounds
from the training set. We show that the applied algorithms enable the effective high throughput in silico
classification of potential drug candidates.

1. INTRODUCTION

The complex process of identification of new potential
drug candidates is not only related to find the most potent
compound for a drug target. Through experience from the
past, we know that the process of drug metabolism and
pharmacokinetics should be considered equally in selecting
new compounds. In this paper, we focus on a small part of
these potential problems addressing the ADMET properties
of a drug1-3 which are related to the cytochrome P450 class
of enzymes. Cytochrome P450s are drug metabolizing
enzymes that among various other tissues have their primary
site of drug metabolism in the liver. Herein the cytochrome
P450 (CYP) superfamily plays a major role in degradation
through oxidation of drugs. It has been reported that the five
most important isoforms of the cytochrome P450 superfamily
are 1A2, 2C19, 2C9, 2D6, and 3A4.4,5 These are involved
in the metabolism of about 90% of all drugs. According to
Flockhart6 inhibitors block the function of the enzyme so
that its overall activity is reduced. Recently7 we focused on
the 1A2 isoform, whereas the 2D6 isoform is even more
important since it is not active in some parts of the population
resulting in higher plasma levels of 2D6 substrates. As could
be learned from pharmacophor and CYP2D6 active sites
studies, molecules with a basic nitrogen atom and an aromatic
moiety are often recognized.1-3,8-13 Additionally, if one
compound inhibits CYP2D6, the subsequent decrease of
metabolism of another drug can lead to unexpected drug-
drug interactions.14 This is due to accumulation of the latter
compound as it is not being metabolized. Therefore, inhibi-

tion of CYP2D6 is an undesirable feature in a drug candidate.
The ability to predict the inhibition of this enzyme starting
from a new chemical entity (NCE) is important because
obtaining high quality experimental data under in vivo
conditions is time-consuming, has low throughput, is resource
demanding, and therefore only available at a late stage of
the drug discovery process. Therefore the in silico prediction
of drug metabolism profiles of CYP450s has become one
of the key technologies in early drug discovery support.15-24

The primary aim of this paper is to demonstrate how to
build useful classification models out of unbalanced25-28 data
sets. We consider a data set to be unbalanced if either the
sizes of the two classes differ significantly, or the costs for
a false negative classification are very high whereas a false
positive is acceptable, or if both conditions hold. Various
classical approaches have been applied to understand the
mechanism of CYP450 2D6 inhibition, like quantum me-
chanical calculations, pharmacophore modeling, and protein
homology modeling.11-14,20-22 There is an increasing need
for robust and accurate classification algorithms that support
the high throughput analysis of virtual libraries of molecules.
Many working groups have developed prediction systems
using the whole arsenal of computational methods to address
the problem of CYP450 classification of NCEs.1-3,18 It has
been discovered that a combination of different classifications
into a consensus model can improve the overall results of
the classification. The basic algorithms behind were decision
treemethodslikerecursivepartitioning,ensemblemethods22,23,29-32

like adaptive boosting,33 and support vector machines.34

However, the limiting but most important part is the access
to validated data. Usually the generalization behavior of a
classifier improves with the amount of data points that are
used in the model. But this does not necessarily mean that
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a collection from various data sources representing different
experiments will reveal the best classification. With the focus
on data quality there is need for the use of unbalanced data
sets because the number of known 2D6 inhibitors is limited.
Conversely the reduction of noninhibitors to generate a
balanced data set is accompanied by information loss. Similar
to the number of instances is the number of molecular
descriptors where irrelevant molecular descriptors reduce the
prediction accuracies. In this paper, we show that our applied
computational methods are able to predict the metabolic
properties of NCEs for the virtual screening of large
compound libraries. This enables the support for the design
of compounds with desirable metabolic behavior.

Based on machine learning algorithms for classification,
a framework was developed for cost sensitive learning by
integrating several components that prevent the model from
simply learning the simplest rule with a low rate of true
positive classifications. We use the learning methods called
support vector machine (SVM)35 and maximum entropy
model (ME).36 To further improve the recognition abilities
of these methods we analyze the influence of feature selection
methods as well as techniques that are aimed at boosting
sensitivity and accuracy. A challenging problem in the
classification of unbalanced data sets is the aspect of
overfitting. When models become too powerful on the
training set, they may be useless for the classification of
unseen data. We treat this problem by strictly dividing all
data sets into training and test sets where the latter ones are
not shown to the classifier during the learning process.

The remainder of this paper is organized as follows. In
section 2, we describe the analyzed data sets. Our machine
learning framework for cost sensitive classification will be
introduced in section 3. In section 4, we present our
experimental results. Finally, section 5 contains a summary
and shows directions for future work.

2. DESCRIPTION OF THE DATA SETS

The application of our algorithms needs to be done in
feature vectors where every chemical structure is represented
by a few hundred physicochemical features or substructural
features that are summarized in binary form.37 The feature
vectors are normalized representions of the chemical structure
by a similar count of features that are independent from the
size of the molecules. In the second step, we add the specific
information of the 2D6 inhibition that is known. We repeat
this step for every molecule in the data set so that we finally
get a two-dimensional relation between the properties and
the 2D6 inhibition. The generated data sets are cleaned by
removing redundant information like zero columns. Based
on 2D6 inhibition data from 263 structurally diverse drugs
or druglike molecules which we extracted from publically
available data,4-6 we split the data set into a diverse set of
185 compounds for training and 78 compounds that we used
as the test set.38-41 A drug was selected as 2D6 inhibitor if
there is published evidence that the compound is a 2D6
inhibitor, which was decided on the basis of either in vitro
assay with recombinant 2D6 or under physiological condi-
tions with hepatocytes or liver microsomes. It does not
necessarily follow that the isoform is the principal metabolic
pathway in vivo or that alterations in the rate of the metabolic
reaction catalyzed by that isoform will have large effects on
the pharmacokinetics of the drug. Such a data set compiled

from diverse public sources may vary to some extent on
conditions used in the assays, e.g., use of different labeled
substrates like dextromethorphan. We pooled potent inhibi-
tors with an IC50 < 2 µM together with weak inhibitors up
to 50 µM since we are using binary classifiers. All
compounds from our data set are well-known drugs, and
therefore we assume that a relevant 2D6 inhibition would
have been published. For these cases, we classified the
corresponding compounds to be noninhibitors. The training
set of 185 compounds contains 35 compounds that inhibit
the CYP2D6 isoform and 150 that do not. We refer to the
former as positive training points (class 1) and the latter as
negative training points (class-1). The test set contained
the same ratio of positive to negative molecules as the
training set. For the oversampling method42 we increased
the amount of positives in the training set with a factor of 3
by repeating each feature vector three times. The split of
the presented compounds into training set and test set was
carried out on the basis of their Tanimoto coefficients
representing chemical similarity38 and diversity.39 For that
purpose, the pairwise Tanimoto coefficients matrix has been
generated during the clustering procedure within the MOE
program package using the bit packed MACCS structural
keys. Whereas the direct interpretation of chemical structures
is best done by visual inspection of the classification results,
for building classifiers, we need to describe the chemical
structures by calculation of physicochemical features. These
molecular descriptors are mathematical representations of the
chemical structures. For this purpose we were using the
properties as implemented in the MOE43 program package.

