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On the Classification of a Small Imbalanced
Cytogenetic Image Database

Boaz Lerner, Josepha Yeshaya, and Lev Koushnir

Abstract—Solving a multiclass classification task using a small imbalanced database of patterns of high dimension is difficult due to
the curse-of-dimensionality and the bias of the training toward the majority classes. Such a problem has arisen while diagnosing
genetic abnormalities by classifying a small database of fluorescence in situ hybridization signals of types having different frequencies
of occurrence. We propose and experimentally study using the cytogenetic domain two solutions to the problem. The first is
hierarchical decomposition of the classification task, where each hierarchy level is designed to tackle a simpler problem which is
represented by classes that are approximately balanced. The second solution is balancing the data by up-sampling the minority
classes accompanied by dimensionality reduction. Implemented by the naive Bayesian classifier or the multilayer perceptron neural
network, both solutions have diminished the problem and contributed to accuracy improvement. In addition, the experiments suggest
that coping with the smaliness of the data is more beneficial than dealing with its imbalance.

Index Terms—Classification, dimensionality reduction, genetic diagnosis, imbalanced data, multilayer perceptron (MLP), naive

Bayesian classifier (NBC), small sample size.

1 INTRODUCTION

large error rate of a classifier is usually associated with

the inherent complexity of the classification task.
However, when the sample size is finite, other aspects,
such as small sample size, large number of features, and the
complexity of the classification rule, may also deteriorate
classifier accuracy [1]. If the data are also imbalanced (or
skewed), i.e., the classes have different a priori probabilities,
a further decline in accuracy is expected [2], [3]. For
example, if 99 percent of the data belong to one of two
classes, a learning algorithm will probably fail to achieve
better than the 99 percent accuracy that a trivial algorithm
classifying any pattern to the majority class achieves.
Moreover, the former algorithm will almost always fail on
patterns of the minority class. In this study, we experimen-
tally investigate solutions to the smallness and imbalance of
the data using a small imbalanced image database used for
genetic abnormality diagnosis.

One of the main methods to diagnose genetic abnorm-
alities is fluorescence in-situ hybridization (FISH). Using
FISH, various DNA sequences are stained, creating fluor-
escent signals that enable the detection, analysis, and
quantification of numerical and structural genetic abnorm-
alities [4], [5]. Analysis of images representing genetic
numerical abnormalities is vital in clinical inspection aimed
at prenatal and tumor diagnoses as well as in other
applications [5]. For example, DNA sequences composing
chromosome 21 in the human cell are analyzed using FISH
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images in order to detect an extra copy of this chromosome
which indicates Down syndrome.

Current systems are successful in FISH image analysis
[6], [7] and classification of dot-like FISH signals [8], [9].
However, since the conformation of the inspected sequence
and, thus, of the fluorescent signal, changes during DNA
replication along the cell cycle [10], non-dot-like signals are
frequently found in many FISH applications and especially
in clinical routine [11], [12].

In this study, we expand previous research [8], [9] in
several directions. First, we identify three non-dot-like
signal types that, together with the dot-like signal type
and the artifact (noise) signals, define a five-class classifica-
tion problem. We then develop a methodology allowing the
detection and classification of signals of these types using
either the naive Bayesian classifier (NBC) or the multilayer
perceptron (MLP) neural network. Since the proposed
methodology is general, other classifiers can be employed
as well. Three density estimation paradigms are evaluated
for the NBC—parametric, semiparametric, and nonpara-
metric; each proposes a different NBC. Each of these
paradigms, along with the MLP, tackles the classification
problem using either a monolithic or a hierarchical training
strategy.

Most of the effort in this study is directed toward
improving the classification accuracy, which has deterio-
rated due to using a small and imbalanced database. One
solution we propose is the induction of a hierarchical
classifier decomposing the classification task into four two-
class classification tasks; each is accomplished by employ-
ing data which is approximately balanced. A second
solution we suggest and study is balancing the data by
up-sampling the minority classes until reaching the number
of patterns of the majority class, followed by dimensionality
reduction in order to increase the ratio between the
numbers of patterns and features.
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Fig. 1. Gray-level versions of FISH images showing the four types of
signals associated with the replication stages. The S signal is dot-like,
whereas R1, R2, and D are non-dot-like signals.

The first contribution of the paper is in the automatic
classification of a small, imbalanced cytogenetic image
database. We propose and examine two solutions—hierarch-
ical task decomposition and balancing the data together with
dimensionality reduction. The second contribution is in
detecting and classifying non-dot-like together with dot-like
FISH signals, as previous study concentrated on dot-like
signals only. This ability is essential in genetic abnormality
diagnosis. We begin in Section 2 by describing the cytogenetic
application. In Section 3, we present FISH image analysis with
emphasis on nucleus and signal segmentations. Section 4
describes a methodology of dot and non-dot-like signal
classification and the building blocks of two solutions to
tackle the smallness and imbalance of the data. Section 5
provides the results of applying this methodology and
solutions to the cytogenetic database. We conclude the study
in Section 6 with a discussion also providing some directions
for future research.

2 THE CYTOGENETIC APPLICATION

2.1 Genetic Background

When applying FISH to interphase human cells, the
conformation of a fluorescent signal changes during the
S-phase of the cell cycle in an ordered manner [10], [11],
[12]. In the beginning of the cell cycle, the fluorescent
signal appears as a single dot (“singlet”; S), representing a
prereplication state. At the end of the cycle, the signal
adopts a bipartite structure (“doublet”; D) representing a
postreplication state. Between these two phases of the cycle
appear two additional signal conformations which are
more easily detected when using large probes like
a-satellites. These conformation types appear as a large
rounded beaded signal followed by an elongated rod-like
beaded signal representing, respectively, preparation for
and continuation of replication. Litmanovitch et al. [11]
called these two intermediate signal conformations R1 and
R2, respectively. Each of the R1, R2, and D signals is
composed of one of several different settings of subsignals
that define this non-dot-like signal. The S signal, however,
is a dot (Fig. 1).

