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In this paper, we study the classifications of unbalanced data sets of drugs. As an example we chose a data
set of 2D6 inhibitors of cytochrome P450. The human cytochrome P450 2D6 isoform plays a key role in
the metabolism of many drugs in the preclinical drug discovery process. We have collected a data set from
annotated public data and calculated physicochemical properties with chemoinformatics methods. On top
of this data, we have built classifiers based on machine learning methods. Data sets with different class
distributions lead to the effect that conventional machine learning methods are biased toward the larger
class. To overcome this problem and to obtain sensitive but also accurate classifiers we combine machine
learning and feature selection methods with techniques addressing the problem of unbalanced classification,
such as oversampling and threshold moving. We have used our own implementation of a support vector
machine algorithm as well as the maximum entropy method. Our feature selection is based on the unsupervised
McCabe method. The classification results from our test set are compared structurally with compounds
from the training set. We show that the applied algorithms enable the effective high throughput in silico
classification of potential drug candidates.

1. INTRODUCTION tion of CYP2D6 is an undesirable feature in a drug candidate.

The complex process of identification of new potential The ability to predi_ct the ir)hibition of.thi.s enzyme starting
drug candidates is not only related to find the most potent oM & new chemical entity (NCE) is important because
compound for a drug target. Through experience from the Ptaining high quality experimental data under in vivo
past, we know that the process of drug metabolism and conditions is time-consuming, has low throughput, is resource
pharmacokinetics should be considered equally in selectingd®manding, and therefore only available at a late stage of
new compounds. In this paper, we focus on a small part of the drug discovery process. Therefore the in silico prediction
these potential problems addressing the ADMET properties ©f drug metabolism profiles of CYP450s has become one
of a drug—2 which are related to the cytochrome P450 class ©f the key technologies in early drug discovery Support!
of enzymes. Cytochrome P450s are drug metabolizing The primary aim of this paper is to demonstrate how to
enzymes that among various other tissues have their primaryouild useful classification models out of unbalartée#f data
site of drug metabolism in the liver. Herein the cytochrome Sets. We consider a data set to be unbalanced if either the
P450 (CYP) superfamily plays a major role in degradation Sizes of the two classes differ significantly, or the costs for
through oxidation of drugs. It has been reported that the five @ false negative classification are very high whereas a false
most important isoforms of the cytochrome P450 superfamily Positive is acceptable, or if both conditions hold. Various
are 1A2, 2C19, 2C9, 2D6, and 344 These are involved  classical approaches have been applied to understand the
in the metabolism of about 90% of all drugs. According to Mechanism of CYP450 2D6 inhibition, like quantum me-
Flockhart inhibitors block the function of the enzyme so chanical calculations, pharmacophore modeling, and protein
that its overall activity is reduced. Receritlye focused on ~ homology modeling:~*#29"22 There is an increasing need
the 1A2 isoform, whereas the 2D6 isoform is even more for robust and accurate classification algorithms that support
important since it is not active in some parts of the population the high throughput analysis of virtual libraries of molecules.
resulting in higher plasma levels of 2D6 substrates. As could Many working groups have developed prediction systems
be learned from pharmacophor and CYP2D6 active sites Using the whole arsenal of computational methods to address
studies, molecules with a basic nitrogen atom and an aromaticthe problem of CYP450 classification of NCES:*It has
moiety are often recognizéd3&13 Additionally, if one been discovered that a combination of different classifications
Compound inhibits CYPZDG, the Subsequent decrease ofintO a consensus model can improve the overall results of
metabolism of another drug can lead to unexpected-drug the classification. The basic algorithms behind were decision
drug interactions? This is due to accumulation of the latter ~ treemethodslikerecursive partitioning, ensemble meth&ds *
compound as it is not being metabolized. Therefore, inhibi- like adaptive boosting; and support vector machinés.
_ - - However, the limiting but most important part is the access
" *Cgrespongr'lnlg author phonet49 241 5692378; e-mail: Achim.  tg validated data. Usually the generalization behavior of a

%séesggjrgﬁn(:;#gr&h. classifier improves with the amount of data points that are

* Grinenthal GmbH. used in the model. But this does not necessarily mean that
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a collection from various data sources representing differentfrom diverse public sources may vary to some extent on
experiments will reveal the best classification. With the focus conditions used in the assays, e.g., use of different labeled
on data quality there is need for the use of unbalanced datasubstrates like dextromethorphan. We pooled potent inhibi-
sets because the number of known 2D6 inhibitors is limited. tors with an IGy < 2 uM together with weak inhibitors up
Conversely the reduction of noninhibitors to generate a to 50 uM since we are using binary classifiers. All
balanced data set is accompanied by information loss. Similarcompounds from our data set are well-known drugs, and
to the number of instances is the number of molecular therefore we assume that a relevant 2D6 inhibition would
descriptors where irrelevant molecular descriptors reduce thehave been published. For these cases, we classified the
prediction accuracies. In this paper, we show that our appliedcorresponding compounds to be noninhibitors. The training
computational methods are able to predict the metabolic set of 185 compounds contains 35 compounds that inhibit
properties of NCEs for the virtual screening of large the CYP2D6 isoform and 150 that do not. We refer to the
compound libraries. This enables the support for the designformer as positive training points (class 1) and the latter as
of compounds with desirable metabolic behavior. negative training points (classl). The test set contained
Based on machine learning algorithms for classification, the same ratio of positive to negative molecules as the
a framework was developed for cost sensitive learning by training set. For the oversampling methbave increased
integrating several components that prevent the model fromthe amount of positives in the training set with a factor of 3
simply learning the simplest rule with a low rate of true by repeating each feature vector three times. The split of
positive classifications. We use the learning methods calledthe presented compounds into training set and test set was
support vector machine (SVMP) and maximum entropy carried out on the basis of their Tanimoto coefficients
model (ME)3¢ To further improve the recognition abilities representing chemical similar/and diversity?® For that
of these methods we analyze the influence of feature selectionpurpose, the pairwise Tanimoto coefficients matrix has been
methods as well as techniques that are aimed at boostinggenerated during the clustering procedure within the MOE
sensitivity and accuracy. A challenging problem in the program package using the bit packed MACCS structural
classification of unbalanced data sets is the aspect ofkeys. Whereas the direct interpretation of chemical structures
overfitting. When models become too powerful on the is best done by visual inspection of the classification results,
training set, they may be useless for the classification of for building classifiers, we need to describe the chemical
unseen data. We treat this problem by strictly dividing all structures by calculation of physicochemical features. These
data sets into training and test sets where the latter ones arenolecular descriptors are mathematical representations of the
not shown to the classifier during the learning process. chemical structures. For this purpose we were using the
The remainder of this paper is organized as follows. In properties as implemented in the M&Bprogram package.
section 2, we describe the analyzed data sets. Our machine Overall, we have calculated 557 ensemble descriptors
learning framework for cost sensitive classification will be including easily interpretable descriptors like atom-count
introduced in section 3. In section 4, we present our descriptors? others which describe the connectivity of the
experimental results. Finally, section 5 contains a summary molecular grapH® like constitutional descriptor, the

and shows directions for future work. topological descriptors of Randicor Kier and Hall#84°
autocorrelations, and aromaticity indieé&as well as 3D-
2. DESCRIPTION OF THE DATA SETS descriptor8' that encode the 3D van der Waals surface of