Overall, we have calculated 557 ensemble descriptors
including easily interpretable descriptors like atom-count
descriptors,44 others which describe the connectivity of the
molecular graph,45 like constitutional descriptors,46 the
topological descriptors of Randic47 or Kier and Hall,48,49

autocorrelations, and aromaticity indices50 as well as 3D-
descriptors51 that encode the 3D van der Waals surface of
the molecule annotated with physical properties like charge,
hydrogen bond, or acceptor potential. The 3D-based features
were calculated from the 3D coordinates of the compounds
generated by Corina.52-54 The calculation of a 458 bit length
screening vector (E_Screen) of the chemical structures was
done with the CACTVS program.55

Overall, we have generated four data sets. The ensemble
data set contains only the ensemble features and leads to
one feature vector per drug. The binary data set contains
the substructural features in binary form. In case of the ME
algorithm, we had to modify the feature vectors because the
algorithm is based on categorical features. In case of the
ensemble vectors, we were using an unsupervised discreti-
zation procedure where every distribution of the normalized
feature is split into 10 equal bins. In a second step, we
proceeded as we did for the binary data set in such a way
that the name of each feature was connected to the corre-
sponding bin of the discretization forming a categorical
feature. For the binary data set, each bin had to be named
and combined with the corresponding binary value. This
results in categorical feature vectors where every bin feature
can be distinguished from the other. The test set always
remained the same for the ensemble as well as the binary
data set and was used consistently for all classification efforts
in this paper.
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3. MACHINE LEARNING TECHNIQUES

Machine learning (ML) is said to be the development of
computer programs which allow to learn rules by analysis
of data sets. Many other interpretations of machine learning
do exist. Our work is concerned with a subarea of ML called
supervised learning.35 We concentrate on learning hypothesis
functions for binary classification problems.56 Given a
training set

of l ∈N+ input-output pairs, each withn ∈N real valued
attributes and a binary class labelyi, the task of supervised
learning is to find a hypothesis functionh : Rn f {-1; 1}
that can be used to classify unseen data. Several approaches
for learningh have been proposed, such as neural networks,
decision trees, and nearest neighbor methods.57 Among the
modern ML methods, the support vector machine approach
turned out to be reliable and powerful.34 Based on a standard
SVM implementation, we modified the algorithm to solve
classification problems on noisy and unbalanced data. We
also studied the maximum entropy framework for classifica-
tion. Usually applied to problems of natural language
processing, we examined the benefit of the ME classification
principle for data sets of chemical structures. The freely
availableopenNLPmaximum entropy software package was
applied.58 In this paper which is aimed at the classification
of unbalanced data, we describe our work on SVMs and ME
models. In addition to the pure application of the learning
methods, we completed our work by using data cleaning and
feature selection approaches as well as various interesting
techniques for cost sensitive learning.

3.1. Feature Selection.There has been much research
effort put into the field of feature extraction.59 The problem
of selecting properties which are responsible for given
outputs occurs in various machine learning applications.60-62

We use feature selection methods with the objective to detect
features that are responsible for the underlying class structure.
In addition, we search for feature combinations that reflect
or even outperform results using all features. We analyze
the question of whether unsupervised statistical feature
selection methods are able to boost cost sensitive machine
learning techniques or not. In this paper, we present results
obtained with the method of principal variables.63 In contrast
to principal component analysis (PCA),64 which is usually
applied for data reduction, it does not compute principal
components but attempts to assign the optimality property
of principal components to single features. PCA suffers from
the disadvantage that each principal component is a linear
combination of all features, so that data analysis still involves
all features. Thus, PCA fails to provide users with interpret-
able results. It was shown that the method of principal
variables gives results comparable to those of PCA with a
slightly increased number of selected features.63 The simplic-
ity of dealing with features instead of noninterpretable linear
feature combinations justifies this overhead, especially for
the physicochemical features of drugs. Another problem of
pure PCA in various software packages is that attributes for
the training set are changed, whereas the attributes for the
test set remain original. A practical thing to do would be to
apply PCA over the whole data set and then divide the set

into training and test parts. Since this leads to a test that is
not independent from the modeling stage, we avoid this kind
of data snooping.

3.2. Support Vector Machine Classification.Support
vector machines are powerful data mining methods for
classification and regression problems.35 Their accuracy is
excellent, and in many cases they outperform other machine
learning methods such as neural networks. SVMs are based
on strong theoretical foundations and have their roots in the
field of statistical learning which provides the reliable
generalization theory.65 Several properties make this learning
method successful, e.g., the kernel trick66 for nonlinear
classification and the sparse structure of the final classifica-
tion function. In addition, SVMs have an intuitive geo-
metrical interpretation, and a global minimum can be located
during the SVM training phase. The concept of support
vector machines was introduced by Vladimir Vapnik.65 The
nonlinear SVM hypothesis function is of the form

The vectory ∈{-1; 1}l reflects the given class labels of
the training data,kp : Rn × Rn f R is the kernel function
with some parameterp ∈ R that has to be chosen by the
user. The kernel values can be interpreted as distances
between two points in some high-dimensional SVM specific
feature space. We refer to ref 66 for a deeper insight into
kernel-based methods. The hypothesis (2) is mainly con-
trolled by the so-called Lagrange multipliersRi (i ) 1, ..., l)
that can be determined via the solution of theL1-norm or
the L2-norm approach. The difference between these two
SVM methods is the way that training errors are treated.35

The first simply adds the margin errors, whereas the second
adds the errors in squared form. It is not fully clear, which
method is preferable. TheL1-norm quadratic programming
(QP) problem is of the form

under the constraintsyTR ) 0 and 0e R e C. TheL2-norm
QP problem is of the form

under the constraintsyTR ) 0 and 0e R. The parameter
vector C controls the error penalization. For (3) and (4)
unique global solutions do exist. We solve the problem (3)
by using the sequential minimal optimization (SMO) algo-
rithm.67 For the solution of (4), we apply our implementation
of the fast SVM training method called nearest point
algorithm (NPA).68

In section 4 results for both methods will be discussed.
The computation of the thresholdb ∈ R+ is trivial. We refer
to ref 35 for a detailed description of the SVM training
problem. Due to their special learning mechanism, SVMs
are interesting candidates for cost sensitive learning. The
decision function (2) only takes examples with positive
Lagrange multipliers into account. Due to the SVM opti-

{(xi, yi) ∈ R
n × {-1, 1}, i ) 1,. . .,l} (1)

h(x) ) sgn(∑i ) 1

l

yiRikp (xi, x) + b) ∀x ∈ R
n (2)

min
R∈Rl

1

2
∑

i,j ) 1

l

yiyjRiRjkp (xi, xj) - ∑
i ) 1

l

Ri (3)

min
R∈Rl

1

2
∑

i,j ) 1

l

yiyjRiRj (kp (xi, xj) +
δij

2Ci
) - ∑

i ) 1

l

Ri (4)
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mality conditions,35 these are the instances close to the
boundary, so that the SVM is not affected by a large number
of negative instances far away from the hyperplaneh.

3.2.1. Weighted SVM Learning Models.The SVM param-
eter valuesCi ∈ R+ in (3) and (4) are responsible for the
tradeoff between the margin maximization and the error
toleration. Often a single valueCi t C is used for simplicity.
In ref 69 the authors gave evidence that for unbalanced data
sets at least two values should be used to obtain sensitive
hyperplanes:70 Ci ) C+ if the ith training point is positive
(yi ) 1), andCi ) C- otherwise (yi ) -1). In addition to
correcting different sizes of the two classes, the (C+, C-)
model can also capture different costs of false positive and
false negative classifications. The combination of the over-
sampling technique that increases the density of positive
instances in order to obtain a well-defined boundaryssee
section 3.5.sand different error costs that will push the
boundary away from the positive class has been proposed
in ref 71.