Usually, and especially for small probes applied to
interphase cells, it is difficult to distinguish between the S
and R1 signal types as well as the R2 and D types. This is
the reason why the majority of work employing the FISH

replication assay has dealt only with the S and D
conformations by either ignoring the other two shapes or
summing the S and R1 signals and the R2 and D signals into
two “new” S and D entities. Nevertheless, the use of the
intermediate types R1 and R2 enables raising the sensitivity
(resolution) of the FISH replication method, allowing the
detection of minor changes in the replication patterns of
specific genes associated with genetic abnormalities [12].
Moreover, since the R1 and R2 types are detected in a
significant proportion of S-phase cells, especially when
exploring a-satellite sequences [11], ignoring these types in
the analysis may lead to reduction of the sample size and
distortion of the frequencies of occurrence of signal types.
Hence, automatic classification of dot and non-dot-like
FISH signals may improve the sensitivity, accuracy, and
efficiency of genetic abnormality diagnosis.

2.2 Materials and Methods

Peripheral blood samples (4-5 ml whole blood) were
prepared for FISH examination by regular cytogenetic
methods. The samples were incubated in an RPMI medium
supplemented with 5 percent fetal calf serum (FCS) and
2.5 percent phytohemaglutinin (PHA) in a 37°C moist
chamber. After 72 hours, colchicine (final concentration of
0.1pg/ml) was added to the culture for 1 hour followed by
hypotonic treatment (0.075 M KCL at 37°C for 15 minutes)
and four consecutive washes in a fresh cold fixative solution
(3:1 methanol:acetic acid). The lymphocyte suspensions
were stored at —20°C until used. Cell suspensions were
dropped on precleaned dried slides and air-dried.

We used the commercially available centromere specific
probe DXZ1 (CEPX, Vysis) that consists of «-satellite
sequences specific for the X chromosome and labeled with
spectrum green. On each sample, a mixture of 5ul specific
probe (CEP-X) was poured on the slides, covered with a
12mm circle cover glass, and sealed with rubber cement.
Codenaturation was done at 76°C for 6 minutes, followed
by incubation in a 37°C moist chamber for 17 hours. After
hybridization, slides were washed in a salt solution
(0.4 x SSC) at 67°C for 2 minutes, followed by 1-minute
wash in a second solution (2 x SSC/0.1%NP40) at room
temperature in order to wash out nonspecific bounded and
residual probe. The slides were allowed to dry and counter-
stained with 10ul of 4’, 6-diamidino-2-phenylindole (DAPI,
Vector) diluted in an antifade solution.

Slides were analyzed by an Olympus BX51 fluorescent
microscope fitted with a triple band-pass filter (Chroma-
technology) for coexisting detection of blue-DAPI nuclei
and spectrum green signals. Simultaneously, RGB (red-
green-blue) images of size 768 x 576 pixels were captured.
The morphology of image signals was recorded by the
cytogeneticist using GELFISH—a graphical environment
for labeling FISH images [13], in order to provide the
signals labels—S, R1, R2, D, or N (noise). These labels are
required for training and evaluating the classifiers.

3 FisH IMAGE ANALYSIS

In the first stage of the analysis (Fig. 2), we segment isolated
nuclei from their background and separate clusters of nuclei
(Section 3.1). Second, we segment signals in each of the
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Fig. 2. A flow chart of the proposed methodology.

separated nuclei by first detecting signals as well as
subsignals composing non-dot-like signals and then cluster-
ing the subsignals into signals (Section 3.2). We summarize
these topics here only briefly since the paper concentrates on
FISH signal classification (Section 4) rather than on image
analysis.

3.1 Nucleus Segmentation

We apply two consecutive stages; each accomplishes a
different nucleus segmentation objective. First, we segment
isolated nuclei and clusters of nuclei from the background
and, in the second stage, we separate each such cluster into
the nuclei that make it. In order to segment nuclei from their
background, we first eliminate image noise by a 3 x 3
averaging filter. We enhance image contrast by adding the
top-hat filtered image to the image and then subtracting the
bottom-hat filtered image [14]. Both filtered images are
derived using a disk-shaped structuring element of radius
20 pixels, a radius that was found most appropriate to the
task based on preliminary experiments. Then, we globally
threshold the image using the Otsu method [15] in which
the gray-level assuring the highest ratio of background to
object variance is selected as a threshold. The result is that
all isolated nuclei and nucleus clusters are separated from
the background.

To separate clusters of nuclei, we apply the watershed
algorithm to the binary image distance transform [16], [17].
The watershed algorithm separates connected nuclei suc-
cessfully, but it tends to oversegmentation. Hence, we
merge oversegmented nuclei based on their compactness
(circularity).! First, we find in the image all objects (i.e.,
potential oversegmented nuclei) having compactness smal-
ler than the average compactness computed over all objects.
Second, we merge each such object to its closest object in the
image if the compactness of the merged object is larger than

1. The compactness is defined as C' = 477%, where A and P are the object
area and perimeter, respectively, and the maximum value C' = 1 is reached
for a circle [18].

Imbalanced data Balanced data
Hierarchical Monolithic <
classifier classifier

that of either of the single objects. Following this procedure,
oversegmented nuclei are correctly merged (Fig. 3a). Then,
we fill small holes in the nuclei using a flood-fill operation
on the background pixels, assuming the background is
4-connected [19]. Finally, we remove from the analysis
small (mainly unfocused) nuclei and nuclei that are cut by
the image boundaries, as the latter may contain signals in
the hidden areas.

