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ABSTRACT 

This paper proposes an innovative fraud detection method, built 
upon existing fraud detection research and Minority Report, to 
deal with the data mining problem of skewed data distributions. 
This method uses backpropagation (BP), together with naive 
Bayesian (NB) and C4.5 algorithms, on data partitions derived 
from minority oversampling with replacement. Its originality lies 
in the use of a single meta-classifier (stacking) to choose the best 
base classifiers, and then combine these base classifiers’ 
predictions (bagging) to improve cost savings (stacking-bagging). 
Results from a publicly available automobile insurance fraud 
detection data set demonstrate that stacking-bagging performs 
slightly better than the best performing bagged algorithm, C4.5, 
and its best classifier, C4.5 (2), in terms of cost savings. Stacking-
bagging also outperforms the common technique used in industry 
(BP without both sampling and partitioning). Subsequently, this 
paper compares the new fraud detection method (meta-learning 
approach) against C4.5 trained using undersampling, 
oversampling, and SMOTEing without partitioning (sampling 
approach). Results show that, given a fixed decision threshold and 
cost matrix, the partitioning and multiple algorithms approach 
achieves marginally higher cost savings than varying the entire 
training data set with different class distributions. The most 
interesting find is confirming that the combination of classifiers to 
produce the best cost savings has its contributions from all three 
algorithms. 
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1. INTRODUCTION 
Fraud, or criminal deception, will always be a costly problem for 
many profit organisations. Data mining can minimise some of 
these losses by making use of the massive collections of customer 
data, particularly in insurance, credit card, and 
telecommunications industries. 
However, fraud detection data being highly skewed or imbalanced 
is the norm. Usually there are many more legitimate than 
fraudulent examples. This means that by predicting all instances 
to be legal, a very high success rate is achieved without detecting 
any fraud.  
There can be two typical ways to proceed when faced with this 
problem. The first approach is to apply different algorithms 

(meta-learning). Each algorithm has its unique strengths, so that it 
may perform better on particular data instances than the rest [41]. 
The second approach is to manipulate the class distribution 
(sampling). The minority class training examples can be increased 
in proportion to the majority class in order to raise the chances of 
correct predictions by the algorithm(s). 
Most of the published work on improving the performance of 
standard classifiers on skewed data usually involves using the 
same algorithm(s). For example, the work on cost sensitive 
learning [7; 33; 14] aimed at reducing total cost, and sampling 
approaches [14; 24; 9] to favour the minority class are usually 
demonstrated with decision tree algorithms and/or naive Bayes. 
This paper introduces the new fraud detection method to predict 
criminal patterns from skewed data:  

•  The innovative use of naive Bayesian (NB), C4.5, and 
backpropagation (BP) classifiers to process the same 
partitioned numerical data has the potential of getting better 
cost savings.  

•  The selection of the best classifiers of different algorithms 
using stacking and the merger of their predictions using 
bagging is likely to produce better cost savings than either 
bagging multiple classifiers from same algorithm, bagging 
each algorithm’s bagged result , stacking all classifiers, or 
choosing the best classifier approaches. 

One related problem caused by skewed data includes measuring 
the performance of the classifiers. Success cannot be defined in 
terms of predictive accuracy because the minority class in the 
skewed data usually has a significantly higher cost.  
Recent work on skewed data sets was evaluated using better 
performance metrics such as Area Under Curve (AUC) [9, 10], 
cost curves [15], and Receiver Operating Characteristic (ROC) 
analysis [28]. But this paper chooses a simplified cost model to 
detect insurance fraud, adapted from credit card fraud [8], to 
concentrate on the viability of the fraud detection method. 
Section 2 contains existing fraud detection methods; the new 
fraud detection method; the reasons for the choice of the three 
classification algorithms; and introduces the hybrid ensemble 
mechanism. 
Section 3 briefly describes the experimental data set; defines the 
cost model; provides the rationale for creating derived attributes 
and explains the data preparation; details the partitioning and 
oversampling strategy used; and describes the experimental plan. 
Section 4 provides the results on highest cost savings from the 
experiments. Section 5 discusses the main lessons learnt from the 
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experiments. Section 6 highlights the limitations. Section 7 
considers the possible future work and Section 8 concludes the 
paper. 
 

2. FRAUD DETECTION  
2.1 Existing Fraud Detection Methods 
This subsection concentrates on the analysis of some reliable data 
mining methods applied specifically to the data-rich areas of 
insurance, credit card, and telecommunications fraud detection, in 
order to integrate some of them. A brief description of each 
method and its applications is given.  