The application of our algorithms needs to be done in the molecule annotated with physical properties like charge,
feature vectors where every chemical structure is representediydrogen bond, or acceptor potential. The 3D-based features
by a few hundred physicochemical features or substructuralwere calculated from the 3D coordinates of the compounds
features that are summarized in binary fofhThe feature  generated by Corin& %4 The calculation of a 458 bit length
vectors are normalized representions of the chemical structurescreening vector (E_Screen) of the chemical structures was
by a similar count of features that are independent from the done with the CACTVS prograst.
size of the molecules. In the second step, we add the specific Overall, we have generated four data sets. The ensemble
information of the 2D6 inhibition that is known. We repeat data set contains only the ensemble features and leads to
this step for every molecule in the data set so that we finally one feature vector per drug. The binary data set contains
get a two-dimensional relation between the properties andthe substructural features in binary form. In case of the ME
the 2D6 inhibition. The generated data sets are cleaned byalgorithm, we had to modify the feature vectors because the
removing redundant information like zero columns. Based algorithm is based on categorical features. In case of the
on 2D6 inhibition data from 263 structurally diverse drugs ensemble vectors, we were using an unsupervised discreti-
or druglike molecules which we extracted from publically zation procedure where every distribution of the normalized
available dat#,® we split the data set into a diverse set of feature is split into 10 equal bins. In a second step, we
185 compounds for training and 78 compounds that we usedproceeded as we did for the binary data set in such a way
as the test séb ! A drug was selected as 2D6 inhibitor if that the name of each feature was connected to the corre-
there is published evidence that the compound is a 2D6 sponding bin of the discretization forming a categorical
inhibitor, which was decided on the basis of either in vitro feature. For the binary data set, each bin had to be named
assay with recombinant 2D6 or under physiological condi- and combined with the corresponding binary value. This
tions with hepatocytes or liver microsomes. It does not results in categorical feature vectors where every bin feature
necessarily follow that the isoform is the principal metabolic can be distinguished from the other. The test set always
pathway in vivo or that alterations in the rate of the metabolic remained the same for the ensemble as well as the binary
reaction catalyzed by that isoform will have large effects on data set and was used consistently for all classification efforts
the pharmacokinetics of the drug. Such a data set compiledin this paper.
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3. MACHINE LEARNING TECHNIQUES into training and test parts. Since this leads to a test that is
not independent from the modeling stage, we avoid this kind
of data snooping.

3.2. Support Vector Machine Classification. Support
vector machines are powerful data mining methods for
classification and regression problefAs heir accuracy is
excellent, and in many cases they outperform other machine
learning methods such as neural networks. SVMs are based
on strong theoretical foundations and have their roots in the
i N ) field of statistical learning which provides the reliable

{X,y)eR x{-1,1},i=1,..]} 1) generalization theor$?. Several properties make this learning

method successful, e.g., the kernel tffckor nonlinear

of | eN, input—output pairs, each with €N real valued classification and the sparse structure of the final classifica-
attributes and a binary class lahglthe task of supervised tion function. In addition, SVMs have an intuitive geo-
learning is to find a hypothesis functidn: R"— {—1; 1} metrical interpretation, and a global minimum can be located
that can be used to classify unseen data. Several approacheturing the SVM training phase. The concept of support
for learningh have been proposed, such as neural networks, vector machines was introduced by Vladimir Vapffikche
decision trees, and nearest neighbor metli6dsnong the nonlinear SVM hypothesis function is of the form
modern ML methods, the support vector machine approach
turned out to be reliable and powerfiilBased on a standard I )
SVM implementation, we modified the algorithm to solve h(x) = sgn z yiaikp(x', X)+b|OxeR" (2)
classification problems on noisy and unbalanced data. We i=1
also studied the maximum entropy framework for classifica-  1pe vectory €{ —1; 1}' reflects the given class labels of

tion. Usually applied to problems of natural language ihe training datak, : R" x R"— R is the kernel function
processing, we examined the benefit of the ME classification \yith some parametep € R that has to be chosen by the
principle for data sets of chemical structures. The freely ser The kernel values can be interpreted as distances
avall_ablsgopenl_\ILRnaxmum entropy software package was petween two points in some high-dimensional SVM specific
applied®® In this paper which is aimed at the classification foaiure space. We refer to ref 66 for a deeper insight into
of unbalanced data, we describe our work on SVMs and ME yernel-based methods. The hypothesis (2) is mainly con-
models. In addition to the pure appl|c§1t|on of the Iegrnmg trolled by the so-called Lagrange multipliars(i = 1, ...,1)
methods, we completed our work by using data cleaning andihat can be determined via the solution of thenorm or
feature selection approaches as well as various interestingpe L,-norm approach. The difference between these two
techniques for cost sensitive learning. SVM methods is the way that training errors are tredted.

3.1. Feature SelectionThere has been much research The first simply adds the margin errors, whereas the second
effort put into the field of feature extractidAThe problem  adds the errors in squared form. It is not fully clear, which
of selecting properties which are responsible for given method is preferable. Thie;-norm quadratic programming

Machine learning (ML) is said to be the development of
computer programs which allow to learn rules by analysis
of data sets. Many other interpretations of machine learning
do exist. Our work is concerned with a subarea of ML called
supervised learning.We concentrate on learning hypothesis
functions for binary classification problers.Given a
training set

outputs occurs in various machine learning applicatforf3. (QP) problem is of the form

We use feature selection methods with the objective to detect

features that are responsible for the underlying class structure. 1/ o !

In addition, we search for feature combinations that reflect min — Z yiyjaiajkp(xlv X)— z Q 3)
or even outperform results using all features. We analyze aer' 2if=1 =1

the question of whether unsupervised statistical feature under the constraintga. = 0 and 0< « < C. The Lo-norm
selection methods are able to boost cost sensitive machineQP problem is of the form - 2

learning techniques or not. In this paper, we present results

obtained with the method of principal variabf8dn contrast 1! O [
to principal component analysis (PC&)which is usually min - VY00 kp (Xi, XJ') 4 L Z o (4)
applied for data reduction, it does not compute principal ack 2 /=1 we 2C = '

components but attempts to assign the optimality property

of principal components to single features. PCA suffers from under the constraintg’a. = 0 and 0< o. The parameter
the disadvantage that each principal component is a linearvector C controls the error penalization. For (3) and (4)
combination of all features, so that data analysis still involves unique global solutions do exist. We solve the problem (3)
all features. Thus, PCA fails to provide users with interpret- by using the sequential minimal optimization (SMO) algo-
able results. It was shown that the method of principal rithm.6” For the solution of (4), we apply our implementation
variables gives results comparable to those of PCA with a of the fast SVM training method called nearest point
slightly increased number of selected featii#eghe simplic- algorithm (NPA)8

ity of dealing with features instead of noninterpretable linear  In section 4 results for both methods will be discussed.
feature combinations justifies this overhead, especially for The computation of the threshatde R is trivial. We refer
the physicochemical features of drugs. Another problem of to ref 35 for a detailed description of the SVM training
pure PCA in various software packages is that attributes for problem. Due to their special learning mechanism, SVMs
the training set are changed, whereas the attributes for theare interesting candidates for cost sensitive learning. The
test set remain original. A practical thing to do would be to decision function (2) only takes examples with positive
apply PCA over the whole data set and then divide the setLagrange multipliers into account. Due to the SVM opti-
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mality conditions®® these are the instances close to the synonymou$® H needs to remain consistent with the
boundary, so that the SVM is not affected by a large number evidence, which is represented byinary featuresy (1 <
of negative instances far away from the hyperplane k < n) and their constraints. Therefore, for nondiscrete data

3.2.1. Weighted SVM Learning Modelhe SVM param- of physicochemical properties, we applied a discretization
eter valuesC; € Ry in (3) and (4) are responsible for the method to build categorical data. The model's expectations
tradeoff between the margin maximization and the error are all constrained to match the observed expectations. It
toleration. Often a single valug = Cis used for simplicity. can be showdt that the solutiorp* is of the form
In ref 69 the authors gave evidence that for unbalanced data
sets at least two values should be used to obtain sensitive LI
hyperplaneg? C; = C* if the ith training point is positive p(y,9)=n |_| o (0 < oy < ) (8)

(yy = 1), andC; = C~ otherwise §; = —1). In addition to k=1
correcting different sizes of the two classes, t&,(C™)
model can also capture different costs of false positive and
false negative classifications. The combination of the over-
sampling technique that increases the density of positive
instances in order to obtain a well-defined boundesge
section 3.5-and different error costs that will push the
boundary away from the positive class has been propose
in ref 71.