3.2.2. New Kernels for Support Vector Machines.The
linear kernel, the Gaussian kernel, also called radial basis
function (RBF) kernel, and the polynomial kernel are
implemented in various SVM software packages.72-74 They
show promising behavior in different application areas. In
our work, we like to introduce two new kernels that are suited
for chemical structure classification. In the field of text
classification, the family of so-called string kernels75 has been
successfully embedded. For the classification of CYP450
data, we propose the following two distance measures.

The Slater kernel is of the form

We refer to refs 76 and 77 for a discussion of the Slater
(wave) function. We define the Tanimoto kernel which is
based on the Tanimoto coefficient78 as

The functionIa,b (i, j) computes how oftena ∈ {0, 1}
occurs inxi, whereas at the same timeb ∈ {0, 1} occurs in
xj. This kernel is suitable only for binary data sets. In section
4 we will compare results achieved with the Gaussian kernel
and the new kernels (5) and (6).

3.3. Maximum Entropy Classification. Maximum en-
tropy is a powerful method for constructing statistical models
for classification tasks. The maximum entropy classification
approach is based on the fact that some information about
the probability distribution in the training data is known, and
thus it is possible to choose a distributionp* which is
consistent and has the highest possible entropy.79 If Y denotes
the set of classes andZ denotes the set of possible contexts,
the distributionp*(y, z) should maximize

H is called the Shannon entropy. The field of information
theory was originated by Claude Shannon in 1948. Since
then, information theory and Shannon entropy have become

synonymous.80 H needs to remain consistent with the
evidence, which is represented byn binary featuresfk (1 e
k e n) and their constraints. Therefore, for nondiscrete data
of physicochemical properties, we applied a discretization
method to build categorical data. The model’s expectations
are all constrained to match the observed expectations. It
can be shown36 that the solutionp* is of the form

whereπ is a normalization constant anda is the vector of
model parameters. Eachak represents the weight that is
assigned to the featurefk. The estimation of the feature
distribution functions is a convex optimization problem with
a unique global maximum. A famous algorithm for solving
the optimization problem, i.e., to compute the vectora, is
the so-called generalized iterative scaling (GIS) method. GIS
is a procedure to find the conditional exponential model
weights that define the maximum entropy classifier for a
given feature set and training corpus. This procedure is
guaranteed to converge on the correct weights. We refer to
ref 36 for a detailed description. TheopenNLPmaximum
entropy package which we have used is freely available from
ref 58. It is a mature Java package for training maximum
entropy models. Various parameters have to be chosen, e.g.,
the number of iterations in the GIS algorithm, the smoothing
factor to determine how often a feature is shown to the
algorithm, and the cutoff to define how often a feature must
appear to be considered as relevant.

3.4. Sensitive Quality Management.Learning procedures
are controlled by parameters set by the user. In our
experiments, we had to tune the kernel parameter value and
the error penalization parametersC+ and C- for SVM
learning as well as the smoothing factor, cutoffs, and the
GIS iteration number for ME learning. Finding appropriate
values for these parameters is a challenging problem,
especially for unbalanced data sets. Tuning the parameters
is very important and can be implemented by optimizing a
certain quality measure, which is obtained in cross-validation
steps. A robust quality measure for classifiers is the Matthews
correlation coefficientmcc16 which is defined as

We definetp andtn to be the numbers of the true positive
and true negative points. Respectively,fp and fn are the
numbers of false positive and false negative classifications.
If there is nearly no relationship between the predicted values
and the actual values, the correlation coefficient is very low.
As the strength of the relationship between the predicted
values and actual values increases, so does the correlation
coefficient. A perfect fit gives rise to a coefficient of 1.0.
Following the ideas in ref 69 we use another effectiveness
measure which is defined as

kσ
S (xi, xj) ) exp(- ||xi - xj||

2σ2 ) σ∈ R+ (5)

kT (i, j) )
I11 (i, j) + I00 (i, j)

2I10 (i, j) + 2I01 (i, j) + I11 (i, j) + I00 (i, j)
(6)

H(p) ) - ∑
(y,z)∈Y × Z

p(y,z) log p(y,z) (7)

p* (y, z) ) π ∏
k ) 1

n

Rk
fk (0 < Rk < ∞) (8)

mcc)
tp‚tn - fp‚fn

x(tp + fn) (tn + fp) (tp + fp) (tn + fn)
(9)
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and needs to be minimized. It is based on a weighting
between sensitivityse ) tp/(tp + fn) and precisionpr )
tp/(tp + fp). One of the advantages of the measure (10) is
the parameterâ ∈ R+ that can be adjusted to enforce or
diminish the influence of sensitivity.â ) 0 leads toEâ ) 1
- pr, â ) ∞ leads toEâ ) 1 - se.We useâ ) 1 which
leads to the harmonic mean of sensitivity and precision.F1

is known as the F-measure, which is used in the field of
information retrieval, and therefore eq 10 reduces to 1-
F1. Thus, our quality measure is flexible and may be used
to tune classifications toward high sensitivity and good
overall accuracy. During a cross-validation routine, we
compute the numbers of true and false positive points. The
quality measure will also be given for the test results.

3.5. Oversampling, Undersampling, and Threshold
Moving. In this paper, we address the problem of classifying
unbalanced data sets in which negative instances outnumber
the positive instances. In addition to the unbalanced class
distribution, the costs of classification errors differ in a way
where a false negative prediction is much more expensive
than a false positive one. Machine learning algorithms usually
perform poorly on unbalanced data sets since they comprise
a principle that tends to learn a simple hypothesis which
classifies all instances negative. Thus, it is necessary to
modify either the data or the learning method so that more
attention is paid to the positive class. Several approaches
have been proposed.26,71

As it was described in section 3.2, the penalty for
misclassified positive points should be increased to make
false negative errors costlier than false positive ones. The
implementation of this technique is dependent on the learning
method. It was shown that this weighting approach leads to
more sensitive results in SVM learning.69 However, this
approach is limited by the learning method to be used and
has no influence on the data distribution. We observed that
highly unbalanced data sets with a lot of noise force this
approach to produce overfitted models.

In this paragraph, we discuss pre- and postprocessing
methods for boosting cost sensitive classification. The
unbalanced data may be preprocessed by oversampling the
minority class or by undersampling the majority class.71

Although undersampling is a popular method for dealing with
the problem of unbalanced data, especially for large data
sets where training time of learning algorithms is a bottle-
neck, valid instances containing valuable information are
thrown away. For this reason, we work on the oversampling
technique that increases the number of positive examples
and does not lead to information loss. This method changes
the training data distribution by manifolding higher-cost
training points, see ref 81 for an oversampling algorithm.

A popular postprocessing method is the threshold moving
technique. The output threshold is moved toward the
inexpensive class so that examples of the small class become
harder to be misclassified at the cost of some more false
positive points. The original or preprocessed data set is used
to train some classifiers, and the cost sensitivity is introduced
in the test phase. Recent studies had shown that threshold
moving is very effective in addressing the problem of cost
sensitive learning.81 For highly unbalanced data sets, where
additional false positive points are acceptable when sensitiv-
ity increases, threshold moving should be considered. The
results achieved by the addition of this technique to machine

learning methods will be presented and explained in section
4. In the case of SVM learning, a positive constant is added
to the thresholdb in (2), so that the function value increases
for all test points. For maximum entropy classification, where
the output represents the probability for the point to belong
to the positive class, we add a constant to the probability
value, so that more points pass the class boundary.