2.1.1 Insurance Fraud  
[29] recommends the use of dynamic real-time Bayesian Belief 
Networks (BBNs), named Mass Detection Tool (MDT), for the 
early detection of potentially fraudulent claims, that is then used 
by a rule generator named Suspicion Building Tool (SBT). The 
weights of the BBN are refined by the rule generator’s outcomes 
and claim handlers have to keep pace with evolving frauds. This 
approach evolved from ethnology studies of large insurance 
companies and loss adjustors who argued against the manual 
detection of fraud by claim handlers.  
The hot spot methodology [37] applies a three step process: the k-
means algorithm for cluster detection, the C4.5 algorithm for 
decision tree rule induction, and domain knowledge, statistical 
summaries and visualisation tools for rule evaluation. It has been 
applied to detect health care fraud by doctors and the public for 
the Australian Health Insurance Commission. [38] has expanded 
the hot spot architecture to use genetic algorithms to generate 
rules and to allow the domain user, such as a fraud specialist, to 
explore the rules and to allow them to evolve according to how 
interesting the discovery is. [4] presented a similar methodology 
utilising the Self Organising Map (SOM) for cluster detection 
before BP neural networks in automobile injury claims fraud. 
The use of supervised learning with BP neural networks, followed 
by unsupervised learning using SOM to analyse the classification 
results, is recommended by [22]. Results from clustering show 
that, out of the four output classification categories used to rate 
medical practice profiles, only two of the well defined categories 
are important.  Like the hotspot methodology, this innovative 
approach was applied on instances of the Australian Health 
Insurance Commission health practitioners’ profiles. 

2.1.2 Credit Card Fraud  
The Bayesian Belief Network (BBN) and Artificial Neural 
Network (ANN) comparison study [27] uses the STAGE 
algorithm for BBNs and BP algorithm for ANNs in fraud 
detection. Comparative results show that BBNs were more 
accurate and much faster to train, but BBNs are slower when 
applied to new instances. Real world credit card data was used but 
the number of instances is unknown. 
The distributed data mining model [8] is a scalable, supervised 
black box approach that uses a realistic cost model to evaluate 
C4.5, CART, Ripper and NB classification models. The results 
demonstrated that partitioning a large data set into smaller subsets 
to generate classifiers using different algorithms, experimenting 
with fraud:legal distributions within training data and using 
stacking to combine multiple models significantly improves cost 
savings. This method was applied to one million credit card 

transactions from two major US banks, Chase Bank and First 
Union Bank. 
FairIsaac, formerly known as HNC, produces software for 
detecting credit card fraud. It favours a three-layer BP neural 
network for processing transactional, cardholder, and merchant 
data to detect fraudulent activity [36]. 

2.1.3 Telecommunications Fraud  
The Advanced Security for Personal Communications 
Technologies (ASPECT) research group [36] focuses on neural 
networks, particularly unsupervised ones, to train legal current 
user profiles that store recent user information and user profile 
histories that store long term information to define normal 
patterns of use. Once trained, fraud is highly probable when there 
is a difference between a mobile phone user’s current profile and 
the profile history. 
Cahill et al [5] builds upon the adaptive fraud detection 
framework [20] by using an event-driven approach of assigning 
fraud scores to detect fraud as it happens, and weighting recent 
mobile phone calls more heavily than earlier ones. The new 
framework [5] can also detect types of fraud using rules, in 
addition to detecting fraud in each individual account, from large 
databases. This framework has been applied to both wireless and 
wire line fraud detection systems with over two million 
customers.  
The adaptive fraud detection framework presents rule-learning 
fraud detectors based on account-specific thresholds that are 
automatically generated for profiling the fraud in an individual 
account. The system, based on the framework, has been applied 
by combining the most relevant rules, to uncover fraudulent usage 
that is added to the legitimate use of a mobile phone account [19; 
20].  

2.2 The New Fraud Detection Method 
This subsection proposes a different but non-trivial method of 
detecting crime based partially on the science fiction novel, 
Minority Report [12]. The idea is to simulate the book’s Precrime 
method of precogs and integration mechanisms with existing data 
mining methods and techniques. An overview of how the new 
method can be used to predict fraud for each instance is provided. 
 

 

Figure 1: Predictions on a single data instance using precogs 
 

2.2.1 Precogs 
Precogs, or precognitive elements, are entities that have the 
knowledge to predict that something will happen. Figure 1 above 
uses three precogs, labelled 1, 2, and 3, to foresee and prevent 
crime by stopping potentially guilty criminals [12]. Unlike the 
human “mutant” precogs [12], each precog contains multiple 
black-box classification models, or classifiers, trained with one 
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data mining technique in order to extrapolate the future. The three 
precogs proposed here are different from each other in that they 
are trained by different data mining algorithms. For example, the 
first, second, and third precog are trained using the statistical 
paradigm (NB), computer metaphor (C4.5) and brain metaphor 
(BP) respectively. They require numerical inputs of past examples 
to output corresponding class predictions for new instances.  