3.2 Signal Segmentation

After nucleus segmentation, signal segmentation (Fig. 2) is
performed on each separated nucleus. This is because, for
numerical genetic abnormality diagnosis, we are interested in
the distribution of the number of dot and non-dot-like signals
per nucleus. This object-based procedure consists of the
detection of signals and subsignals composing non-dot-like
signals (Section 3.2.1) and clustering the subsignals into
signals (Section 3.2.2). Since we study green signals (Sec-
tion 2.2), the segmentation is performed on the green
channel of the RGB image.

(a) (b)

Fig. 3. Examples of (a) nucleus segmentation and (b) signal segmenta-
tion on a single nucleus. Segmentation borders are marked by white
contours or ellipses. Noise signals are automatically rejected and, thus,
not marked.
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3.2.1 Signal and Subsignal Detection

The number of pixels representing a (sub)signal in a nucleus
image is much smaller than the number of nucleus (or
background) pixels. A typical (sub)signal may contain
40 pixels, whereas a typical nucleus contains 10,000-20,000
pixels. Thus, the peak of the signals in the image histogram is
hardly recognized and the location of an optimal threshold is
difficult to determine. The result is that the conventional
threshold-based segmentation methods cannot be readily
applied to FISH signal segmentation and, hence, they usually
require accompanying pre or postprocessing.

We preferred performing signal segmentation using a
multiresolution image pyramid [20]. This pyramid is a stack
of consecutive smaller replications of the image with size
and resolution decreasing exponentially, as derived by
decimation in factor 4. The advantage in segmenting a
pyramid is mainly computational since, e.g., instead of
detecting a border in the full resolution image, we use a
lower resolution image for the detection and only update
the border when descending from level to level until we get
the full resolution image (lowest level). Each image of the
pyramid is thresholded using the Otsu method [15] and the
binary image of the highest level among those having the
largest number of signals (i.e., the most detailed image) is
projected down the pyramid consecutively to the next lower
level. This is accomplished by interpolation in factor 4
(which, for a binary image, is nothing but up-sampling) and
until the image containing the detected signals and
subsignals is of the original size.

3.2.2 Subsignal Clustering

Following the detection of signals and subsignals, we merge
subsignals into non-dot-like signals using the global
k-means clustering algorithm [21] with slight changes. The
algorithm starts with the subsignal most distant from the
mixture mean as the first cluster (signal) center and
incrementally adds as the next cluster the subsignal that,
together with previous clusters, achieves the minimal sum-
of-squared clustering error [22].% Since the number of
objects to cluster is relatively small, we do not perform
the k-means algorithm for each partition (i.e., we avoid
repetitive recalculation of the centers), which cuts the
runtime considerably. This procedure continues for increas-
ing numbers of clusters until the number of clusters is equal
to that of the subsignals, thereby providing the optimal
clustering for each number of clusters. We determine the
optimal partition (i.e., number of clusters) based on the
maximal change in the clustering error between successive
partitions. This change usually occurs immediately after the
number of clusters matches the correct number of signals in
the nucleus. Additional subclusters are redundant within
the natural clusters, although their addition reduces the
clustering error toward zero as, eventually, every subsignal
may be associated with a cluster.

Finally, and since a noise signal is usually an unfocused
signal having a pale narrow corona around its bright body,
we screen all signals having a ratio of their average intensity
after dilation to that before dilation, which is smaller than a
threshold.> An example of signal segmentation for a specific

2. This is the sum of the squared euclidean distances between each
subsignal center and the center of the cluster that contains the subsignals.
3. Based on experimentation, the threshold was determined to be 0.7.

nucleus is shown in Fig. 3b. When applied to the database
described in Section 5 having 34 labeled FISH images
containing 367 signals, automatic signal segmentation was
97 percent accurate compared to the segmentation of the
cytogeneticist.

4 SIGNAL CLASSIFICATION

In this section, we describe all aspects of our methodology
of dot and non-dot-like FISH signal classification, as well as
the building blocks of the solutions we suggest in order to
tackle the smallness and imbalance of the data (Fig. 2). We
solve a five-class classification problem for the four signal
conformations representing phases in DNA replication—S,
R1, R2, and D, as well as the noise (N) signals. Labels for the
signals that are needed to train and evaluate the classifiers
are obtained by the cytogeneticist using a graphical
environment for labeling FISH images [13].

We extend previous research of dot-like FISH signal
classification [8], [9] and study here the naive Bayesian
classifier (NBC) and multilayer perceptron (MLP) neural
network in dot and non-dot-like FISH signal classification.
The NBC is modeled with class-conditional probability
densities estimated using each of three types of approaches
—parametric, semiparametric, and nonparametric—exem-
plified, respectively, by single Gaussian estimation (SGE), a
Gaussian mixture model (GMM), and kernel density
estimation (KDE). The MLP is configured with one layer
of hidden units. The four classifiers are identified as NBC-
SGE, NBC-GMM, NBC-KDE, and MLP, respectively. In
addition, we explore two training strategies—monolithic*
and hierarchical—in classifying the FISH signals by each of
the four classifiers. In the first strategy, discrimination is
performed by a single classifier and, in the second,
discrimination is performed sequentially by specific experts
decomposing the classification task. Decomposition into
simpler classification tasks for which data is approximately
balanced is one solution we propose to the classification of the
small imbalanced cytogenetic database. Each of the decom-
posed tasks is a simpler task than the original task, having a
smaller number of classes and a higher ratio of patterns to
features; hence, the curse-of-dimensionality is diminished
and the classification accuracy is expected to increase. As both
majority and minority classes in the decomposed tasks are
more balanced than for the original task, they can be
represented and classified more accurately.