3.2.2. New Kernels for Support Vector Machingse
linear kernel, the Gaussian kernel, also called radial basis
function (RBF) kernel, and the polynomial kernel are
implemented in various SVM software packadges? They
show promising behavior in different application areas. In
our work, we like to introduce two new kernels that are suited
for chemical structure classification. In the field of text
classification, the family of so-called string kernfélsas been
successfully embedded. For the classification of CYP45
data, we propose the following two distance measures.

The Slater kernel is of the form

wheres is a normalization constant aradis the vector of
model parameters. Eadi represents the weight that is
assigned to the featurk. The estimation of the feature
distribution functions is a convex optimization problem with
a unique global maximum. A famous algorithm for solving
dthe optimization problem, i.e., to compute the vedois
the so-called generalized iterative scaling (GIS) method. GIS
is a procedure to find the conditional exponential model
weights that define the maximum entropy classifier for a
given feature set and training corpus. This procedure is
guaranteed to converge on the correct weights. We refer to
ref 36 for a detailed description. ThapenNLPmaximum
entropy package which we have used is freely available from
ref 58. It is a mature Java package for training maximum
entropy models. Various parameters have to be chosen, e.g.,
0 the number of iterations in the GIS algorithm, the smoothing
factor to determine how often a feature is shown to the
algorithm, and the cutoff to define how often a feature must
appear to be considered as relevant.
o ||xi _ xj|| 3.4. Sensitive Quality ManagementLearning procedures
kS (X, X) = exp|— "=——| o€ R, (5) are controlled by parameters set by the user. In our
20 experiments, we had to tune the kernel parameter value and
the error penalization paramete@&" and C~ for SVM
learning as well as the smoothing factor, cutoffs, and the
GIS iteration number for ME learning. Finding appropriate
values for these parameters is a challenging problem,

We refer to refs 76 and 77 for a discussion of the Slater
(wave) function. We define the Tanimoto kernel which is
based on the Tanimoto coefficiéhfs

. L (b J) H 100 @) especially for unbalanced data sets. Tuning the parameters
K (i,])= T T T N is very important and can be implemented by optimizing a
10(1:1) o1 (1) 112 (1, 1)+ loo (. ) 6 certain quality measure, which is obtained in cross-validation
steps. A robust quality measure for classifiers is the Matthews
The functionl,y, (i, j) computes how oftem € {0, 1} correlation coefficientcd® which is defined as
occurs inX, whereas at the same tinbec {0, 1} occurs in
K. This kernel is suitable only for binary data sets. In section tp-tn — fp-fn
4 we will compare results achieved with the Gaussian kernel mce= 9

and the new kernels (5) and (6). J(tp + ) (tn+ fp) (tp + fp) (tn + fn)

3.3. Maximum Entropy Classification. Maximum en-
tropy is a powerful method for constructing statistical models
for classification tasks. The maximum entropy classification
approach is based on the fact that some information about
the probability distribution in the training data is known, and
thus it is possible to choose a distributigfi which is
consistent and has the highest possible entfd|fy//denotes
the set of classes anddenotes the set of possible contexts,
the distributionp*(y, 2 should maximize

We definetp andtn to be the numbers of the true positive
and true negative points. Respectively,and fn are the
numbers of false positive and false negative classifications.
If there is nearly no relationship between the predicted values
and the actual values, the correlation coefficient is very low.
As the strength of the relationship between the predicted
values and actual values increases, so does the correlation
coefficient. A perfect fit gives rise to a coefficient of 1.0.
Following the ideas in ref 69 we use another effectiveness

H(p) = — z p(y,2) log p(y,2) @) measure which is defined as
Ve x =
‘ (8% + 1)pr-se
H is called the Shannon entropy. The field of information Eg=1--————¢€[0,]] 10)

» , . B2 - pr+ se
theory was originated by Claude Shannon in 1948. Since — ——
then, information theory and Shannon entropy have become Fp
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and needs to be minimized. It is based on a weighting learning methods will be presented and explained in section
between sensitivityse = tp/(tp + fn) and precisionpr = 4. In the case of SVM learning, a positive constant is added
tp/(tp + fp). One of the advantages of the measure (10) is to the thresholdb in (2), so that the function value increases
the parametef € R. that can be adjusted to enforce or for all test points. For maximum entropy classification, where
diminish the influence of sensitivityi = 0 leads toEg = 1 the output represents the probability for the point to belong
— pr, f = » leads toEz = 1 — se.We usefi = 1 which to the positive class, we add a constant to the probability
leads to the harmonic mean of sensitivity and precisian.  value, so that more points pass the class boundary.
is known as the F-measure, which is used in the field of 3.6. Ensemble Methods.Building ensembles out of
information retrieval, and therefore eq 10 reduces toe 1 multiple classifiers has become an interesting field of
F1. Thus, our quality measure is flexible and may be used research. Ensemble methods are used for the improvement
to tune classifications toward high sensitivity and good of unstable or weak classifiers. An ensemble expert that
overall accuracy. During a cross-validation routine, we combines the outputs from different classifiers is built. Some
compute the numbers of true and false positive points. The examples for ensemble techniques are bagging, boosting, and
quality measure will also be given for the test results. random forest8! Usually ensemble techniques are not used
3.5. Oversampling, Undersampling, and Threshold for strong classifiers like support vector machines. However,
Moving. In this paper, we address the problem of classifying the question arises whether ensemble techniques are able to
unbalanced data sets in which negative instances outnumbeimprove results of such classifiers even more. A study on
the positive instances. In addition to the unbalanced classensemble methods for SVM has been presented in ref 32.
distribution, the costs of classification errors differ in away Results of this work are rather pessimistic since neither
where a false negative prediction is much more expensive boosting and bagging nor cluster partitioning methods could
than a false positive one. Machine learning algorithms usually improve the performance on several benchmark data sets.
perform poorly on unbalanced data sets since they compriseA recently published work introduces so-called consensus
a principle that tends to learn a simple hypothesis which SVM method$* and shows that 81 SVM classification
classifies all instances negative. Thus, it is necessary tosystems are optimal for the data sets used in this analysis.
modify either the data or the learning method so that more Future work might define other ensemble methods for
attention is paid to the positive class. Several approachesperformance improvement.
have been proposé#’* Following the general ideas of combining classifiers, we
As it was described in section 3.2, the penalty for implemented a kernel weighting for SVM classification. For
misclassified positive points should be increased to make two types of kernel&’ andk?, e.g. the Gaussian and the
false negative errors costlier than false positive ones. Thepolynomial kernef® the final kernel function is defined as
implementation of this technique is dependent on the learning
method. It was shown that this weighting approach leads to ky = yk; +1- V)kf) (11)
more sensitive results in SVM learnifit)However, this Pub2 ' 2
approach is limited by the learning method to be used and
has no influence on the data distribution. We observed that
highly unbalanced data sets with a lot of noise force this