2.2.2 Integration Mechanisms 
Figure 1 shows that as each precog outputs its many predictions 
for each instance, all the predictions are fed back into one of the 
precogs, to derive a final prediction for each instance.  

 

2.3 Fraud Detection Algorithms  
This subsection presents a summary of each algorithm’s main 
advantages and disadvantages. The qualitative and quantitative 
justification for using the three different techniques together on 
the same fraud data is also highlighted. This subsection also 
advocates another cross validation approach to preparing data for 
training. The use of bagging for combining predictions from one 
algorithm, stacking for combining predictions from all algorithms, 
and its hybrid is evaluated. 

2.3.1 Classifiers  
•  Although the naive Bayesian (NB) algorithm is simple, it is 

very effective in many real world data sets because it can give 
better predictive accuracy than well known methods like C4.5 
and BP [13; 18] and is extremely efficient in that it learns in a 
linear fashion using ensemble mechanisms, such as bagging 
and boosting, to combine classifier predictions [17]. However, 
when attributes are redundant and not normally distributed, 
the predictive accuracy is reduced [39]. 

•  C4.5 can help not only to make accurate predictions from the 
data but also to explain the patterns in it. It deals with the 
problems of the numeric attributes, missing values, pruning, 
estimating error rates, complexity of decision tree induction, 
and generating rules from trees [39]. In terms of predictive 
accuracy, C4.5 performs slightly better than CART and ID3 
[31]. C4.5’s successor, C5.0, shows marginal improvements 
to decision tree induction but not enough to justify its use. 
The learning and classification steps of C4.5 are generally fast 
[21]. However, scalability and efficiency problems, such as 
the substantial decrease in performance and poor use of 
available system resources, can occur when C4.5 is applied to 
large data sets.  

•  Backpropagation (BP) neural networks can process a very 
large number of instances; have a high tolerance to noisy data; 
and has the ability to classify patterns which they have not 
been trained [21]. They are an appropriate choice if the results 
of the model are more important than understanding how it 
works [1]. However, the BP algorithm requires long training 
times and extensive testing and retraining of parameters, such 
as the number of hidden neurons, learning rate and 
momentum, to determine the best performance [2]. 

 
 
 

2.3.2 Justification of Algorithms 
Table 1 below summarises the preceding section to qualitatively 
show that each algorithm is intrinsically different from one 
another. Effectiveness highlights the overall predictive accuracy 
and performance of each algorithm. Scalability refers to the 
capability to construct a model effectively given large data sets. 
Speed refers to efficiency in model construction. 
 

Table 1: Qualitative comparison of algorithms 

 
The strongest quantitative arguments to justify for three different 
algorithms and in the form of NB, C4.5 and BP come from [16] 
and [25] in recent meta-learning literature. [16] showed that three 
base-level classifiers perform comparably, if not better than 
seven base-level classifiers (each classifier was computed with a 
different algorithm). To discover the diversity between 
classification algorithms, [25] used ten different ones and proved 
that a simple version of NB exhibits the most different behaviour 
compared to C5.0 and a similar form of BP.  
To discover diversity between data sets using ranks, [25] clusters 
eighty different ones into four groups and applied the ten 
algorithms on each data set. It was discovered that in the first 
cluster of eighteen data sets, a similar form of BP was one of the 
better performers while NB performed worst; in the second 
cluster of twenty four data sets, C5.0 offered the best 
performance while NB and a similar form of BP performed the 
worst; in the third cluster of ten data sets, C5.0 still offered the 
best performance while two similar forms of BP performed 
worst; and in the fourth cluster of twenty eight data sets, most of 
the algorithms did not perform significantly different from each 
other. 
Therefore, by using the three algorithms together on the same 
skewed data, within the context of classification analysis, their 
strengths can be combined and their weaknesses reduced. Also, 
these three algorithms promise the best predictive capability in 
fraud detection compared to other classification algorithms. K-
nearest neighbour, case-based reasoning, genetic algorithms, and 
rough sets algorithms either have scalability problems or are still 
in their prototype phase [21].  

2.3.3 Combining Output  
This study provides a slight variation of cross validation. Instead 
of using ten data partitions, an odd-numbered eleven data 
partitions are used so that there will always be a majority class 
when the partitions contribute their class vote.  

•  Bagging [3] combines the classifiers trained by the same 
algorithm using unweighted majority voting on each example 
or instance. Voting denotes the contribution of a single vote, 
or its own prediction, from a classifier. The final prediction is 
then decided by the majority of the votes. Generally, bagging 
performs significantly better than the single model for C4.5 
and BP algorithms. It is never substantially worse because it 

Algorithm Effectiveness Scalability Speed 

NB Good Excellent Excellent 
C4.5 Excellent Poor Good 
BP Good Excellent Poor 
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neutralises the instability of the classifiers by increasing the 
success rate [39].  