We first suggest a feature selection method to choose a
well-discriminated subset from the feature set representing
the FISH signals (Section 4.1). Then, we briefly introduce the
NBC (Section 4.2) and MLP (Section 4.4) employed for
signal classification. In between, we review three methods
of density estimation for the NBC (Section 4.3). Finally, we
address data balancing by up-sampling as part of our
second remedy to the problem (Section 4.5).

4.1 Feature Selection

We measure a set of signal features based on [8] (“Feature
description” in Fig. 2). The features include size (e.g., area

4. We follow the convention and use the term “monolithic” classifier
whenever it is compared to another classifier decomposing the task, e.g.,
hierarchically.
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and different ratios of signal-related areas), shape (e.g.,
eccentricity and axis lengths of the bounding ellipse), hue,
and intensity (measured in the RGB green plane). Other
features are based on the shape descriptors (e.g., convexity
and compactness) of [23].

In order to diminish the feature statistical dependence
and curse-of-dimensionality, we apply feature selection.
This requires a procedure to search candidate feature
subsets and a criterion to evaluate each such subset [24].
We use the classification accuracy, whether of the NBC or
MLP, as the criterion. Since exhaustive search is an
impractical procedure even for moderate feature sets and
subsets, we propose a greedy search algorithm based on the
sequential forward selection procedure [24]. The algorithm
starts with an empty feature subset, i.e., the first “current”
subset. It evaluates every feature, finds the one having the
highest value of the criterion, and adds it to the current
subset. All remaining features are kept aside. In each
iteration and until no features remain aside, the algorithm
evaluates which of the remaining features when combined
with the current subset provides the highest criterion value.
This feature is added to the current subset and simulta-
neously excluded from the remaining features. When no
features remain, we select the feature subset achieving the
highest value of the criterion from among all subsets, each
having the highest value of the criterion for a specific
number of features.

4.2 The Naive Bayesian Classifier

The NBC [25] is a model for a finite set of random variables
U= {Xl,XQ, ce 7Xm,0} = {X, C}, where X17X2, ce ,Xm
are the observable variables that represent the features
and C is the class variable having L states (for L classes).
Albeit assuming naively that all of the observable variables
are conditionally independent given the class variable, the
NBC often classifies patterns accurately compared to other
state-of-the-art classifiers [26]. The NBC assigns a test
pattern z to the class Cx having the highest a posteriori

probability
P

Ok = arg max{P(Cy|z)} = arg g%{ o

where p(z|Cj) is the class-conditional probability (for a
discrete variable) or probability density (for a continuous
variable), P(C},) is the a priori probability of class Cj, and
p(x) is the unconditional density normalizing the product of
the former two terms such that >, P(Ci|z) = 1. Using the
NBC independence assumption and omitting p(z), which is
common to all states of the class variable, the posterior
probability (1) can be written as

m

P(Cr) HP

P(Cyla) o p(X = z|C) P( i = 2| Ch),

(2)

where X = z is the assignment of a state to each variable
of X. Assuming that all variables are continuous,
[T~ p(X; = z;]Cy) is a product of one-dimensional (1D)
class- Condltlonal densities (thus, from now on, we will use
x instead of z). Both P(C}) and p(X;|C) can be estimated

from the training data; P(C}) is the relative frequency of
patterns belonging to Cj out of all of the patterns and
p(X;|Cy) is usually estimated by either of the three methods
described in Section 4.3.

4.3 Estimation of Class-Conditional Probability
Densities

Decomposition of the computation of the class-conditional
density of the NBC using (2) reduces the curse-of-
dimensionality since this computation requires only line-
arly rather than exponentially increasing (with the dimen-
sion) numbers of patterns. We estimate p(X;|C) for each
class C}, and variable X; employing a training set of patterns
2", where n gets values for each of the N}, training patterns
of class Cj.

The class-conditional probability density may be esti-
mated assuming different data generation mechanisms. In
this study, we explore three density estimation methods
assuming different mechanisms of data generation. Single
Gaussian estimation (Section 4.3.1) assumes the data are
generated from a single Gaussain distribution. Kernel
density estimation (Section 4.3.2) models the data using a
linear combination of kernels, each of which is located
around a training pattern. A Gaussian mixture model
(Section 4.3.3) estimates the data using a few Gaussians
having adaptable parameters. All of these methods are only
briefly summarized here, but are detailed in [22], [27], [28].

4.3.1 Single Gaussian Estimation

Usually, each 1D class-conditional density of the NBC is
assumed to be Gaussian. Then, when estimated using
maximum likelihood, the Gaussian mean and standard
deviation are the sample average and standard deviation,
respectively, leading to single Gaussian estimation (SGE).

4.3.2 Kernel Density Estimation

Nonparametric methods make no assumptions about the
density functional form, but use the data to estimate the
probability density. Kernel density estimation (KDE), a
leading nonparametric estimation method, models the
1D density using Gaussian kernel functions [28]

13, 1 |z — "]
==Y — 3
=¥ 2 (9rp2) 2 eXp{ o2 (7 (3)

where a Gaussian kernel having a width parameter / is
centered around each of the N training patterns z". Usually,
h is modeled using a parametric form such as h = TN¢,
where T' > 0 is a multiplicative factor, -1 < o < 0,and N =
N} is the number of patterns in class C. Choosing o = —1/2
[22] guarantees that the parameter h shrinks to zero as the
number of patterns goes to infinity and, hence, KDE
becomes increasingly local with the number of training
patterns.