approach to produce overfitted models. S o

In this paragraph, we discuss pre- and postprocessingp"’}r"’mmer optimization e'.th(?kplh or kéz ma;i be fully
methods for boosting cost sensitive classification. The r_e1ected by the_ sys_tem. This is t. e casesfgi = 1 Or Yopt
unbalanced data may be preprocessed by oversampling the_ 0. Thus, optimizing' helps to find a good kernel family
minority class or by undersampling the majority cléss. as well. Although our method may not be seen as a Tea'
Although undersampling is a popular method for dealing with ensemble method, since the weighted kernel leads to a single

the problem of unbalanced data, especially for large dataclas:siﬁer with only one output per point, the inclusion of
sets where training time of learning algorithms is a bottle- two kernels, however, changes the SVM model and may help

o o . . incr rformance. h a weigh kernel m
neck, valid instances containing valuable information are _to crease performance. Such a weighted kernel may be

thrown away. For this reason, we work on the oversampling integrated into freely available software packdges well.
technique that increases the number of positive examples
and dges not lead to information loss. Thi:lso method chan%es 4. EXPERIMENTAL RESULTS
the training data distribution by manifolding higher-cost  In this section, we analyze the classification results of the
training points, see ref 81 for an oversampling algorithm. machine learning methods SVM with different kernels and
A popular postprocessing method is the threshold moving maximum entropy based on generalized iterative scaling in
technique. The output threshold is moved toward the conjunction with feature selection and several methods for
inexpensive class so that examples of the small class becomeost sensitive learning. Tests were performed on the ensemble
harder to be misclassified at the cost of some more falseand the binary data sets. In case of the ensemble data set,
positive points. The original or preprocessed data set is usedve have a combination of numerical and categorical descrip-
to train some classifiers, and the cost sensitivity is introduced tors. The model building and prediction were performed
in the test phase. Recent studies had shown that thresholdhrough the use of the tab delimited ASCII files. Additionally
moving is very effective in addressing the problem of cost we reduce the number of features with the unsupervised
sensitive learning* For highly unbalanced data sets, where feature selection algorithm of McCabeThe numbers of
additional false positive points are acceptable when sensitiv-selected features are 5, 10, and 20, which are not exclusive
ity increases, threshold moving should be considered. Thechoices, but are used to study the possibilities of data
results achieved by the addition of this technique to machine reduction. For the oversampling methtsdye inflated the

The parametey € [0,1] needs to be optimized together
with the kernel parameteps andp,. Such a weighted kernel
may improve performance and has the advantage that during
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Table 1. Characteristics of the 16 Data Sets Which Were Built out of the 2 Basic Data Sets

data set name la 1b 1c 1d le 1f 19 1h 2a 2b 2c 2d 2e 2f 29 2h
# features 5 10 20 557 5 10 20 557 5 10 20 458 5 10 20 458
oversampling no yes no yes
# positive training points 35 105 35 105
# negative training points 150 150 150 150
# positive test points 13 13 13 13
# negative test points 65 65 65 65
basis ensemble data binary data
1 @ o Usually the performance of a cross-validation run is
presented, and for the reader, it is unclear whether the results
@ were obtained with any parameter optimization method or
~ @ not. Often these test results are highly optimized and not
e independent.
E' e The simple presentation of performance in terms of
D accuracy is insufficient for unbalanced classification prob-
- lems.
8 Therefore our experiments are based on the following
) settings:
» We perform several tenfold cross-validation runs to tune
the parameters (grid search). The results are evaluated using

0 false alarm rate 1 (10), and the best parameter tuple is taken for learning the
Figure 1. Points in the ROC space. final classifier. The test to be presented is performed on data
that were excluded before the optimization process and were
amount of positives in the training set with a factor of 3 by not used for the final training as well.
repeating each feature vector three times. The characteristics ¢ The presentation of test results is focused on the problem
of all 16 data sets are given in Table 1. of cost sensitive learning. Therefore we always show
For parameter optimization we have used a grid searchsensitivity (hit rate) as well as false positive rate (false alarm
over the parameter space with the quality measure (10) withrate). These are the characteristics needed to plot results in
B = 1 which was adequate to discriminate between the the so-called receiver operating characteristic (ROC) sface,
models of Tables-37. The threshold moving technique was Wwhich is a performance graphing method becoming increas-
applied after the training with a value of 0.5 for SYM ingly important for cost sensitive learning. In the ROC space
learning and 10% for maximum entropy classification. Once (Figure 1), the point “a” at (0, 1) represents perfect
an algorithm is trained with the training set, the algorithm classification. A point in the ROC space is better than another
classifies the compounds from the test set with feature setsif it is to the northwest of the first. In Figure 1, “b” is better
that are new and predicts the 2D6 inhibition. The predicting than “c”.
power for new chemical entities can then be estimated by 4.1. Ensemble Data SetBased on our unsupervised
our quality measure. We have performed a large number offeature selection method, we selected the top 20 features from
numerical tests, some of which are presented in this section.our ensemble data set that are summarized in Table 2. All
The generation of the 2D6 model took a few seconds for of the selected features fit into the previously described
each run on a PC for the cases of the SVM and ME methods.pharmacophor features that are known from pharmacophor
In our opinion the presentation of classification results is modeling and active site studies. They are divided into
crucial in two manners: features that describe the shape and the connectivity of the

Table 2. Selected Features and Their Meaning

chio zeroth order connectivity index, sum over all vertices (1/sqrt degree of vertex)
chio_C carbon connectivity index (order 0), sum over all carbons (1/sqrt degree of vertex)
TPSA topological polar surface area

a_nN number of nitrogen atoms

b_single number of single bonds

PEOE_VSA_HYD total hydrophobic vdw surface area based on Gastdifgnsili charges
PEOE_PG- total positive partial charge based on Gasteigéarsili charges

MACCS (—60) number of SO groups, # [S] — [O—], [*+*] — [#8—], S

MACCS (165) number of ring atoms

MACCS (—88) number of sulfur atoms

MACCS (—56) number of N bonded te= 20 and>= 1 C, [#7] ([#8]) ("[#8]) ~[#6], Q3; ON (O) C
MACCS (—83) number of heteroatoms in 5 ring, QAAAA@1

Q_VSA POS total positive vdw surface area

vsa_acid VDW acidic surface area (A**2)