•  Stacking [40] combines multiple classifiers generated by 
different algorithms with a meta-classifier. To classify an 
instance, the base classifiers from the three algorithms present 
their predictions to the meta-classifier which then makes the 
final prediction.  

•   Stacking-bagging is a hybrid technique proposed by this 
paper. The recommendation here is to train the simplest 
learning algorithm first, followed by the complex ones. In this 
way, NB base classifiers are computed, followed by the C4.5 
and then the BP base classifiers. The NB predictions can be 
quickly obtained and analysed while the other predictions, 
which take longer training and scoring times, are being 
processed. As most of the classification work has been done 
by the base classifiers, the NB algorithm, which is simple and 
fast, is used as the meta-classifier [8]. In order to select the 
most reliable base classifiers, stacking-bagging uses stacking 
to learn the relationship between classifier predictions and the 
correct class. For a data instance, these chosen base 
classifiers’ predictions then contribute their individual votes 
and the class with the most votes is the final prediction.  

 

3. EXPERIMENTS 
3.1 Data Understanding 
The only available fraud detection data set in automobile 
insurance is provided by Angoss KnowledgeSeeker software. 
Originally named “carclaims.txt”, it can be found in the 
accompanying compact disc from [34]. Experiments described in 
this paper split the main data set into a training data set and a 
scoring data set. The class labels of the training data are known, 
and the training data is historical compared to the scoring data. 
The class labels of the score data set are removed, and the score 
data set is then processed by the classifiers for actual predictions.   

This data set contains 11338 examples from January 1994 to 
December 1995 (training data), and 4083 instances from January 
1996 to December 1996 (score data). It has a 6% fraudulent and 
94% legitimate distribution, with an average of 430 claims per 
month. The original data set has 6 numerical attributes and 25 
categorical attributes, including the binary class label (fraud or 
legal). 

The data quality is good but there are some impediments. The 
original data set consists of the attribute PolicyType (discarded) 
which is an amalgamation of existing attributes VehicleCategory 
and BasePolicy. There are invalid values of 0 in each of the 
attributes MonthClaimed and DayofWeekClaimed for one 
example (deleted). Some attributes with two categories, like 
WitnessPresent, AgentType, and PoliceReportFiled, have highly 
skewed values where the minority examples account for less than 
3% of the total examples (unchanged). The attribute Make has a 
total of 19 possible attribute values of which claims from Pontiac, 
Toyota, Honda, Mazda, and Chevrolet account for almost 90% of 
the total examples (unchanged). There are three spelling mistakes 
in Make (corrected): Accura (Acura), Mecedes (Mercedes), 
Nisson (Nissan), and Porche (Porsche).  

 

3.2 Cost Model 
There is a need to measure the benefit of detecting fraud and this 
particular cost model has two assumptions. First, all alerts must be 
investigated. Second, the average cost per claim must be higher 
than the average cost per investigation. Taking the year 1996 into 
account, the average cost per claim for the score data set is 
approximated at USD$2,640 [23] and average cost per 
investigation is estimated at USD$203 for ten manpower hours 
[30].  
Table 2 below illustrates that hits and false alarms require 
investigation costs; and misses and normals pay out the usual 
claim cost. False alarms are the most expensive because they 
incur both investigation and claim costs.   
 

Table 2: Cost model for insurance fraud detection 

 
Table 3 below shows that there are two extremes of this model: at 
one end, data mining is not used at all (no action), so all claims 
are regarded as normals; at the other end, data mining achieves 
the perfect predictions (best case scenario), so all claims are 
predicted as hits and normals. Therefore the evaluation metrics for 
the predictive models on the score data set to find the optimum 
cost savings are: 
Model Cost Savings = No Action – [Misses Cost + False Alarms 
Cost + Normals Cost + Hits Cost] 
Percentage Saved = (Model Cost Savings / Best Case Scenario 
Cost Savings * 100) 
 

Table 3: Cost matrix for fraud detection 

 

3.3 Data Preparation 
3.3.1 Construct the Data 
Three derived attributes, weeks_past, is_holidayweek_claim, and 
age_price_wsum, are created to increase predictive accuracy for 
the algorithms. The new attribute, weeks_past, represents the time 
difference between the accident occurrence and its claim 
application. The position of the week in the year that the claim 
was made is calculated from attributes month_claimed, 
week_of_month_claimed, and year. Then the position of the week 
in the year when the accident is reported to have happened is 