3.6. Ensemble Methods.Building ensembles out of
multiple classifiers has become an interesting field of
research. Ensemble methods are used for the improvement
of unstable or weak classifiers. An ensemble expert that
combines the outputs from different classifiers is built. Some
examples for ensemble techniques are bagging, boosting, and
random forests.31 Usually ensemble techniques are not used
for strong classifiers like support vector machines. However,
the question arises whether ensemble techniques are able to
improve results of such classifiers even more. A study on
ensemble methods for SVM has been presented in ref 32.
Results of this work are rather pessimistic since neither
boosting and bagging nor cluster partitioning methods could
improve the performance on several benchmark data sets.
A recently published work introduces so-called consensus
SVM methods24 and shows that 81 SVM classification
systems are optimal for the data sets used in this analysis.
Future work might define other ensemble methods for
performance improvement.

Following the general ideas of combining classifiers, we
implemented a kernel weighting for SVM classification. For
two types of kernelskp1

1 andkp2

2 , e.g. the Gaussian and the
polynomial kernel,35 the final kernel function is defined as

The parameterγ ∈ [0,1] needs to be optimized together
with the kernel parametersp1 andp2. Such a weighted kernel
may improve performance and has the advantage that during
parameter optimization eitherkp1

1 or kp2

2 may be fully
rejected by the system. This is the case forγopt ) 1 or γopt

) 0. Thus, optimizing11 helps to find a good kernel family
as well. Although our method may not be seen as a real
ensemble method, since the weighted kernel leads to a single
classifier with only one output per point, the inclusion of
two kernels, however, changes the SVM model and may help
to increase performance. Such a weighted kernel may be
integrated into freely available software packages72 as well.

4. EXPERIMENTAL RESULTS

In this section, we analyze the classification results of the
machine learning methods SVM with different kernels and
maximum entropy based on generalized iterative scaling in
conjunction with feature selection and several methods for
cost sensitive learning. Tests were performed on the ensemble
and the binary data sets. In case of the ensemble data set,
we have a combination of numerical and categorical descrip-
tors. The model building and prediction were performed
through the use of the tab delimited ASCII files. Additionally
we reduce the number of features with the unsupervised
feature selection algorithm of McCabe.63 The numbers of
selected features are 5, 10, and 20, which are not exclusive
choices, but are used to study the possibilities of data
reduction. For the oversampling method,42 we inflated the

kγ,p1,p2
) γkp1

1 + (1 - γ)kp2

2 (11)
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amount of positives in the training set with a factor of 3 by
repeating each feature vector three times. The characteristics
of all 16 data sets are given in Table 1.

For parameter optimization we have used a grid search
over the parameter space with the quality measure (10) with
â ) 1 which was adequate to discriminate between the
models of Tables 3-7. The threshold moving technique was
applied after the training with a value of 0.5 for SVM
learning and 10% for maximum entropy classification. Once
an algorithm is trained with the training set, the algorithm
classifies the compounds from the test set with feature sets
that are new and predicts the 2D6 inhibition. The predicting
power for new chemical entities can then be estimated by
our quality measure. We have performed a large number of
numerical tests, some of which are presented in this section.
The generation of the 2D6 model took a few seconds for
each run on a PC for the cases of the SVM and ME methods.
In our opinion the presentation of classification results is
crucial in two manners:

• Usually the performance of a cross-validation run is
presented, and for the reader, it is unclear whether the results
were obtained with any parameter optimization method or
not. Often these test results are highly optimized and not
independent.

• The simple presentation of performance in terms of
accuracy is insufficient for unbalanced classification prob-
lems.

Therefore our experiments are based on the following
settings:

• We perform several tenfold cross-validation runs to tune
the parameters (grid search). The results are evaluated using
(10), and the best parameter tuple is taken for learning the
final classifier. The test to be presented is performed on data
that were excluded before the optimization process and were
not used for the final training as well.

• The presentation of test results is focused on the problem
of cost sensitive learning. Therefore we always show
sensitivity (hit rate) as well as false positive rate (false alarm
rate). These are the characteristics needed to plot results in
the so-called receiver operating characteristic (ROC) space,82

which is a performance graphing method becoming increas-
ingly important for cost sensitive learning. In the ROC space
(Figure 1), the point “a” at (0, 1) represents perfect
classification. A point in the ROC space is better than another
if it is to the northwest of the first. In Figure 1, “b” is better
than “c”.

4.1. Ensemble Data Set.Based on our unsupervised
feature selection method, we selected the top 20 features from
our ensemble data set that are summarized in Table 2. All
of the selected features fit into the previously described
pharmacophor features that are known from pharmacophor
modeling and active site studies. They are divided into
features that describe the shape and the connectivity of the

Table 1. Characteristics of the 16 Data Sets Which Were Built out of the 2 Basic Data Sets

data set name 1a 1b 1c 1d 1e 1f 1g 1h 2a 2b 2c 2d 2e 2f 2g 2h
# features 5 10 20 557 5 10 20 557 5 10 20 458 5 10 20 458
oversampling no yes no yes
# positive training points 35 105 35 105
# negative training points 150 150 150 150
# positive test points 13 13 13 13
# negative test points 65 65 65 65
basis ensemble data binary data

Figure 1. Points in the ROC space.

Table 2. Selected Features and Their Meaning

chi0 zeroth order connectivity index, sum over all vertices (1/sqrt degree of vertex)
chi0_C carbon connectivity index (order 0), sum over all carbons (1/sqrt degree of vertex)
TPSA topological polar surface area
a_nN number of nitrogen atoms
b_single number of single bonds
PEOE_VSA_HYD total hydrophobic vdw surface area based on Gasteiger-Marsili charges
PEOE_PC+ total positive partial charge based on Gasteiger-Marsili charges
MACCS (-60) number of SdO groups, # [S+] - [O-], [* +*] - [#8-], S
MACCS (165) number of ring atoms
MACCS (-88) number of sulfur atoms
MACCS (-56) number of N bonded to>) 20 and>) 1 C, [#7] (∼[#8]) (∼[#8]) ∼[#6], Q3; ON (O) C
MACCS (-83) number of heteroatoms in 5 ring, QAAAA@1
Q_VSA_POS total positive vdw surface area
vsa_acid VDW acidic surface area (A**2)
SMR molar refractivity
SMR_VSA0 bin 0 (0.000, 0.110] of molar refractivity
SMR_VSA7 bin 7 (0.560, 10] of molar refractivity
DLI (08) number of hydroxyl groups, drug like index
kS_sI Kier atom type E-state sum (sI), [I] [*]
b_triple number of triple bonds, reactive groups
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molecule like the zeroth order connectivity indices chi0 and
chi0_C. Then a number of atom counts from the 166-vector
MACCS key37 as well as counts of functional and reactive
groups were selected. Finally the SMR, electrotopological
state indices for atom types and features, that encode the
charge distribution within the molecules, have been selected.
Therefore in the data sets with applied feature selection, only
2D features were used to build the models. Comparing the
results overall kernels and methods, this did not have an
impact onto the final quality of the models. Please note refs
83 (TPSA), 84 (PEOE), 44 (SMR), 40 (DLI(08)), and 41
(b_triple).