SMR molar refractivity

SMR_VSAO bin 0 (0.000, 0.110] of molar refractivity

SMR_VSA7 bin 7 (0.560, 10] of molar refractivity

DLI (08) number of hydroxyl groups, drug like index

kS_sl Kier atom type E-state sum (sl), [1] [*]

b_triple number of triple bonds, reactive groups
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Table 3. Classification Results for the 8 Ensemble Data Sets Using SVM Classification with a Gaussiart Kernel
data set la 1b 1c 1d le 1f 19 1h
threshold moving no
oversampling no yes
hit rate 0.85 0.77 0.62 0.77 0.69 0.69 0.38 0.69
false alarm rate 0.29 0.20 0.18 0.20 0.20 0.17 0.12 0.17
1-F 0.49 0.44 0.52 0.44 0.49 0.45 0.62 0.45
threshold moving yes
oversampling no yes
hit rate 1.00 0.77 0.85 0.92 0.92 0.77 0.85 0.85
false alarm rate 0.42 0.22 0.34 0.34 0.23 0.20 0.22 0.23
1-F 0.51 0.46 0.52 0.49 0.40 0.44 0.42 0.44
a2 The influence of oversampling is given on the right side of the table.
Table 4. Classification Results for the 8 Ensemble Data Sets Using SVM Classification with Slater Kernel
data set la 1b 1c 1d le 1f 19 1h
threshold moving no
oversampling no yes
hit rate 0.85 0.62 0.46 0.92 0.69 0.54 0.38 0.62
false alarm rate 0.22 0.15 0.20 0.26 0.14 0.12 0.14 0.12
1-F 0.42 0.48 0.63 0.43 0.42 0.50 0.63 0.45
threshold moving yes
oversampling no yes
hit rate 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
false alarm rate 0.28 0.23 0.28 0.28 0.26 0.25 0.28 0.29
1-F 0.44 0.40 0.44 0.44 0.43 0.41 0.44 0.45
2 The influence of oversampling is given on the right side of the table.
Table 5. Classification Results for the 8 Ensemble Data Sets Using ME Classifigation
data set la 1b 1c 1d le 1f 19 1h
threshold moving no
oversampling no yes
hit rate 0.54 0.54 0.77 0.77 0.54 0.54 0.54 0.92
false alarm rate 0.17 0.17 0.23 0.34 0.17 0.19 0.22 0.29
1-F 0.55 0.55 0.47 0.56 0.55 0.56 0.59 0.45
threshold moving yes
oversampling no yes
hit rate 0.54 0.54 0.77 0.77 0.77 0.77 0.85 0.92
false alarm rate 0.15 0.15 0.22 0.17 0.15 0.18 0.22 0.29
1-F 0.53 0.53 0.46 0.41 0.39 0.43 0.42 0.45

aThe influence of oversampling is given on the right side of the table.

molecule like the zeroth order connectivity indices chiO and the SVM with threshold moving, the oversampling tech-
chi0_C. Then a number of atom counts from the 166-vector nique improved the overall test results for all data sets,
MACCS key’ as well as counts of functional and reactive which can be seen in the last line where the values of our
groups were selected. Finally the SMR, electrotopological quality measure are given. The best result in terms of the
state indices for atom types and features, that encode thequality measure was achieved for the smallest data set by
charge distribution within the molecules, have been selected.using threshold moving and oversampling. Thus we conclude
Therefore in the data sets with applied feature selection, onlythat feature selection in combination with cost sensitive
2D features were used to build the models. Comparing the learning techniques leads to a sensitive and accurate SVM
results overall kernels and methods, this did not have anmodel.
impact onto the final quality of the models. Please note refs In Table 4, we show test results for a support vector
83 (TPSA), 84 (PEOE), 44 (SMR), 40 (DLI(08)), and 41 machine with the Slater kernel. Quality of results is
(b_triple). comparable to the Gaussian SVM. Again it can be seen that
In Table 3, we show test results for the ensemble data oversampling could not improve sensitivity of the standard
set. A L;-norm support vector machine with a Gaussian SVM method; the values even decreased. Instead, for some
kernel and different error weights was used. Thenorm reason specificity increased for all data sets. It turns out that
model showed similar results. Please note the positive for the Slater kernel the threshold moving technique had high
influence of threshold moving onto the value of sensi- impact onto sensitivity. For all data sets it reached a value
tivity. For all test cases, sensitivity increased dramatically. of 92% which means that 12 out of 13 positive points had
However, this success is adjusted by more false positive been recognized. Please note that we again have to pay the
points. In addition to this effect, it can be seen that cost of more false positive points, but, once averaged, we
oversampling of the data did not lead to an improvement of got better quality measure values. An additional oversampling
sensitivity for the usual SVM, shown at the top of the table. had no influence on the classification results. The classifica-
The values of the quality measure degraded. In contrast, fortion function remained nearly the same.
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Figure 3. Plot of ROC points for the ensemble data set with
attention to the oversampling technique.

The results of our tests with thepenNLP maximum
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of the points are very dense in the ROC space. The SVM
methods differ in a way that the Slater kernel led to a
majority of points with a high rate of sensitivity with
satisfying values of specificity. For both methods it can be
seen that higher true negative rates led to dramatically
decreased values of the true positive rate. In Figure 3, the
influence of oversampling onto the classification results is
shown. Oversampling generated classifiers with low false
alarm rates, but in contrast to our assumptions, sensitivity
decreased.

4.2. Binary Data. In Table 6, we show test results for the
binary data set. A,-norm support vector machine with our
new Tanimoto kernel (6) and different error weights was
used. Results for the;-norm method are not shown. In our
tests, we observed superior behavior of the nearest point
method in terms of sensitivity. The main distinctive features
of the results are the low true negative rates for small data
sets with 5 and 10 features. Since the results for 20 features
improved, we conclude that the number of selected features
should be larger for the binary data, and feature selection
should be applied carefully, if at all. The best results in terms
of the quality measure were achieved for the full data set.
There, the oversampling technique caused increased values
of sensitivity, while, at the same time, the true negative rates
slightly decreased.

We compare the results of the support vector machine with
the results of the tests with tligpenNLPmaximum entropy
software package which are given in Table 7. For the two
small data sets, the entropy classifier collapsed. All points
were declared as negative which is a usual characteristic of
classification methods when applied to very unbalanced data
sets. They tend to ignore the small class. By using the
oversampling method, results improved dramatically and led
to good quality measure values. The best results again were
obtained for threshold moving in conjunction with oversam-
pling. For the two large data sets, the situation was nearly
the same. While recognizing only a small proportion of

entropy software package are given in Table 5. With an positive points, the classification of oversampled data sets
increasing number of features in the data, sensitivity in- gave better results for sensitivity. The best quality measure
creased but again at the cost of specificity. In combination value for all test results presented in this paper was realized

with threshold moving, oversampling improved sensitivity.

by the maximum entropy method for the binary data set with

For the smallest data set with five features, sensitivity highly five features and oversampling, as indicated in Table 7. This
increased without additional costs, which results in a good is mainly due to the very good recognition of negative points
E value. We conclude that cost sensitive learning techniques(97%).

also work well for maximum entropy classification.

In Figures 4 and 5, the ROC results are given for the binary

In Figure 2, we compare results of the 3 different classifiers data sets. The first distinguishes between the learning
in the ROC space. Obviously the maximum entropy clas- methods, whereas the second shows the effect of oversam-
sification results are more stable than the SVM results. Most pling onto the classification results. It turns out that the

Table 6. Classification Results for the 8 Binary Data Sets Using SVM Classification with Tanimoto Rernel

data set 2a 2b 2c
threshold moving

oversampling no

hit rate 0.77 0.46 0.54
false alarm rate 0.69 0.25 0.15
1-F 0.71 0.66 0.53
threshold moving

oversampling no

hit rate 1.00 0.69 0.69
false alarm rate 0.82 0.52 0.23
1-F 0.67 0.68 0.51

2d 2e 2f 29 2h
no
yes
0.62 1.00 0.77 0.54 0.62
0.12 0.82 0.60 0.15 0.14
0.45 0.67 0.68 0.53 0.47
yes
yes
0.85 1.00 0.77 0.69 0.85
0.28 0.82 0.60 0.23 0.31
0.48 0.67 0.68 0.51 0.50