Outcome Cost 

Hits Number of Hits * 
Average Cost Per Investigation 

False 
Alarms 

Number of False Alarms * (Average Cost Per 
Investigation + Average Cost Per Claim) 

Misses Number of Misses * 
Average Cost Per Claim 

Normals Number of Normal Claims * 
Average Cost Per Claim 

Prediction Fraud Legal 

Alert Hits  False Alarms  
No alert Misses  Normals  
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computed from attributes month, week_of_month, and year. The 
latter is subtracted from the former to obtain the derived attribute 
weeks_past. This derived attribute is then categorised into eight 
discrete values. 
The derived attribute is_holidayweek_claim indicates whether the 
claim was made in a festive week [1]. There is a speculation that 
average offenders are more likely to strike during those weeks 
because they will want to spend more money and probably 
believe their chances of getting caught is lower. A major 
assumption about this data set being from the US has to be made. 
Therefore, in the years 1994 and 1995, the attribute 
is_holidayweek_claim is set to 1 if the claim is made during a 
week containing at least one US public holiday. This computed 
attribute is binary-valued. 
The attribute age_price_wsum is the weighted sum of two related 
attributes, age_of_vehicle and vehicle_price. The assumption is 
that if the vehicle gets older and its current value is still 
expensive, then the possibility of the claim being fraudulent 
becomes higher. This derived attribute has seven discrete values. 
The input data must be the same for all three algorithms so that 
predictions can be compared and combined. The NB and C4.5 
algorithms can train with both numeric and non-numeric data. 
However, the BP algorithm must always train with numeric data. 
Due to this incompatibility, all training examples are scaled to 
numbers between 0 and 1, or transformed into one-out-of-N and 
binary encodings which are between 0 and 1. One-of-N coding is 
used to represent a unique set of inputs and is done by having a 
length equal to the number of discrete values for the attribute. For 
example, there are the values 1994, 1995 and 1996 for attribute 
Year which are represented by 1 0 0, 0 1 0, and 0 0 1 
respectively. This coding is simple to understand and easy to use. 
However, it is not suitable for attributes with a large number of 
values. Binary coding overcomes the limitation of one-of-N 
coding but has increased complexity by representing each 
discrete value with a string of binary digits [2]. There are twelve 
values for attribute month can be represented with a binary code 
vector of length 4 (16 possible values). For example, the attribute 
values, January and December, are converted to 0 0 0 1 and 1 1 0 
0 respectively. There is a significant consequence of this new data 
requirement: all attributes must be treated as non-numeric for the 
NB and C4.5 algorithms, and numeric for the BP algorithm. 
For this data set, fourteen attributes are scaled in the range 0 to 1. 
Nineteen attributes with no logical ordering are represented by 
either one-of-N or binary coding.   

 3.3.2 Partition the Data 
According to [8], the desired distribution of the data partitions 
belonging to a particular fraud detection data set must be 
determined empirically. In a related study, it is recommended by 
[6; 31] that data partitions should neither be too large for the time 
complexity of the learning algorithms nor too small to produce 
poor classifiers.  
Given this information, the approach adopted in this thesis is to 
randomly select different legal examples from the years 1994 and 
1995 (10840 legal examples) into eleven sets of y legal examples 
(923). The data partitions are formed by merging all the available 
x fraud examples (615) with a different set of y to form eleven x:y 
partitions (615:923) with a fraud:legal distribution of 40:60. Other 
possible distributions are 50:50 (923:923) and 30:70 (396:923). 

Therefore, there are eleven data partitions with 1538 examples, 
another set of eleven data partitions with 1846 examples, and the 
last eleven data partitions with 1319 examples. [8] contains a 
more detailed discussion of this partitioning approach. Skewed 
data is transformed into partitions with more of the rarer examples 
and fewer of the common examples using the procedure known as 
minority oversampling with replacement/replication [24].  
In rotation, each data partition of a certain distribution is used for 
training, testing and evaluation once. A training data partition is 
used to come up with a classifier, a test data partition to optimise 
the classifier’s parameters and an evaluation data partition to 
compare the classifier with others. All the data partitions used by 
a single classifier are independent of each other. All classifiers 
must be trained before they are scored. 
 