4.3.3 A Gaussian Mixture Model

Semiparametric methods are not restricted to specific
functional forms (as in parametric methods) and yet the
model size depends only on the problem complexity and
not on the data size (as in nonparametric methods). A GMM
is a semiparametric method that estimates the density using
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a linear combination of M < N 1D Gaussian densities p(z|j)
that are each weighted by a mixing coefficient P(j), which is
the prior probability that the jth density has generated the
mixture density. The mixture density is [27]

M r— 112 (4)
:Z 1 exp{—H 205]” }P(]),

J

where P(j) satisfy the probability constraints

(fjpm —1,0<P(j) <1 w)

and the Gaussian densities p(z|j) have means p; and
spherical covariance matrices with standard deviations o;.
Note that, in addition to estimating p; and ¢;, we should
also estimate P(j). Most of the methods for determining
these parameters from the data are based on maximum
likelihood utilizing the expectation-maximization (EM)
algorithm [29].

4.4 Multilayer Perceptron Neural Network

When acting as a classifier, the MLP approximates the
a posteriori probability of class membership by minimizing
the error between the network output and desired target
(label) [27]. The network hidden layer maps the feature
space onto the target space and thereby performs internal
feature extraction that alleviates the classification task and
increases its accuracy. The total input to the kth unit in a
layer of the MLP is

sk =D wiry; + Ok, ()

J

where wj; is the weight connecting this unit to the jth unit
of the preceding layer, the latter having an output y;, and §;,
is the kth unit bias. Usually, the activation function that
maps this unit input (5) to an output is the logistic sigmoid
1

It is a differentiable function permitting the application of
gradient descent-driven optimization algorithms in mini-
mizing the output error. Also, this function has values in
[0, 1] allowing the interpretation of the network outputs as
class a posteriori probabilities [27].

Learning is repeated iteratively on the training set, so
weights between units of different layers can be adjusted in
order to minimize network error. In this study, the MLP is
configured with one layer of hidden units trained by the
scaled conjugate gradient algorithm [27].

4.5 Data Balancing

Whenever a class in a classification task is underrepre-
sented (i.e., has a lower prior probability) compared to other
classes, we consider the data as imbalanced [2], [3]. The
main problem in imbalanced data is that the majority
classes that are represented by large numbers of patterns

rule the classifier decision boundaries at the expense of the
minority classes that are represented by small numbers of
patterns. This leads to high and low accuracies in classify-
ing the majority and minority classes, respectively, which
do not necessarily reflect the true difficulty in classifying
these classes.

Most common solutions to this problem balance the
number of patterns in the minority or majority classes.
Either way, balancing the data has been found to alleviate
the problem of imbalanced data and enhance accuracy [2],
[3], [30]. Data balancing is performed by, e.g., up-sampling
patterns of minority classes either randomly or from areas
close to the decision boundaries. Interestingly, random up-
sampling is found comparable to more sophisticated up-
sampling methods [30]. Alternatively, down-sampling is
performed on majority classes either randomly or from
areas far away from the decision boundaries. We note that
random down-sampling may remove significant patterns
and random up-sampling may lead to overfitting, so
random sampling should be performed with care. We also
note that, usually, up-sampling of minority classes is more
accurate than down-sampling of majority classes [30].
Indeed, in Section 5, we apply up-sampling as one means
for balancing the cytogenetic database.

5 EXPERIMENTS AND RESULTS

In this section, we experimentally study dot and non-dot-
like signal classification in FISH images. We apply the
methodologies of Section 4 to a cytogenetic database of
34 labeled FISH images containing 367 signals. Based on
labels provided by a cytogeneticist and the taxonomy of
Section 2.1, 118 signals are considered as S, 106 as R1, 43 as
R2, 44 as D, and 56 signals as noise (N). These images were
captured and the signals were labeled in a previous project
and they are used here as is. This is the only image database
available to us (and, to the best of our knowledge, the only
one that exists) for studying non-dot-like FISH signals.
Hence, we have had to cope with a small and imbalanced
database that is labeled by a single cytogeneticist.

As a reference, we test the accuracy of the monolithic
training strategy on the imbalanced data (Section 5.1.1).
Since the cytogenetic database is small and heavily
imbalanced (e.g., S versus D, R1 versus R2), we concentrate
on two solutions to increase this accuracy. First, we apply
the hierarchical strategy using specific expert classifiers in
each hierarchy level (Section 5.1.2). These experts are based
on the NBC (Section 4.2) or MLP classifier (Section 4.4). The
hierarchical strategy alleviates the smallness of the data by
decomposing the classification task and inducing simpler
expert classifiers each for a smaller number of classes that
are usually represented by more patterns. The design of the
experts for equally populated classes as possible also
counterweighs data imbalance. In the second solution
(Section 5.2), we balance the data by up-sampling patterns
of the minority classes until class sizes match that of the
majority class (Section 4.5). We measure the effectiveness of
balancing the data when the NBC and MLP are trained
using the monolithic strategy (Section 5.2.1). Then, we study
dimensionality reduction in lessening the smallness pro-
blem of the already balanced data (Section 5.2.2).
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TABLE 1
Average Accuracies (and Std) of the Four Studied Classifiers
Operating Each with lts Own Optimal Feature Subset and
Parameters Using the Monolithic Strategy and Imbalanced Data

Classifier Training accuracy (%) Test accuracy (%)
NBC-GMM 75.0 (1.4) 67.9 (2.1)
NBC-SGE 69.5(2.2) 67.8 (2.0)
NBC-KDE 74.6 (2.0) 65.5(1.7)
MLP 78.5(1.8) 67.5(3.3)

5.1 Results for the Imbalanced Data

5.1.1 The Monolithic Strategy

We create five random replications of the data and perform,
using each replication, a twofold cross-validation (CV)
experiment, i.e., divide the data into two equal sets (folds),
train on one set, and test on the other set before changing
the roles of the sets. The reported classification accuracy is
the average over the 10 folds (two folds for each of the five
replications) in a test called 5x2cv. This test has small type I
and type II errors when comparing classifier accuracies on
small data [31]. We avoid dividing the data further in order
to have an additional separate set for validation of
parameters since it may undermine achieving a reasonably
accurate probability estimation due to the smallness of the
data. This division is especially unnecessary for the NBC,
which estimates only a small number of parameters, so
overfitting the data is unlikely.