In Table 3, we show test results for the ensemble data
set. A L1-norm support vector machine with a Gaussian
kernel and different error weights was used. TheL2-norm
model showed similar results. Please note the positive
influence of threshold moving onto the value of sensi-
tivity. For all test cases, sensitivity increased dramatically.
However, this success is adjusted by more false positive
points. In addition to this effect, it can be seen that
oversampling of the data did not lead to an improvement of
sensitivity for the usual SVM, shown at the top of the table.
The values of the quality measure degraded. In contrast, for

the SVM with threshold moving, the oversampling tech-
nique improved the overall test results for all data sets,
which can be seen in the last line where the values of our
quality measure are given. The best result in terms of the
quality measure was achieved for the smallest data set by
using threshold moving and oversampling. Thus we conclude
that feature selection in combination with cost sensitive
learning techniques leads to a sensitive and accurate SVM
model.

In Table 4, we show test results for a support vector
machine with the Slater kernel. Quality of results is
comparable to the Gaussian SVM. Again it can be seen that
oversampling could not improve sensitivity of the standard
SVM method; the values even decreased. Instead, for some
reason specificity increased for all data sets. It turns out that
for the Slater kernel the threshold moving technique had high
impact onto sensitivity. For all data sets it reached a value
of 92% which means that 12 out of 13 positive points had
been recognized. Please note that we again have to pay the
cost of more false positive points, but, once averaged, we
got better quality measure values. An additional oversampling
had no influence on the classification results. The classifica-
tion function remained nearly the same.

Table 3. Classification Results for the 8 Ensemble Data Sets Using SVM Classification with a Gaussian Kernela

data set 1a 1b 1c 1d 1e 1f 1g 1h
threshold moving no
oversampling no yes
hit rate 0.85 0.77 0.62 0.77 0.69 0.69 0.38 0.69
false alarm rate 0.29 0.20 0.18 0.20 0.20 0.17 0.12 0.17
1 - F1 0.49 0.44 0.52 0.44 0.49 0.45 0.62 0.45
threshold moving yes
oversampling no yes
hit rate 1.00 0.77 0.85 0.92 0.92 0.77 0.85 0.85
false alarm rate 0.42 0.22 0.34 0.34 0.23 0.20 0.22 0.23
1 - F1 0.51 0.46 0.52 0.49 0.40 0.44 0.42 0.44

a The influence of oversampling is given on the right side of the table.

Table 4. Classification Results for the 8 Ensemble Data Sets Using SVM Classification with Slater Kernela

data set 1a 1b 1c 1d 1e 1f 1g 1h
threshold moving no
oversampling no yes
hit rate 0.85 0.62 0.46 0.92 0.69 0.54 0.38 0.62
false alarm rate 0.22 0.15 0.20 0.26 0.14 0.12 0.14 0.12
1 - F1 0.42 0.48 0.63 0.43 0.42 0.50 0.63 0.45
threshold moving yes
oversampling no yes
hit rate 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
false alarm rate 0.28 0.23 0.28 0.28 0.26 0.25 0.28 0.29
1 - F1 0.44 0.40 0.44 0.44 0.43 0.41 0.44 0.45

a The influence of oversampling is given on the right side of the table.

Table 5. Classification Results for the 8 Ensemble Data Sets Using ME Classificationa

data set 1a 1b 1c 1d 1e 1f 1g 1h
threshold moving no
oversampling no yes
hit rate 0.54 0.54 0.77 0.77 0.54 0.54 0.54 0.92
false alarm rate 0.17 0.17 0.23 0.34 0.17 0.19 0.22 0.29
1 - F1 0.55 0.55 0.47 0.56 0.55 0.56 0.59 0.45
threshold moving yes
oversampling no yes
hit rate 0.54 0.54 0.77 0.77 0.77 0.77 0.85 0.92
false alarm rate 0.15 0.15 0.22 0.17 0.15 0.18 0.22 0.29
1 - F1 0.53 0.53 0.46 0.41 0.39 0.43 0.42 0.45

a The influence of oversampling is given on the right side of the table.
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The results of our tests with theopenNLPmaximum
entropy software package are given in Table 5. With an
increasing number of features in the data, sensitivity in-
creased but again at the cost of specificity. In combination
with threshold moving, oversampling improved sensitivity.
For the smallest data set with five features, sensitivity highly
increased without additional costs, which results in a good
Eâ value. We conclude that cost sensitive learning techniques
also work well for maximum entropy classification.

In Figure 2, we compare results of the 3 different classifiers
in the ROC space. Obviously the maximum entropy clas-
sification results are more stable than the SVM results. Most

of the points are very dense in the ROC space. The SVM
methods differ in a way that the Slater kernel led to a
majority of points with a high rate of sensitivity with
satisfying values of specificity. For both methods it can be
seen that higher true negative rates led to dramatically
decreased values of the true positive rate. In Figure 3, the
influence of oversampling onto the classification results is
shown. Oversampling generated classifiers with low false
alarm rates, but in contrast to our assumptions, sensitivity
decreased.

4.2. Binary Data. In Table 6, we show test results for the
binary data set. AL2-norm support vector machine with our
new Tanimoto kernel (6) and different error weights was
used. Results for theL1-norm method are not shown. In our
tests, we observed superior behavior of the nearest point
method in terms of sensitivity. The main distinctive features
of the results are the low true negative rates for small data
sets with 5 and 10 features. Since the results for 20 features
improved, we conclude that the number of selected features
should be larger for the binary data, and feature selection
should be applied carefully, if at all. The best results in terms
of the quality measure were achieved for the full data set.
There, the oversampling technique caused increased values
of sensitivity, while, at the same time, the true negative rates
slightly decreased.

We compare the results of the support vector machine with
the results of the tests with theopenNLPmaximum entropy
software package which are given in Table 7. For the two
small data sets, the entropy classifier collapsed. All points
were declared as negative which is a usual characteristic of
classification methods when applied to very unbalanced data
sets. They tend to ignore the small class. By using the
oversampling method, results improved dramatically and led
to good quality measure values. The best results again were
obtained for threshold moving in conjunction with oversam-
pling. For the two large data sets, the situation was nearly
the same. While recognizing only a small proportion of
positive points, the classification of oversampled data sets
gave better results for sensitivity. The best quality measure
value for all test results presented in this paper was realized
by the maximum entropy method for the binary data set with
five features and oversampling, as indicated in Table 7. This
is mainly due to the very good recognition of negative points
(97%).

In Figures 4 and 5, the ROC results are given for the binary
data sets. The first distinguishes between the learning
methods, whereas the second shows the effect of oversam-
pling onto the classification results. It turns out that the

Figure 2. Plot of ROC points for the ensemble data set with
attention to the different algorithms.

Figure 3. Plot of ROC points for the ensemble data set with
attention to the oversampling technique.

Table 6. Classification Results for the 8 Binary Data Sets Using SVM Classification with Tanimoto Kernela

data set 2a 2b 2c 2d 2e 2f 2g 2h
threshold moving no
oversampling no yes
hit rate 0.77 0.46 0.54 0.62 1.00 0.77 0.54 0.62
false alarm rate 0.69 0.25 0.15 0.12 0.82 0.60 0.15 0.14
1 - F1 0.71 0.66 0.53 0.45 0.67 0.68 0.53 0.47
threshold moving yes
oversampling no yes
hit rate 1.00 0.69 0.69 0.85 1.00 0.77 0.69 0.85
false alarm rate 0.82 0.52 0.23 0.28 0.82 0.60 0.23 0.31
1 - F1 0.67 0.68 0.51 0.48 0.67 0.68 0.51 0.50

a The influence of oversampling is given on the right side of the table.
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maximum entropy classifier tends to optimize specificity at
the cost of the sensitivity values, which are quite poor. The
Tanimoto kernel based SVM produced results spread widely
in the ROC space. Please note the extreme cases of the
Tanimoto kernel SVM at the top right and of the entropy
classifier at the bottom left of the ROC area in Figure 4.
The results show that the maximum entropy method is
conservative, whereas the SVM may be thought of as liberal,
since some ROC points are in the upper right-hand side of
the space.82 The comparison of Figures 4 and 5 points out
that oversampling slightly improved the sensitivity of the

classifier, but the overall results are not comparable in the
way it was possible for the ensemble data set in Figure 3.