 
Figure 2: Building and applying classifier 1 using data partitions* 

*Source: adapted from [1]  
 

Figure 2 above demonstrates that the algorithm is first trained on 
partition 1 to generate classifier 1, tested on partition 2 to refine 
the classifier and evaluated on partition 3 to assess the expected 
accuracy of the classifier (Test A). The next session is training on 
partition 2 to generate classifier 2, tested on partition 3, and 
evaluated on partition 4 (Test B). This continues until there are 
eleven cross validated training sessions with eleven classifiers. 
The classifiers are then applied to the score data set. Their 
corresponding success rate estimates and class predictions are 
recorded for further analysis (see Table 4). 
[32] points out the criticism that duplicating the minority 
examples does not add any new information into the data and it 
pales in comparison to adjusting the output threshold correctly. 
To substantiate the cause for sampling, [28] produced some 
evidence showing that sampling does produce the same effect as 
moving the decision threshold or adjusting the cost matrix. Also, 
if the highly skewed data (for example, 6% minority class) is not 
sampled to balance the class distribution, some current data 
mining software (for example, NB and C4.5 software) with non-
numeric output (in the form of either “fraud” or “legal” with a 0.5 
threshold) will fail to detect any fraud. Therefore, no cost savings 
will be achieved.  
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3.4 Modelling 

 
Figure 3: Experiments overview 

 
Figure 3 above lists the nine experiments which were based on 
the meta-learning approach, and another three experiments which 
utilised the sampling approach. Each rectangle represents an 
experiment, describes the learning algorithm used and the 
fraud:legal data distribution. Each circle depicts a comparison of 
cost savings between experiments. Each bold arrow indicates the 
best experiment from the comparisons. Decision threshold 
(except for Experiments V and IX) and cost model for these 
experiments will remain unchanged. Experiments V and IX will 
produce BP predictions which are between 0 and 1, and these 
numerical predictions need to be converted into categorical ones 
using the decision threshold value which maximises the cost 
savings.  
in the next column, Table 4 lists the eleven tests, labelled A to K, 
which were repeated for each of Experiments I to V. In other 
words, there are fifty five tests in total for Experiments I to V. 
Each test consisted of training, testing, evaluation, and scoring 
(see Section 3.3.2). The score set was the same for all classifiers 
but the data partitions labelled 1 to 11 were rotated. The overall 
success rate denotes the ability of an ensemble of classifiers to 
provide correct predictions. The bagged overall success rates X 
and Z were compared to the averaged overall success rates W and 
Y. The predictions for each of the first five experiments were 
obtained by bagging the eleven predictions on the score set, 
represented by Bagged Z (see Table 4). 
 
 
 

Table 4: The tests plan for the Experiments I to V 

Training 
and 

Scoring 

Test  
A 

Tests  
B to K 

Overall 
Success 

Rate 

Training 
Set 

Partition 1 2 to 11   

Testing Set Partition 2 3 to 12   

Evaluation 
Set 

Partition 3 4 to 2   

Evaluating Success Rate A B to K Average W 

Bagging  Predictions A B to K Bagged X 

Producing Classifier 1 2 to 11   

Scoring Set Success Rate A B to K Average Y 

Bagging 
Score Set 

Score 
Predictions A 

B to K Bagged Z 

 

Experiments I, II and III were designed to determine the best 
training distribution under the cost model. Because the NB 
algorithm is extremely time efficient, it was trained with 50:50, 
40:60 and 30:70 fraud:legal distributions in the data partitions. 
Hence Comparison 1:  

Which one of the above three training distributions is the best 
for the data partitions under the cost model?  
Experiments IV and V used the best training distribution 
determined from Comparison 1 (either from Experiment I, II, or 
III) for the C4.5 and BP algorithms. The best experiment of the 
first three, Experiment IV and V will produce a Bagged Z (see 
Table 4) each. Experiments VI, VII, and VIII determine which 
ensemble mechanism produces the best cost savings. Experiment 
VI used bagging to combine three sets of predictions (Bagged Z) 
from each algorithm, Experiment VII used stacking to combine 
all predictions, and Experiment VIII proposed to bag the best 
classifiers determined by stacking. Experiment IX implemented 
the BP algorithm on unsampled and unpartitioned data, which is 
one of the more commonly used techniques in fraud detection 
commercial software. This experiment was then compared with 
the other six before it. Hence Comparison 2:  
Which one of the above seven different classifier systems will 
attain the highest cost savings?  
Experiments X, XI, and XII were constructed to find out how 
each sampling method performs on unpartitioned data and if they 
could yield better results than the multiple classifier approach. 
The original training data is 710 fraud examples:10627 legal 
examples with a 6:94 fraud:legal distribution. These three 
experiments were trained using C4.5 on 10:90, 20:80, 30:70, 
40:60, 50:50, 60:40, and 70:30 fraud:legal distributions. 
Experiment X’s data is obtained by undersampling the majority 
(legal) class to 5917, 2617, 1738, 1065, 710, 473, and 304 legal 
examples respectively using the top seven data partitions (see 
Table 7). Experiment XI’s data is created by oversampling the 
minority (fraud) class to 1420, 2840, 4260, 7100, 10650, 15620, 