2 The influence of oversampling is given on the right side of the table.
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Table 7. Classification Results for the 8 Binary Data Sets Using Entropy Classifi¢ation

data set 2a 2b 2c 2d 2e 2f 29 2h
threshold moving no

oversampling no yes

hit rate 0.00 0.00 0.15 0.38 0.00 0.46 0.38 0.46
false alarm rate 0.00 0.00 0.06 0.08 0.03 0.38 0.18 0.46
1-F 1.00 1.00 0.79 0.56 1.00 0.73 0.67 0.48
threshold moving yes

oversampling no yes

hit rate 0.00 0.00 0.38 0.54 0.62 0.77 0.54 0.62
false alarm rate 0.00 0.00 0.05 0.06 0.03 0.37 0.22 0.11
1-F 1.00 1.00 0.52 0.42 0.30 0.57 0.59 0.43

2 The influence of oversampling is given on the right side of the table.

1 ' classifier, but the overall results are not comparable in the
way it was possible for the ensemble data set in Figure 3.
° Figure 6 gives a representative list of diverse compounds
“ $ o that were included in the training set together with the
8 o ® CYP2D6 inhibition class. It can be seen that even small
0.6 [ t®® deviations in the chemical structure like in amitriptyline and
S imipramine can lead to a different classification. Another
° o example of this kind would be the number of bonds between
the aromatic moiety and the nitrogen in venlafaxine and
dexfenfluramine that are the same but differ in their CYP2D6
0 Y72 L SO SO S SOSO ST i inhibition. In Figure 7, we present selected compounds from
Tanimoto SYM o our test set on the basis o_f b_est E—measurgs fro_m Tablé.s 3
Entropy classifier 4 that show some characteristics of the classification algorithms
0 02 04 06 08 1 used. Compounds like yohimbine, desmethylsertraline, and
false alarm rate prevastatin were classified predominantly correct, whereas
others like clemastine, fentanyl, and perazine were often
Figure 4. Plot of ROC points for the binary data set with attention mjsclassified. This can be understood to some extent by
to the different algorithms. comparing Imipramine from the training set and perazine
that was a false negative from the test set. They share some
1 * features but differ in an additional sulfur atom for instance.
The same is true for the false positives clemastine and
08 ° fentanyl. Comparing features that were not among the top
: £ 20 features listed in Table 2, like the-M distances from
o 4 . venlafaxine and clemastine in the training set, can lead to a
0.6 [ttt false classification because of a functional moiety. For a
¢ o 0 number of compounds, the kind of features that were used
® ap 4 are important. Herein, the nefazodone classification was
enabled using the numerical ensemble features, whereas the
binary features lead to misclassifications independent of the
0.2 method used; conversely for metoprolol where the binary
® normal feature set lead to a correct classification. Additionally, we
oversampling could identify compounds that were better classified by a
0 0.2 0.4 ol.e o',s 1 single algorithm. As an example, we found dextromethorphan
false alarm rate correctly classified with the maximum entropy algorithm that
shares a common scaffold with codeine from the training
Figure 5. Plot of ROC pOin_tS for the binary data set with attention set. Most of the other Correcﬂy classified Compounds can
to the oversampling technique. be understood on the basis of their shared similarity. It is
clear that only the amount of information that is encoded in
the training set will be recognized in the test set independent
of the algorithm or kind of feature set.

0.8

hit rate

0'4 A A A

hit rate

0.4 F¢e i

> e

maximum entropy classifier tends to optimize specificity at
the cost of the sensitivity values, which are quite poor. The
Tanimoto kernel based SVM produced results spread widely
in the ROC space. Please note the extreme cases of the
Tanimoto kernel SVM at the top right and of the entropy 5. CONCLUSIONS AND FUTURE WORK

classifier at the bottom left of the ROC area in Figure 4. In this paper, we have presented our approaches for cost
The results show that the maximum entropy method is sensitive classification of CYP450 data of drugs by com-
conservative, whereas the SVM may be thought of as liberal, bining machine learning methods with techniques addressing
since some ROC points are in the upper right-hand side of the problem of unbalanced data. We have used support vector
the spacé&? The comparison of Figures 4 and 5 points out machine and maximum entropy classification methods in
that oversampling slightly improved the sensitivity of the combination with feature selection as well as oversampling
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Figure 7. Selected compounds and their classification results on the basis of best E-measures from-Tables 3

and threshold moving. We introduced new kernels for SVM  We have shown to what extent results can be tuned toward

classification which we have applied for our tests. sensitivity, when at the same time overall accuracy is an
In summary, we have shown that our applied methods areimportant factor as well.

suitable to recognize CYP2D6 inhibition and enable in silico  Future work will be on the analysis of other members of

screening of compounds. We have identified the maximum the CYP450 family which sometimes are even more unbal-

entropy method including discretization of numerical features anced than the current data set. We will further study the

as equally powerful method in comparison with the support problem of unbalanced classification. Particularly, we will

vector machine approach in supervised classification. Hereinimprove our SVM kernels, e.g., by embedding a parameter

the use of oversampling and threshold moving in our into the Tanimoto kernel. In addition, we will test and

unbalanced data of CYP2D6 inhibitors was important to yield improve other quality measures.

highly accurate and sensitive classifiers. The unsupervised

feature selection method adopted from McCabe selected ACKNOWLEDGMENT

features that can be understood and interpreted on the A. Kless would like to thank E. Dahlke for skilled

molecular level. assistance in assembling and preprocessing the data sets. The



102 J. Chem. Inf. Model., Vol. 47, No. 1, 2007 EITRICH ET AL.

authors thank Gmenthal GmbH for continuous support of (21) Ekins, S.; Berbaum, J.; Harrison, R. K. Generation and validation of

; i ; ; B rapid computational filters for CYP2D6 and CYP3A4rug Metab.
the scientific collaboration with Research Centrécku We Dispos. 2003 31, 1077—1080.

WOUld.“ke to thank Tony Scott of the Instltute'for Physical 22y susnow, R. G.; Dixon, S. L. Use of robust classification techniques
Chemistry at RWTH Aachen for useful suggestions and proof for the prediction of human cytochrome P450 2D6 inhibitidnChem.
(23) O'Brien, S. E.; de Groot, M. J. Greater than the sum of its parts:
combining models for useful ADMET predictiod. Med. Chem2005

Supporting Information Available: List of the com- 48,1287-1291.
pounds from our training and test data sets including smiles (24) Yap, C. W.; Chen, Y. Z. Prediction of cytochrome P450 3A4, 2D6,
codes and names as well as their binary 2D6 classification. and 2C9 inhibitors and substrates using support vector machines.
This information is available free of charge via the Internet Chem. Inf. Model2005 45, 982—-992.
at http:/pubs.acs.org. (25) Maloof, M. A. Learning when data sets are imbalanced and when

costs are unequal and unknoy®iteSeer.IST: 2003. citeseer.ist.ps-
u.edu/ maloof0O3learning.html (accessed Oct 11, 2006).