Each of the NBC-SGE, NBC-GMM, NBC-KDE, and MLP
classifiers is evaluated using the 5x2cv test on subsets of
increasing numbers of optimal features and the subset that
provides peak accuracy is determined (Section 4.1). Using
this subset, model parameters leading to the highest
accuracy are determined. Utilizing this methodology, we
select, for the NBC-GMM,, six Gaussians in order to model
the probability density for each of its six optimal features
and update the density parameters using a single iteration
of the EM algorithm. The best generalization capability of
the NBC-KDE is obtained for a multiplicative factor
(Section 4.3.2) of T'=2 and a subset of seven optimal
features. The NBC-SGE needs a subset of nine optimal
features. The most suitable configuration of the MLP is of
10 hidden units in the single hidden layer and seven input
units corresponding to the seven optimal features for this
classifier. Training the MLP is stopped when the difference
in the mean-squared error between two consecutive epochs
is 10e-4 or less. We note that all four classifiers select some
optimal features in common. These are the diameter of a
circle having the signal area, length of the minor axis of the
ellipse that bounds the signal, ratio of the major axis to the
minor axis of this ellipse and the compactness (i.e., the ratio
of the signal squared perimeter to area). The remaining
features that are selected by each of the classifiers are based
on other shape and hue features (Section 4.1).

Table 1 shows that all classifiers achieve similar
accuracies using their optimal sets of features and
parameters. Analyzing the classifier confusion matrices
provides some explanations. For example, the confusion

TABLE 2
The NBC-KDE Confusion Matrix (Accuracy (Percentage) Mean
and Std) for the Monolithic Strategy and Imbalanced Data

Human S R1 R2 D N
System
S 79.4(3.9) | 14.2(2.8) 0(0) 0.5(09) |5934)
R1 18.9(4.3) | 69.0(5.3) | 5.6(2.0) 6.5 (2.1) 0(0)
R2 3.0(2.6) | 27.7(3.2) | 50.8(7.7) | 18.5(8.2) 0(0)
D 16.1(5.2) | 35.8(4.5) | 159(5.3) | 32.2(8.9) 0(0)
N 25.0(89) | 23(2.1) 1.1(1.8) 3925 | 67.7(8)

matrix of the NBC-KDE (Table 2) shows that 49.2 percent and
67.8 percent, respectively, of the patterns of the minority
classes R2 and D are wrongly classified and the variances in
their classification accuracies are relatively high. There are
two main reasons for the high error rate of minority classes, as
has been noted before [31]. First is that the classifier accuracy
depends on the class prior probability and this probability is
lower for a minority class than for a majority class. Second,
having a small number of training patterns, a minority class is
represented inadequately and, hence, also classified inaccu-
rately compared to a majority class. For the same reason, a
minority class may also be represented differently in the
training and test sets, which causes relatively low prediction
accuracy and high variance of this accuracy. The D (R2)
signals are wrongly classified as R2 (D) due to similar feature
values. These signals are also wrongly classified as R1 (a
majority class) due to the latter numerical dominance in
shaping the classes’ decision boundaries. That is, the
smallness and imbalance of the data undermine successful
classification of minor classes and thus also weaken the
classifier average accuracy.

5.1.2 The Hierarchical Strategy

In the hierarchical strategy, signals are classified in each
hierarchy level to either one of two classes. We first classify
signals as belonging to either {S, N} or {R1, R2, D} as the noise
signals are mostly similar to the S signals (Table 2) and the R1,
R2, and D signals are similar to each other. In the second
hierarchy level, one expert classifier distinguishes between
the S and N signals and another expert classifier between the
R1and {R2, D} signals as the R2 and D signals are similar and
belong to two equally sized minority classes. In the last
hierarchy level, a fourth expert discriminates between the R2
and D signals, altogether accomplishing the five-class
classification task. Such decomposition of the task reduces
both the smallness and imbalance problems of the database.
Each expert faces a reduced two-class classification task with
arelatively larger and more balanced data set. These tasks are
discriminating 174 signals of the {S, N} class from 193 signals
of the {R1, R2, D} class, 118 signals of the S class from 56 of
the N class, 106 signals of the R1 class from 87 signals of the
{R2, D} class, and 43 signals of the R2 class from 44 signals
of the D class.

Table 3 shows the accuracies of the NBCs and MLP
trained hierarchically and after each expert is optimized to
the features and parameters. The accuracies of the classifiers
are similar and the only difference is that the MLP needs
only one to three features, depending on the hierarchy level,
whereas the other classifiers require four or more features.
Not shown are the accuracies of the experts in each of the
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TABLE 3
Average Accuracies (and Std) of the Four Studied
Classifiers Operating Each with lts Own
Optimal Feature Subset and Parameters Using
the Hierarchical Strategy and Imbalanced Data

Classifier Training accuracy (%) | Test accuracy (%)
NBC-GMM 74.1(2.3) 69.6 (2.4)
NBC-SGE 71.3(22) 69.0 (3.2)
NBC-KDE 76.9 (3.0) 66.3 (2.6)
MLP 74122 68.4(2.9)

hierarchy levels but only the overall accuracy. Generally,
classification in the first hierarchy level and between S and
N is more accurate (~ 90 percent) than when classifying
patterns of the R1, R2, and D signals (~ 70-80 percent),
again because the classification of signals of the small
minority classes is very difficult. From analyzing the
confusion matrices (not shown) for the different hierarchy
levels, we notice that the error rates in all cases, except
when distinguishing between the S and N signals, are
symmetric between the classes. This corresponds to rela-
tively data-balanced tasks (except for the S versus N task)
which enables the hierarchical classifier to cope with the
imbalance in the data. Finally, Table 3 shows that the
hierarchical strategy improves on the monolithic strategy
test accuracy (Table 1) in about 1-2 percent.