I) NB 50:50 
Partitioned 

II) NB 40:60 
Partitioned 

III) NB 30:70 
Partitioned 

IV) C4.5 
40:60 

Partitioned 

V) BP 40:60 
Partitioned 

VII) Stacking 
All 

Classifiers 

VI) Bagging 
NB, C4.5, BP 

VIII) 
Stacking-
Bagging 

IX) BP 6:94 

XII) C4.5 
SMOTEd 

X) C4.5 
Undersampled 

XI) C4.5 
Oversampled 

2 

1 

3 

Best Final Prediction 
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and 24850 fraud examples by replicating the original 710 fraud 
examples. Experiment XII’s data consists of the same number of 
examples as Experiment XI. But for Experiment XII, the minority 
class is innovatively oversampled by using the Synthetic 
Minority Oversampling TEchnique (SMOTE) [9]. This approach 
is more superior as it forces the decision region of the minority 
class to become bigger and less specific. It works by taking each 
specific fraud example and creating k artificial ones along the line 
segments between the randomly chosen k fraud class nearest 
neighbours. C4.5 was used as the learning algorithm for these 
sampling experiments. Hence Comparison 3: 
Can the best classifier system perform better than the 
sampling approaches in the following results section?  
 

4. RESULTS 
Table 5 below shows in Experiments I, II, and III, the bagged 
success rates X outperformed all the averaged success rates W by 
at least 10% on evaluation sets. When applied on the score set, 
bagged success rates Z performed marginally better than the 
averaged success rates Y. Therefore, the bagged predictions were 
used for comparisons between all the experiments under the cost 
model.  
 

Table 5: Bagged success rates versus averaged success rates 

Experiment 
Number 

Average 
W 

Bagged 
X 

Average 
Y 

Bagged 
Z 

I 71% 85% 12% 11% 
II 65% 80% 67% 70% 
III 68% 87% 74% 76% 

 
Comparison 1: Experiment II achieved much higher cost savings 
of $94,734 compared to Experiments I (-$220,449) and III 
($75,213). Therefore 40:60 fraud:legal training distribution is the 
most appropriate for the data partitions. Experiments IV and V 
were trained accordingly.  
Comparison 2:   
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Figure 4: Cost savings results for Comparison 2  

In the previous column, Figure 4 displays the cost savings of the 
Experiments II, IV and V which were trained, tested, and 
evaluated with the same eleven 40:60 data partitions. Experiment 
IV highlights C4.5 as the best learning algorithm for this 
particular automobile insurance data set with cost savings of 
$165,242 compared to Experiment II ($94,734) and V (-$6,488). 
Figure 4 also shows the cost savings of Experiments VI, VII, and 
VIII, after combining NB, C4.5 and BP predictions from 
Experiments II, IV, and V. Both Experiment VI and Experiment 
VII did not produce better cost savings than the C4.5 algorithm 
predictions in Experiment V. However, the resultant predictions 
of Experiment VIII were slightly better than those of the C4.5 
algorithm. Therefore, stacking-bagging creates the best multiple 
classifier system with the highest cost savings of $167,069. 
Almost all experiments (except Experiment V) outperformed the 
Experiment IX which was trained on the entire training data set, 
and scored with the best decision threshold. 
Comparison 3:   
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Figure 5: Cost savings results for different sampling approaches 
 
Figure 5 above outlines the cost savings of Experiments X, XI, 
and XII over the different fraud:legal distributions. These three 
experiments performed comparably well at 40:60 and 50:50 
fraud:legal distributions. Experiments XI and XII substantiate the 
claims that SMOTE is superior to minority oversampling with 
replacement, as the latter’s cost savings deteriorate after 40:60. 
Among these three experiments, even though the undersampled 
data provides the highest cost savings of $165,242 at 40:60, it 
also incurs the highest expenditure (-$266,529) from 50:50 
onwards. This is most likely due to the number of legal examples 
getting very small. The best multiple classifier system in the form 
of stacking-bagging still achieves at least $2,000 more cost 
savings than all the sampling variations performed here. 
 

5. DISCUSSION 
In the next page, Table 6 ranks all the experiments using cost 
savings. Stacking-bagging achieves the highest cost savings 
which is almost twice that of the conventional backpropagation 
procedure used by many fraud detection systems. The optimum 
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success rate is 60% for highest cost savings in this skewed data 
set and, as the success rate increases, cost savings decrease. 
 