Figure 6 gives a representative list of diverse compounds
that were included in the training set together with the
CYP2D6 inhibition class. It can be seen that even small
deviations in the chemical structure like in amitriptyline and
imipramine can lead to a different classification. Another
example of this kind would be the number of bonds between
the aromatic moiety and the nitrogen in venlafaxine and
dexfenfluramine that are the same but differ in their CYP2D6
inhibition. In Figure 7, we present selected compounds from
our test set on the basis of best E-measures from Tables 3-7
that show some characteristics of the classification algorithms
used. Compounds like yohimbine, desmethylsertraline, and
prevastatin were classified predominantly correct, whereas
others like clemastine, fentanyl, and perazine were often
misclassified. This can be understood to some extent by
comparing Imipramine from the training set and perazine
that was a false negative from the test set. They share some
features but differ in an additional sulfur atom for instance.
The same is true for the false positives clemastine and
fentanyl. Comparing features that were not among the top
20 features listed in Table 2, like the O-N distances from
venlafaxine and clemastine in the training set, can lead to a
false classification because of a functional moiety. For a
number of compounds, the kind of features that were used
are important. Herein, the nefazodone classification was
enabled using the numerical ensemble features, whereas the
binary features lead to misclassifications independent of the
method used; conversely for metoprolol where the binary
feature set lead to a correct classification. Additionally, we
could identify compounds that were better classified by a
single algorithm. As an example, we found dextromethorphan
correctly classified with the maximum entropy algorithm that
shares a common scaffold with codeine from the training
set. Most of the other correctly classified compounds can
be understood on the basis of their shared similarity. It is
clear that only the amount of information that is encoded in
the training set will be recognized in the test set independent
of the algorithm or kind of feature set.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented our approaches for cost
sensitive classification of CYP450 data of drugs by com-
bining machine learning methods with techniques addressing
the problem of unbalanced data. We have used support vector
machine and maximum entropy classification methods in
combination with feature selection as well as oversampling

Table 7. Classification Results for the 8 Binary Data Sets Using Entropy Classificationa

data set 2a 2b 2c 2d 2e 2f 2g 2h
threshold moving no
oversampling no yes
hit rate 0.00 0.00 0.15 0.38 0.00 0.46 0.38 0.46
false alarm rate 0.00 0.00 0.06 0.08 0.03 0.38 0.18 0.46
1 - F1 1.00 1.00 0.79 0.56 1.00 0.73 0.67 0.48
threshold moving yes
oversampling no yes
hit rate 0.00 0.00 0.38 0.54 0.62 0.77 0.54 0.62
false alarm rate 0.00 0.00 0.05 0.06 0.03 0.37 0.22 0.11
1 - F1 1.00 1.00 0.52 0.42 0.30 0.57 0.59 0.43

a The influence of oversampling is given on the right side of the table.

Figure 4. Plot of ROC points for the binary data set with attention
to the different algorithms.

Figure 5. Plot of ROC points for the binary data set with attention
to the oversampling technique.
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and threshold moving. We introduced new kernels for SVM
classification which we have applied for our tests.

In summary, we have shown that our applied methods are
suitable to recognize CYP2D6 inhibition and enable in silico
screening of compounds. We have identified the maximum
entropy method including discretization of numerical features
as equally powerful method in comparison with the support
vector machine approach in supervised classification. Herein
the use of oversampling and threshold moving in our
unbalanced data of CYP2D6 inhibitors was important to yield
highly accurate and sensitive classifiers. The unsupervised
feature selection method adopted from McCabe selected
features that can be understood and interpreted on the
molecular level.

We have shown to what extent results can be tuned toward
sensitivity, when at the same time overall accuracy is an
important factor as well.

Future work will be on the analysis of other members of
the CYP450 family which sometimes are even more unbal-
anced than the current data set. We will further study the
problem of unbalanced classification. Particularly, we will
improve our SVM kernels, e.g., by embedding a parameter
into the Tanimoto kernel. In addition, we will test and
improve other quality measures.

ACKNOWLEDGMENT

A. Kless would like to thank E. Dahlke for skilled
assistance in assembling and preprocessing the data sets. The

Figure 6. Examples of CYP2D6 inhibition from our training set.

Figure 7. Selected compounds and their classification results on the basis of best E-measures from Tables 3-7.

HIGHLY UNBALANCED CYP450 DATA OF DRUGS J. Chem. Inf. Model., Vol. 47, No. 1, 2007101



authors thank Gru¨nenthal GmbH for continuous support of
the scientific collaboration with Research Centre Ju¨lich. We
would like to thank Tony Scott of the Institute for Physical
Chemistry at RWTH Aachen for useful suggestions and proof
reading of our manuscript.

Supporting Information Available: List of the com-
pounds from our training and test data sets including smiles
codes and names as well as their binary 2D6 classification.
This information is available free of charge via the Internet
at http://pubs.acs.org.

REFERENCES AND NOTES

(1) de Groot, M. J.; Kirton, S. B.; Sutcliffe, M. J. In silico methods for
predicting ligand binding determinants of cytochromes P450.Curr.
Top. Med. Chem.2004, 4, 1803-1824.

(2) Vermeulen, N. P. Prediction of drug metabolism: the case of
cytochrome P450 2D6.Curr. Top. Med. Chem.2003, 3, 1227-1239.

(3) Lewis, D. F.; Modi, S. Structure-activity relationship for human
cytochrome P450 substrates and inhibitors.Drug Metab. ReV. 2002,
34, 69-82.

(4) Rendic, S.; Carlo, F. J. D. Human cytochrome P450 enzymes: a status
report summarizing their reactions, substrates, inducers and inhibitors.
Drug Metab. ReV. 1997, 29, 413-580.

(5) Rendic, S. Summary of information on human CYP enzymes: human
P450 metabolism data.Drug Metab. ReV. 2002, 34, 83-448.

(6) Flockhart, D. Cytochrome P450 drug interaction table. http://medici-
ne.iupui.edu/flockhart (accessed Oct 11, 2006).

(7) Kless, A.; Eitrich, T. Cytochrome P450 classification of drugs with
support vector machines implementing the nearest point algorithm.
LNAI 2004, 3303,191-205.

(8) de Graaf, C.; Vermeulen, N. P.; Feenstra, K. A. Cytochrome P450 in
silico: an integrative modeling approach.J. Med. Chem.2005, 48,
2725- 2755.

(9) van Waterschoot, R. A.; Keizers, P. H.; de Graaf, C.; Vermeulen, N.;
Tschirret-Guth, R. A. Topological role of cytochrome P450 2D6 active
site residues.Arch. Biochem. Biophys.2006, 447,53-58, 2006.

(10) de Groot, M. J.; Ekins, S. Pharmacophore modeling of cytochromes
P450.AdV. Drug DeliVery ReV. 2002, 54, 367-383.