5.2 Results for the Balanced Data

Using the second suggested solution, we balance the data
by randomly duplicating patterns of the classes up to the
number of patterns of the largest class, S (i.e., the up-
sampling method). Then, we evaluate the four classifiers
trained using the monolithic strategy in discriminating
FISH signals (Section 5.2.1). Also, we reduce dimensionality
by extracting features from the optimal feature subset,
thereby tackling the problem of the smallness of the data by
improving the ratio of the number of patterns to that of the
features (Section 5.2.2).

5.2.1 The Monolithic Strategy

We repeat the procedure performed for the imbalanced
data for the balanced data. Fig. 4 demonstrates that the
classifier test accuracies increase with the number of
discriminative features selected until a certain point, after
which they deteriorate due to the curse-of-dimensionality.
This point determines the optimal feature subset for each
classifier. The optimal feature subset selected for each
classifier is similar to that selected for the imbalanced data
(Section 5.1.1). Fig. 4 also shows that the NBC-KDE is less
sensitive to the curse-of-dimensionality than the other
classifiers, as exemplified in retaining accuracies close to
the ultimate accuracy for a broad range of sizes of feature
subsets. In contrast, the NBC-GMM is the most sensitive to
the curse-of-dimensionality, losing its accuracy for large
feature subsets.

Using its own optimal feature subset, we determine for
each classifier the optimal parameters. Fig. 5a and Fig. 5b
show, respectively, that the NBC-GMM test accuracy
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Fig. 4. The test classification accuracy for increasing numbers of optimal
features for the NBC-GMM, NBC-SGE, NBC-KDE, and MLP, all trained
using the monolithic strategy and balanced data.

increases with the numbers of Gaussian components and
EM iterations until a certain point, after which it remains
almost steady. Based on these figures and in order to
achieve the highest accuracy, we select a model having
10 Gaussians which is trained for nine iterations of the
EM algorithm. Similarly, and on the basis of Fig. 5c, we
choose the multiplicative factor 7% determining the Gaus-
sian width h in (3) to be one (i.e., a Gaussian width that
decreases with the square root of the number of patterns).
As the MLP reaches its ultimate accuracy when using
11 hidden units (Fig. 5d), we choose this value for the MLP.
Training the MLP continues until its mean-squared-error is
not changed in more than 10e-4 between epochs.

Table 4 summarizes the classification accuracies of the
four models, each utilizing its own optimal feature subsets
and parameters. The accuracies are similar, with some
advantage to the NBC-KDE. In order to decide whether this
advantage is statistically significant and similarly for any two
classifiers to be compared, we assume the two classifiers have
the same error rate (i.e., the null hypothesis). Then, we
compute a statistic from the errors of the two classifiers
measured on the test set and, if our assumption holds, this
statistic should obey a certain distribution. If the statistichas a
probability large enough of being drawn from this distribu-
tion, we accept the hypothesis; otherwise, we reject it, saying
the two classifiers have different error rates. The statistic we
use, having low type I and type II errors, was suggested for
the 5x2cv test in [31] before being modified in [32]. We first
define pgj ) as the difference between the error rates of the two
classifiers on fold j=1,2 of replication ¢=1,...,5. The
average on replication i of the two folds is p; = (p.") + p*) /2
and the estimated variance is s7 = (pgl) — i)+ (p,(;2> — i)
We then define a statistic that is approximately F' dis-
tributed with 10 and 5 degrees of freedom [32],

5 2 2
B P Zj:l (PE]))

) (7)
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Gaussian width, and (d) MLP for increasing numbers of hidden nodes.

We reject the null hypothesis, ie., declare that the two
classifiers are different in accuracy with 0.95 confidence, if f
is greater than 4.735. Returning to Table 4 and computing f

TABLE 4
Average Accuracies (and Std) of the
Four Studied Classifiers Each Operating with
Its Own Optimal Feature Subset and Parameters
Using the Monolithic Strategy and the Balanced Data

Classifier Training accuracy (%) Test accuracy (%) | Size of feature set
NBC-GMM 859 (2.1) 733 (1.6) 8
NBC-SGE 79.0 (1.1) 70.5 (2.5) 7
NBC-KDE 92.4(1.2) 74.7 (2.5) 13
MLP 77.7 (3.4) 71.1(1.8) 6

for any pair of classifiers, we can summarize that the
differences between the classifiers with respect to the above
statistic are not statistically significant.