REFERENCES AND NOTES (26) Barandela, R.; Valdovinos, R. M.; Sanchez, J. S.; Ferri, F. J. The
imbalanced training sample problem: under or over sampliid@S
(1) de Groot, M. J.; Kirton, S. B.; Sutcliffe, M. J. In silico methods for 2004 3138,806—814.
predicting ligand binding determinants of cytochromes P4&5(rr. (27) Japkowicz, N.; Stephen, S. The class imbalance problem: a systematic
Top. Med. Chem2004 4, 1803-1824. study. Intell. Data Anal.2002 6, 429—449.
(2) Vermeulen, N. P. Prediction of drug metabolism: the case of (28) Barandela, R.; Sanchez, J. S.; Garcia, V.; Rangel, E. Strategies for
cytochrome P450 2D&urr. Top. Med. Chen2003 3, 1227-1239. learning in class imbalance problenfR 2003 36, 849-851. _
(3) Lewis, D. F.; Modi, S. Structure-activity relationship for human (29) Briem, H.; Guther, J. Classifying kinase inhibitor-likeness by using
cytochrome P450 substrates and inhibitdsug Metab. Re. 2002 machine-learning method&hemBioChen2005 6, 558-566.
34,69-82. (30) Merkwirth, C.; Mauser, H.; Schulz-Gasch, T.; Roche, O.; Stahl, M.;

(4) Rendic, S.; Carlo, F. J. D. Human cytochrome P450 enzymes: a status Lengauer, T. Ensemble methods for classification in cheminformatics.

t izing thei tions, substrates, ind d inhibitors. J. Chem. Inf. Comput. S2004 44,1971-1978. )
rDer%%r ﬁ:g?asg!nfgg$IrzgeiiégnSSSSH strates, inducers and inhibitors (31) Hall, L. O.; Bowyer, K. W.; Banfield, R. E.; Bhadoria, Bomparing

pure parallel ensemble creation techniques against bagdhiigSe-

(5) Rendic, S. Summary of information on human CYP enzymes: human er.IST: 2003. citeseer.ist.psu.edu/halld3comparing.html (accessed Oct

P450 metabolism dat&@rug Metab. Re. 2002 34, 83—448.

(6) Flockhart, D. Cytochrome P450 drug interaction table. http://medici- (32) Elén%?og).'—s.; Han, K.-SBoosting SVM classifiers by ensemble
ne.iupui.edu/flockhart (accessed Oct 11, 2006). ) SiteSeer.IST: 2003. citeseer.ist.psu.edu/727102.html (accessed Oct 11,
(7) Kless, A.; Eitrich, T. _CytO(_:hrome P4_50 classification of_ drugs v_\nth 2006).
support vector machines implementing the nearest point algorithm. (33) Schapire, R. EA brief introduction to boostingSiteSeer.IST: 1999.
LNAI 2004 3303,191—205. _ citeseer.ist.psu.edu/schapire99brief.html (accessed Oct 11, 2006).
(8) de Graaf, C.; Vermeulen, N. P.; Feenstra, K. A. Cytochrome P450 in (34) Abe, S.Supportvector machines for pattern recognitio&pringer:
silico: an integrative modeling approach. Med. Chem2005 48, 2005.
2725~ 2755. (35) Cristianini, N.; Shawe-Taylor, An introduction to supportector
(9) van Waterschoot, R. A.; Keizers, P. H.; de Graaf, C.; Vermeulen, N.; machines and other kernel-based learning metho@smbridge
Tschirret-Guth, R. A. Topological role of cytochrome P450 2D6 active University Press: Cambridge, U.K., 2000.
site residuesArch. Biochem. Biophy2006 447,53-58, 2006. (36) Ratnaparkhi, AA simple introduction to maximum entropy models

(10) de Groot, M. J.; Ekins, S. Pharmacophore modeling of cytochromes for natural language processingiteSeer.IST: 1997. citeseer.ist.p-
P450.Adv. Drug Delivery Re. 2002 54, 367—383. su.edu/ 128751.html (accessed Oct 11, 2006).

(11) de Graaf, C.; Oostenbrink, C.; Keizers, P. H. J.; van der Wijst, T.; (37) Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G. MACCS:
Jongejan, A.; Vermeulen, N. P. E. Catalytic site prediction and virtual reoptimization of MDL keys for use in drug discoved,.Chem. Inf.
screening of cytochrome P450 2D6 substrates by consideration of water Comput. Sci2002 42, 1273-1280.
and rescoring in automated dockig Med. Chem200§ 49,2417 (38) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical similarity searching
2430. J. Chem. Inf. Comput. Sc1998 38, 983—996.

(12) Keizers, P. H.; Schraven, L. H.; de Graaf, C.; Hidestrand, M.; (39) Potter, T.; Matter, H. Random or rational design? Evaluation of diverse
Ingelman- Sundberg, M.; van Dijk, B. R.; Vermeulen, N. P.; compound subsets from chemical structure databdsésed. Chem.

Commandeur, J. N. Role of the conserved threonine 309 in mechanism 1998 41, 478-488. _
of oxidation by cytochrome P450 2D@iochem. Biophys. Res.  (40) Xu, J.; Stevenson, J. A new approach to measure drug-like compounds
Commun2005 338,1065-1074. and their diversityJ. Chem. Inf. Comput. S@00Q 40,1177-1187.

(13) de Groot, M. J.; Ackland, M. J.; Horne, V. A.; Alex, A. A.; Jones, B. (41) Oprea, T. I. Property distribution of drug-related chemical databases.

C. Novel approach to predicting P450-mediated drug metabolism: J. Comput.-Aided. Mol. De200Q 14, 251-264.
development of a combined protein and pharmacophore model for (42) Rajarshi, G.; Jurs, P. C. Determining the validity of a QSAR model
CYP2D6.J. Med. Chem1999 42, 1515-1524. - a classification approacl. Chem. Inf. Model2005 45, 65—73.

; . . . ; . (43) MOE (The Molecular Operating Environment) Version 2005.06,
14) }Eézsréo}?ﬁrﬁén%%lir%éfi\ﬁ’\/Kearlmglrj‘lgﬁ J,'\’LOPO. Sﬁgg&'ﬁ’ccr'e’;g_egﬁéa‘ Chemical Computing Group Inc., 1010 Sherbrooke Street West, Suite
stereoselectivity of cytochrome P450 2D6 towards 3,4-methylene- 910, Montreal, Canada H3A 2R7. http://www.chemcomp.com (ac-

dioxy- N-alkyl hetamines: in sili dicti d ; tal cessed Oct 11, 2006). o - _
ng&étioné\]_yﬁgj? ghaer,?gggg‘ lesgﬁ?plrgllzc?l'ons and expenimenta (44) Wildman, S. A.; Crippen, G. M. Prediction of physicochemical

(15) Kriegl, J. M.; Amhold, T.; Beck, B.; Fox, T. Prediction of human parameters by atomic contributiords.Chem. Inf. Comput. Sd999

A ) h 39,868 873.
cytochrome P450 inhibition using support vector machif@SAR ' o . .
Comb. Sci2005 24, 491-502. (45) Hall, L. H.; Kier, L. B. The molecular connectivity chi indexes and

kappa shape indexes in structure-property relationRéviews of

(16) Kriegl, J. M.; Arnhold, T.; Beck, B.; Fox, T. A support vector machine : ; ; ; .
approach to classify human cytochrome P450 3A4 inhibitdrs. gggrigﬁzté?rllg‘ll’Clhgegniis;rz%%)%jz,zlé., Lipkowitz, K., Eds.; VCH
CO_mPUI"A'dEd Mol. De§00_5 19,189-201. (46) Hall, L. H.; Kier, L. B. The nature of structure-activity relationships
(17) Arimoto, R.; Prasad, M.; Gifford, E. M. Development of CYP3A4 and their relation to molecular connectivigur. J. Med. Cheml977,
inhibition models: comparisons of machine-learning techniques and 12,307-314.
molecular descriptorsl. Biomol. Screen2005 10, 197-205. (47) Randic, M. On molecular identification numbefsChem. Inf. Comput.
(18) Kriegl, J. M.; Eriksson, L.; Arnhold, T.; Beck, B.; Johansson, E.; Fox, Sci. 1984 24, 164—175.
T. Multivariate modeling of cytochrome P450 3A4 inhibitidgur. J. (48) Hall, L. H.; Kier, L. B. Electrotopological state indices for atom
Pharm. Sci.2005 24, 451-463. types: a novel combination of electronic, topological, and valence
(19) Singh, S. B.; Shen, L. Q.; Walker, M. J.; Sheridan, R. P. A model for state informationJ. Chem. Inf. Comput. Sc1995 35, 1039-1045.
predicting likely sites of CYP3A4-mediated metabolism on drug like  (49) Kier, L. B.; Hall, L. H. Molecular structure description: the
moleculesJ. Med. Chem2003 46, 1330-1336. electrotopological stateAcademic Press: San Diego, CA, 1999.
(20) Kemp, C. A,; Flanagan, J. U.; van Eldik, A. J.; Marechal, J.-D.; Wolf, (50) Randic, M. Graph theoretical approach to local and overall aromaticity
C. R.; Roberts, G. C. K.; Paine, M. J. |.; Sutcliffe, M. J. Validation of of benzenoid hydrocarbon$etrahedron1975 31, 1477-1481.