(11) de Graaf, C.; Oostenbrink, C.; Keizers, P. H. J.; van der Wijst, T.;
Jongejan, A.; Vermeulen, N. P. E. Catalytic site prediction and virtual
screening of cytochrome P450 2D6 substrates by consideration of water
and rescoring in automated docking.J. Med. Chem.2006, 49,2417-
2430.

(12) Keizers, P. H.; Schraven, L. H.; de Graaf, C.; Hidestrand, M.;
Ingelman- Sundberg, M.; van Dijk, B. R.; Vermeulen, N. P.;
Commandeur, J. N. Role of the conserved threonine 309 in mechanism
of oxidation by cytochrome P450 2D6.Biochem. Biophys. Res.
Commun.2005, 338,1065-1074.

(13) de Groot, M. J.; Ackland, M. J.; Horne, V. A.; Alex, A. A.; Jones, B.
C. Novel approach to predicting P450-mediated drug metabolism:
development of a combined protein and pharmacophore model for
CYP2D6.J. Med. Chem.1999, 42, 1515-1524.

(14) Keizers, P. H.; de Graaf, C.; Kanter, F. J.; Oostenbrink, C.; Feenstra,
K. A.; Commandeur, J. N.; Vermeulen, N. P. Metabolic regio- and
stereoselectivity of cytochrome P450 2D6 towards 3,4-methylene-
dioxy- N-alkylamphetamines: in silico predictions and experimental
validation.J. Med. Chem.2005, 48, 6117-6127.

(15) Kriegl, J. M.; Arnhold, T.; Beck, B.; Fox, T. Prediction of human
cytochrome P450 inhibition using support vector machines.QSAR
Comb. Sci.2005, 24, 491-502.

(16) Kriegl, J. M.; Arnhold, T.; Beck, B.; Fox, T. A support vector machine
approach to classify human cytochrome P450 3A4 inhibitors.J.
Comput.-Aided Mol. Des.2005, 19, 189-201.

(17) Arimoto, R.; Prasad, M.; Gifford, E. M. Development of CYP3A4
inhibition models: comparisons of machine-learning techniques and
molecular descriptors.J. Biomol. Screen.2005, 10, 197-205.

(18) Kriegl, J. M.; Eriksson, L.; Arnhold, T.; Beck, B.; Johansson, E.; Fox,
T. Multivariate modeling of cytochrome P450 3A4 inhibition.Eur. J.
Pharm. Sci.2005, 24, 451-463.

(19) Singh, S. B.; Shen, L. Q.; Walker, M. J.; Sheridan, R. P. A model for
predicting likely sites of CYP3A4-mediated metabolism on drug like
molecules.J. Med. Chem.2003, 46, 1330-1336.

(20) Kemp, C. A.; Flanagan, J. U.; van Eldik, A. J.; Marechal, J.-D.; Wolf,
C. R.; Roberts, G. C. K.; Paine, M. J. I.; Sutcliffe, M. J. Validation of
model of cytochrome P450 2D6: an in silico tool for predicting
metabolism and inhibition.J. Med. Chem.2004, 47, 5340-5346.

(21) Ekins, S.; Berbaum, J.; Harrison, R. K. Generation and validation of
rapid computational filters for CYP2D6 and CYP3A4.Drug Metab.
Dispos.2003, 31, 1077-1080.

(22) Susnow, R. G.; Dixon, S. L. Use of robust classification techniques
for the prediction of human cytochrome P450 2D6 inhibition.J. Chem.
Inf. Comput. Sci.2003, 43, 1308-1315.

(23) O’Brien, S. E.; de Groot, M. J. Greater than the sum of its parts:
combining models for useful ADMET prediction.J. Med. Chem.2005,
48, 1287-1291.

(24) Yap, C. W.; Chen, Y. Z. Prediction of cytochrome P450 3A4, 2D6,
and 2C9 inhibitors and substrates using support vector machines.J.
Chem. Inf. Model.2005, 45, 982-992.

(25) Maloof, M. A. Learning when data sets are imbalanced and when
costs are unequal and unknown; SiteSeer.IST: 2003. citeseer.ist.ps-
u.edu/ maloof03learning.html (accessed Oct 11, 2006).

(26) Barandela, R.; Valdovinos, R. M.; Sanchez, J. S.; Ferri, F. J. The
imbalanced training sample problem: under or over sampling?LNCS
2004, 3138,806-814.

(27) Japkowicz, N.; Stephen, S. The class imbalance problem: a systematic
study.Intell. Data Anal.2002, 6, 429-449.

(28) Barandela, R.; Sanchez, J. S.; Garcia, V.; Rangel, E. Strategies for
learning in class imbalance problems.PR 2003, 36, 849-851.

(29) Briem, H.; Gu¨nther, J. Classifying kinase inhibitor-likeness by using
machine-learning methods.ChemBioChem2005, 6, 558-566.

(30) Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, M.;
Lengauer, T. Ensemble methods for classification in cheminformatics.
J. Chem. Inf. Comput. Sci.2004, 44, 1971-1978.

(31) Hall, L. O.; Bowyer, K. W.; Banfield, R. E.; Bhadoria, D.Comparing
pure parallel ensemble creation techniques against bagging; SiteSe-
er.IST: 2003. citeseer.ist.psu.edu/hall03comparing.html (accessed Oct
11, 2006).

(32) Dong, Y.-S.; Han, K.-S.Boosting SVM classifiers by ensemble;
SiteSeer.IST: 2003. citeseer.ist.psu.edu/727102.html (accessed Oct 11,
2006).

(33) Schapire, R. E.A brief introduction to boosting; SiteSeer.IST: 1999.
citeseer.ist.psu.edu/schapire99brief.html (accessed Oct 11, 2006).

(34) Abe, S.SupportVector machines for pattern recognition;Springer:
2005.

(35) Cristianini, N.; Shawe-Taylor, J.An introduction to supportVector
machines and other kernel-based learning methods;Cambridge
University Press: Cambridge, U.K., 2000.

(36) Ratnaparkhi, A.A simple introduction to maximum entropy models
for natural language processing; SiteSeer.IST: 1997. citeseer.ist.p-
su.edu/ 128751.html (accessed Oct 11, 2006).

(37) Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. MACCS:
reoptimization of MDL keys for use in drug discovery.J. Chem. Inf.
Comput. Sci.2002, 42, 1273-1280.

(38) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical similarity searching
J. Chem. Inf. Comput. Sci.1998, 38, 983-996.

(39) Potter, T.; Matter, H. Random or rational design? Evaluation of diverse
compound subsets from chemical structure databases.J. Med. Chem.
1998, 41, 478-488.

(40) Xu, J.; Stevenson, J. A new approach to measure drug-like compounds
and their diversity.J. Chem. Inf. Comput. Sci.2000, 40,1177-1187.

(41) Oprea, T. I. Property distribution of drug-related chemical databases.
J. Comput.-Aided. Mol. Des.2000, 14, 251-264.

(42) Rajarshi, G.; Jurs, P. C. Determining the validity of a QSAR model
- a classification approach.J. Chem. Inf. Model.2005, 45, 65-73.

(43) MOE (The Molecular Operating Environment) Version 2005.06,
Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite
910, Montreal, Canada H3A 2R7. http://www.chemcomp.com (ac-
cessed Oct 11, 2006).

(44) Wildman, S. A.; Crippen, G. M. Prediction of physicochemical
parameters by atomic contributions.J. Chem. Inf. Comput. Sci.1999,
39, 868- 873.