Table 6: Ranking of experiments using cost model 

Technique  
(Experiment Number) 

Cost 
Savings 

($K) 

Overall 
Success 

Rate 

% 
Saved 

Stacking-Bagging (VIII) 167 60% 29.7% 
C4.5 40:60 Undersampled (X) 165 60% 29.4% 
C4.5 40:60 Partitioned (V) 165 60% 29.4% 
C4.5 40:60 SMOTEd (XII) 164 60% 29.1% 
C4.5 40:60 Oversampled (XI) 164 60% 29.1% 
C4.5 (2) 40:60 Partitioned 148 60% 26.4% 
Bagging NB, C4.5, BP (VI) 127 64% 22.7% 
Stacking All Classifiers (VII) 104 70% 18.7% 
NB 40:60 Partitioned  (II) 94 70% 16.9% 
BP 6:94 (IX) 89 75% 15.9% 
BP 40:60 Partitioned  (IV) -6 92% -1.2% 

 
Table 7 below illustrates the top fifteen, out of thirty three 
classifiers, produced from stacking. There were nine C4.5, four 
BP, and two NB classifiers and their predictions on the score data 
set were bagged. This combination of the top fifteen classifiers 
achieved the best predictions among the other combinations of 
top five, top ten, or top twenty classifiers. This supports the 
notion of using different algorithms with stacking-bagging for 
any skewed data set. It is also interesting to note that partition 1 is 
utilised by all the three algorithms and only partition 6 was not 
useful. 
 

Table 7: Best classifiers ranked by stacking 

Rank Algorithm 
 (Partition  
Number) 

Rank Algorithm 
(Partition 
Number) 

1 C4.5 (2) 9 C4.5 (11) 
2 C4.5 (4) 10 C4.5 (8) 
3 C4.5 (1) 11 NB (1) 
4 C4.5 (7) 12 BP (8) 
5 NB (3) 13 BP (4) 
6 C4.5 (5) 14 BP (1) 
7 C4.5 (10) 15 BP (10) 
8 C4.5 (9)   

 
The best NB classifier A and best C4.5 classifier B, ranked by 
stacking in Table 7, are compared using diversity measures such 
as the McNemar’s hypothesis test [35] and the Q-statistic [26].  
Using McNemar’s hypothesis test, the null hypothesis states that 
both NB and C4.5 algorithms have the same success rate. On the 
score set, each classifier gave 3741 predictions that the other did 

not. 1591 correct predictions are unique to A, 2150 correct 
predictions are unique to B, so 
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( ) 635.62.83
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With 99% confidence, the difference in success rates between the 
classifiers A and B is statistically significant.  
Using the Q-statistic to assess dissimilarity of two classifier 
predictions, where 1 is completely similar and -1 is completely 
dissimilar, so 
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The results from these two measures of diversity of classifier 
ensembles prove that stacking-bagging is robust because it 
chooses and combines a wide range of classifiers with very 
different success rates to produce the best cost savings. 
 

6. LIMITATIONS 
This paper should have used superior approaches such as 
SMOTE [9] to create the oversampled data partitions, and multi-
response model trees [16] as the meta-classifier. 
There is a fundamental limitation to the first assumption of the 
cost model – in reality, not all alerts will be investigated. Ranked 
scores with predefined thresholds are needed to direct 
investigations toward the instances which have the highest 
probability of cost savings. In fact, Pareto’s law is expected to  
come into play: the minority of input of about 20% (reviewing 
the high risk claims) will produce the majority of results of about 
80% (highest cost savings).  
Similar to the CoIL Challenge [11] insurance data set, the number 
of fraudulent examples and the size of the training data set are too 
small. With a statistical view of prediction, 710 fraudulent 
training examples are too few to learn with confidence. Fraud 
detection systems process millions of training examples 
compared to a single data set with only 11337 examples. Besides 
that, more fraud detection data sets are also needed to increase 
the credibility of this paper’s results. 
 

7. FUTURE WORK 
The first direction to take, as a continuation of this work, is to 
extend the fraud detection method based on Minority Report to 
include “analytical machinery and visual symbols” [12] to find 
out the properties of a data set, data partition, or data cluster 
which will make one classifier more appropriate than another. 
Following that the next big leap forward is to work on credit 
application fraud detection with an industry partner. The 
proposed approach is to systematically examine multiple data 
sources such as credit application, credit bureau, white pages, and 
electoral data using hybrid intelligent techniques. The SOM, a 
form of unsupervised learning, is used for cluster detection. The 
ANN classifiers, a form of supervised learning, are used to 
generate predictions from each cluster. All the predictions are 
then combined by a cost-sensitive, weight-updating genetic 
algorithm. 
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8. CONCLUSION 
In this paper, existing fraud detection methods are explored and a 
new fraud detection method is recommended. The choice of the 
three classification algorithms and one hybrid meta-learning 
technique is justified for the new method. By using this method to 
process the sampled data partitions, and by means of a 
straightforward cost model to evaluate the classifiers with, the 
best mix of classifiers can be picked for deployment within an 
organisation. 
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