model of cytochrome P450 2D6: an in silico tool for predicting (51) Schuur, J. H.; Setzer, P.; Gasteiger, J. The coding of the three
metabolism and inhibitionJ. Med. Chem2004 47, 5340-5346. dimensional structure of molecules by molecular transforms and its



HiGHLY UNBALANCED CYP450 DxTA oF DRUGS J. Chem. Inf. Model., Vol. 47, No. 1, 200703

application to structure-spectra correlations and studies of biological Press: Cambridge, MA, 1999; pp 18308.

activity. J. Chem. Inf. Comput. Sc1996 36, 334—344. (68) Keerthi, S. S.; Shevade, S. K.; Bhattacharyya, C.; Murthy, K. R. K.
(52) Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D- A fast iterative nearest point algorithm for support vector machine

atomic coordinates for organic moleculeébetrahedron Comput. classifier designlEEE Trans. Neur. Ne200Q 11, 124—136.

Methodol.199Q 3, 537-547. ) ] ~(69) Eitrich, T.; Lang, B. Efficient optimization of support vector machine
(53) Gasteiger, J. Empirical methods for the calculation of physicochemical learning parameters for unbalanced dataset€omput. Appl. Math.

data 0]‘ organic compounds: Rhysical Property Prediction in Organic 2006 196, 425-436.

Chemistry; Jochum, C., Hicks, M. G., Sunkel, J., Eds.; Springer: (70) Drish, JObtaining calibrated probability estimates from suppaettor

Heidelberg, 1988; pp 119138. _ machinesSiteSeer.IST: 2001. citeseer.ist.psu.edu/drish01obtaining.html
(54) Ihlenfeldt, W. D.; Gasteiger, J. All descriptors for ensembles and (accessed Oct 11, 2006).

moleculesJ. Comput. Cheml994 8, 793-813. _ (71) Akbani, R.; Kwek, S.; Japkowicz, N. Applying support vector machines
(55) Inlenfeldt, W. D.; Takahashi, Y.; Abe, H.; Sasaki, S. Computation to imbalanced datasetsNCS2004 3201,39—50.

and management of chemical properties in CACTVS: an extensible (72) Chang, C. C.; Lin, C. JLIBSVM: a library for supportzector
networked approach toward modularity and compatibilityChem. machines;Department of Computer Science and Information Engi-
Inf. Comput. Sci1994 34, 109-116. hinaSiteSeer IST: neering, National Taiwan University: Taipei, Taiwan, 2006

(56) Thrun, S.; Mitchell, T. M.Learning one more thingSiteSeer.IST: (73) Joachims, T.SVM-light supportvector machine;Department of
1995. http://citeseer.ist.psu.edu/141692.html (accessed Oct 11, Computer Science, Cornell University: Ithaca, NY, 2004

2006). . o . ) .
(57) Hasti)e T.; Tibshirani, R.; Friedman, The elements of statistical (/4 Witten, |. H.. Frank, EData mining: practical machine leaming tools
learning: data mining, inference and predictio8pringer: 2001. and t_echr.nquesMorgan.Kaufmann. . Fra.nmsct_), CA 20_05' .
(58) Baldridge, J.; Bierner, G.: Friedmann, E.; Morton, T. The openNLP (75) Lohdi, H.; Saunders, C.; Shawe-Taylor, C. J.; Cristianini, N.; Watkins,

maximum entropy package for classification, 2006. https://sourcefor- C. Text classification using string kernelMLR 2002 2, 419-444.

ge.net/projects/maxent (accessed Oct 11, 2008). (76) Slater, J. C. Atomic _shieldin_g constarﬁﬂ;\yg Re. 193Q 36,57—64.
(59) Byvatov, E.; Schneider, G. SVM-based feature selection for charac- (77) Slater, J. C. Analytic atomic wave functiorihys. Re. 1932 42,
terization of focused compound collectionk. Chem. Inf. Comput. 33_43_- . .
Sci. 2004 44,993-999. (78) Swamidass, S. J.; Chen, J.; Bruand, J.; Phung, P.; Ralaivola, L.; Baldi,
(60) Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor P. Kernels for small molecules and the prediction of mutagenicity,
based classification models (1. theory and GA-SEC algoritim). toxicity and anti-cancer activityBioinformatics2005 21, 359—-368.
Chem. Inf. Comput. Sc2004 44, 921—930. (79) Nallapati, R.Discriminative models for information retriel; Site-
(61) Wegner, J. K.; Froehlich, H.; Zell, A. Feature selection for descriptor Seer.IST: 2004. citeseer.ist.psu.edu/654337.html (accessed Oct 11,
based classification models (2. human intestinal absorption HIA). 2006).
Chem. Inf. Comput. Sc2004 44, 931—939. (80) shannon, C. E. A mathematical theory of communicatgil Syst.
(62) Xue, Y.; Li, Z. R.; Yap, C. W.; Sun, L. Z.; Chen, X.; Chen, Y. Z. Tech. J.1948 27,379-423, 623-656.
Effect of molecular descriptor feature selection in support vector (81) Zhou, Z.-H.; Liu, X.-Y. Training cost-sensitive neural networks with
machine classification of pharmacokinetic and toxicological properties methods addressing the class imbalance proHERE Trans. Knowl.
of chemical agentsJ. Chem. Inf. Comput. ScR004 44, 1630- Data Eng.2006 18, 63—77.
1638. (82) Fawcett, T.ROC graphs: notes and practical considerations for
(63) McCabe, G. P. Principal variablesechnometrics1984 26, 137— researchersSiteSeer.IST: 2004. citeseer.ist.psu.edu/646695.html (ac-
144. cessed Oct 11, 2006).
(64) Jolliffe, I. T. Principal component analysisSpringer: New York, (83) Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar
1986. o i i surface area as a sum of fragment-based contributions and its
(65) Vapnik, V. N.Statistical learning theoryJohn Wiley & Sons: New application to the prediction of drug transport propertiedded. Chem.
York, 1998. i ) ) 200Q 43, 3714 3717.
(66) Schitkopf, B. The kernel trick for distancesSiteSeer.IST: 2000.  (84) Gasteiger, J.; Marsili, M. lterative partial equalization of orbital
citeseer.ist.psu.edu/543420.html (accessed Oct 11, 2006). electronegativit - a rapid access to atomic chargéstrahedror98Q

(67) Platt, J. Fast training of support vector machines using sequential 36, 3219-3228.
minimal optimization. InAdvances in Kernel MethodsSupport Vector
Learning; Schdkopf, B., Burges, C. J. C., Smola, A. J., Eds.; MIT C16002619