(45) Hall, L. H.; Kier, L. B. The molecular connectivity chi indexes and
kappa shape indexes in structure-property relations. InReViews of
Computational Chemistry;Boyd, D., Lipkowitz, K., Eds.; VCH
Publishers: Inc., 1991; pp 367-422.

(46) Hall, L. H.; Kier, L. B. The nature of structure-activity relationships
and their relation to molecular connectivity.Eur. J. Med. Chem.1977,
12, 307-314.

(47) Randic, M. On molecular identification numbers.J. Chem. Inf. Comput.
Sci.1984, 24, 164-175.

(48) Hall, L. H.; Kier, L. B. Electrotopological state indices for atom
types: a novel combination of electronic, topological, and valence
state information.J. Chem. Inf. Comput. Sci.1995, 35, 1039-1045.

(49) Kier, L. B.; Hall, L. H. Molecular structure description: the
electrotopological state;Academic Press: San Diego, CA, 1999.

(50) Randic, M. Graph theoretical approach to local and overall aromaticity
of benzenoid hydrocarbons.Tetrahedron1975, 31, 1477-1481.

(51) Schuur, J. H.; Setzer, P.; Gasteiger, J. The coding of the three
dimensional structure of molecules by molecular transforms and its

102 J. Chem. Inf. Model., Vol. 47, No. 1, 2007 EITRICH ET AL.



application to structure-spectra correlations and studies of biological
activity. J. Chem. Inf. Comput. Sci.1996, 36, 334-344.

(52) Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D-
atomic coordinates for organic molecules.Tetrahedron Comput.
Methodol.1990, 3, 537-547.

(53) Gasteiger, J. Empirical methods for the calculation of physicochemical
data of organic compounds. InPhysical Property Prediction in Organic
Chemistry;Jochum, C., Hicks, M. G., Sunkel, J., Eds.; Springer:
Heidelberg, 1988; pp 119-138.

(54) Ihlenfeldt, W. D.; Gasteiger, J. All descriptors for ensembles and
molecules.J. Comput. Chem.1994, 8, 793-813.

(55) Ihlenfeldt, W. D.; Takahashi, Y.; Abe, H.; Sasaki, S. Computation
and management of chemical properties in CACTVS: an extensible
networked approach toward modularity and compatibility.J. Chem.
Inf. Comput. Sci.1994, 34, 109-116.

(56) Thrun, S.; Mitchell, T. M.Learning one more thing; SiteSeer.IST:
1995. http://citeseer.ist.psu.edu/141692.html (accessed Oct 11,
2006).

(57) Hastie, T.; Tibshirani, R.; Friedman, J.The elements of statistical
learning: data mining, inference and prediction;Springer: 2001.

(58) Baldridge, J.; Bierner, G.; Friedmann, E.; Morton, T. The openNLP
maximum entropy package for classification, 2006. https://sourcefor-
ge.net/projects/maxent (accessed Oct 11, 2006).

(59) Byvatov, E.; Schneider, G. SVM-based feature selection for charac-
terization of focused compound collections.J. Chem. Inf. Comput.
Sci.2004, 44, 993-999.

(60) Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor
based classification models (1. theory and GA-SEC algorithm).J.
Chem. Inf. Comput. Sci.2004, 44, 921-930.

(61) Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor
based classification models (2. human intestinal absorption HIA).J.
Chem. Inf. Comput. Sci.2004, 44, 931-939.

(62) Xue, Y.; Li, Z. R.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z.
Effect of molecular descriptor feature selection in support vector
machine classification of pharmacokinetic and toxicological properties
of chemical agents.J. Chem. Inf. Comput. Sci.2004, 44, 1630-
1638.

(63) McCabe, G. P. Principal variables.Technometrics1984, 26, 137-
144.

(64) Jolliffe, I. T. Principal component analysis;Springer: New York,
1986.

(65) Vapnik, V. N.Statistical learning theory;John Wiley & Sons: New
York, 1998.

(66) Scho¨lkopf, B. The kernel trick for distances; SiteSeer.IST: 2000.
citeseer.ist.psu.edu/543420.html (accessed Oct 11, 2006).

(67) Platt, J. Fast training of support vector machines using sequential
minimal optimization. InAdVances in Kernel Methods-Support Vector
Learning; Schölkopf, B., Burges, C. J. C., Smola, A. J., Eds.; MIT

Press: Cambridge, MA, 1999; pp 185-208.
(68) Keerthi, S. S.; Shevade, S. K.; Bhattacharyya, C.; Murthy, K. R. K.

A fast iterative nearest point algorithm for support vector machine
classifier design.IEEE Trans. Neur. Net.2000, 11, 124-136.

(69) Eitrich, T.; Lang, B. Efficient optimization of support vector machine
learning parameters for unbalanced datasets.J. Comput. Appl. Math.
2006, 196,425-436.

(70) Drish, J.Obtaining calibrated probability estimates from supportVector
machines; SiteSeer.IST: 2001. citeseer.ist.psu.edu/drish01obtaining.html
(accessed Oct 11, 2006).

(71) Akbani, R.; Kwek, S.; Japkowicz, N. Applying support vector machines
to imbalanced datasets.LNCS2004, 3201,39-50.

(72) Chang, C. C.; Lin, C. J.LIBSVM: a library for supportVector
machines;Department of Computer Science and Information Engi-
neering, National Taiwan University: Taipei, Taiwan, 2006

(73) Joachims, T.SVM-light supportVector machine;Department of
Computer Science, Cornell University: Ithaca, NY, 2004.

(74) Witten, I. H.; Frank, E.Data mining: practical machine learning tools
and techniques;Morgan Kaufmann: San Francisco, CA, 2005.

(75) Lohdi, H.; Saunders, C.; Shawe-Taylor, C. J.; Cristianini, N.; Watkins,
C. Text classification using string kernels.JMLR2002, 2, 419-444.

(76) Slater, J. C. Atomic shielding constants.Phys. ReV. 1930, 36,57-64.
(77) Slater, J. C. Analytic atomic wave functions.Phys. ReV. 1932, 42,

33-43.
(78) Swamidass, S. J.; Chen, J.; Bruand, J.; Phung, P.; Ralaivola, L.; Baldi,

P. Kernels for small molecules and the prediction of mutagenicity,
toxicity and anti-cancer activity.Bioinformatics2005, 21, 359-368.

(79) Nallapati, R.DiscriminatiVe models for information retrieVal; Site-
Seer.IST: 2004. citeseer.ist.psu.edu/654337.html (accessed Oct 11,
2006).

(80) Shannon, C. E. A mathematical theory of communication.Bell Syst.
Tech. J.1948, 27, 379-423, 623-656.

(81) Zhou, Z.-H.; Liu, X.-Y. Training cost-sensitive neural networks with
methods addressing the class imbalance problem.IEEE Trans. Knowl.
Data Eng.2006, 18, 63-77.

(82) Fawcett, T.ROC graphs: notes and practical considerations for
researchers; SiteSeer.IST: 2004. citeseer.ist.psu.edu/646695.html (ac-
cessed Oct 11, 2006).

(83) Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar
surface area as a sum of fragment-based contributions and its
application to the prediction of drug transport properties.J. Med. Chem.
2000, 43, 3714- 3717.

(84) Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital
electronegativity - a rapid access to atomic charges.Tetrahedron1980,
36, 3219-3228.

CI6002619

HIGHLY UNBALANCED CYP450 DATA OF DRUGS J. Chem. Inf. Model., Vol. 47, No. 1, 2007103