Comparing Table 1 and Table 4 draws several interesting
conclusions. First is that replicating patterns of the minority
classes increases the overall training classification accuracy
of the NBC-based methods as the estimation of the densities
for these classes has been improved. Second, since after data
balancing, the training and test sets share patterns in
common, the improvement in the training classification
accuracy is also reflected in the test accuracy, but the two
accuracies are not independent anymore. Third, the
classifiers are affected differently from balancing the data.
Nonparametric classifiers gain more from balancing since
they depend on the data more than parametric classifiers.
For example, following data balancing, the NBC-KDE
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TABLE 5
The NBC-KDE Confusion Matrix (Accuracy (Percentage) Mean
and Std) for the Monolithic Strategy and Balanced Data

Human S R1 R2 D N
System
S 743 (6.6) | 11.8(4.2) 0(0) 45(2.8) 9.4 (4.7)
R1 20.7(6.2) | 50.7(6.6) | 143(5.2) | 16.9(2.6) | 0.9(0.9)
R2 1.8(24) 85(84) |853(189 | 7.6(3.9 1.3(1.8)
D 5.9(2.6) 77(32) | 93(4.8) | 79.6(6.9) | 0.8(0.9)
N 13.5(5.6) 2.1(2.5) 1.0(1.2) 2.0(1.6) | 833(4.1)

increases its test accuracy by 9.2 percent compared to NBC-
SGE, which gains only 2.7 percent. The MLP, although not
the most accurate classifier, is the most reliable classifier. It
increases its test accuracy (similarly to the NBC-SGE and
NBC-GMM but less compared to the NBC-KDE) but
without overfitting the training set as the NBC-based
methods do. It also uses a smaller number of features than
the NBCs. This indicates both the MLP superior capability
of generalization and estimation of the true classification
accuracy for the cytogenetic balanced data.

We also analyze the classifier confusion matrices. For
example, we compare the NBC-KDE accuracy for the
balanced data (Table 5) to that for the imbalanced data
(Table 2). The accuracy for the minority classes has
significantly intensified (e.g., the accuracy for the R2 class
has increased from ~ 50 to ~ 85 percent and that for the D
class from ~ 32 to ~ 80 percent) at the expense of accuracy
for the majority classes (e.g., the accuracy for the R1 class
has reduced from 69 to ~ 51 percent). This pattern of
improving the accuracy on the minority classes (R2 and D)
at the expense of deteriorating the accuracy on the majority
classes (S and R1) with an overall increase of accuracy is
also found for the other classifiers.

5.2.2 Dimensionality Reduction

Besides data balancing, we also tackle the smallness of the
data using feature extraction. In feature selection, we choose
features from the original set based on a criterion (Section 4.1),
whereas in feature extraction, we project the features onto
another space and use a smaller number of feature projections
rather than the features themselves (see [24] for details). Note,
however, that we may apply feature extraction to the result of
feature selection. The application of feature extraction allows
us to combine two different remedies to the curse-of-
dimensionality caused by the smallness of the data. Both
databalancing and dimensionality reduction are well-known
methods that were used in such cases before, but, to the best of
our knowledge, they were not employed together and
certainly not in FISH signal classification. By reducing the
dimensionality, feature extraction improves the ratio be-
tween the numbers of patterns and features, thereby
alleviating the curse-of-dimensionality.

We apply principal component analysis (PCA) [24] to the
balanced data. PCA is one of the simplest and most popular
feature extraction methods. Fig. 6 shows the improvement in
accuracy of the MLP classifier for increasing numbers of
eigenfeatures derived by projecting the cytogenetic database
on increasing numbers of eigenvectors corresponding to the
largest eigenvalues. Utilizing 18 eigenfeatures having less
correlation among them compared to the original features led
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Fig. 6. The MLP classification accuracy for increasing numbers of
eigenfeatures extracted from the balanced data and using the monolithic
strategy.

to test accuracy of 78.1 percent, higher than that previously
achieved by the MLP or any other classifier for the studied
database. That is, the combination of the nonparametric MLP
classifier, data balancing, and feature dimensionality reduc-
tion is most beneficial in classifying the small imbalanced
FISH image database.

6 DiSCUSSION

Solving a multiclass classification task using a small
imbalanced database of multivariate feature representation
of patterns is complex for two main reasons. First is the
curse-of-dimensionality requiring exponentially increasing
numbers of patterns with the dimensionality in order to
obtain accurate parameter estimation. Second is that
imbalanced data leads to biased training in which the
majority classes rule the classifier decision boundaries and,
thus, patterns of these classes are mainly classified
correctly, whereas the minority classes are overlooked and
their patterns are frequently misclassified.

Since the cytogenetic database is small and heavily
imbalanced, the minority classes were generally repre-
sented inadequately and differently compared to the
majority classes and also between the training and test sets.
This caused relatively low prediction accuracy and high
variance of this accuracy for these classes. Most of the
misclassifications in our cytogenetic domain were due to
two sources. The first was the small numbers of D and
R2 signals, which were inadequate for accurate estimation
of densities for the relatively similar feature representations
of the two classes. The second source of misclassification
was between the D or R2 signals and the R1 signals due to
the latter’s numerical dominance in shaping the decision
boundaries for the classes. In both cases, the high mis-
classification rate of signals of the minority classes under-
mined high overall accuracy for the imbalanced data.

We studied two solutions to diminish these problems
and raise the classification accuracy. First was a hierarchical
strategy that, in each hierarchy level, rendered simpler
experts that were trained using classes of larger and



214

approximately equal sizes. This improved the accuracy and
also provided insights into the difficulty in discriminating
specific classes, thereby spotting some of the bottlenecks of
the classification task.

The second solution we evaluated was balancing the
data by up-sampling. We balanced the data for the NBC
and MLP trained using the monolithic strategy and then
assessed the usefulness of feature extraction in alleviating
the problem of smallness of the data. Evaluating other
classifiers to this problem (e.g., a support vector machine) is
left to future study. Balancing by up-sampling the minority
classes (R2 and D) improved the classification of patterns of
these classes as the enlarged number of patterns enabled
more accurate estimation of the densities. Note, however,
that up-sampling minority classes for the MLP is equivalent
to increasing the classifier training period, but only for these
classes. This way, the MLP succeeds in improving its
generalization capability without overfitting the entire data.
Nevertheless, the main flaw of up-sampling when dimin-
ishing the imbalance problem is that the training and test
sets share patterns in common and, thus, the accuracies of
these sets cannot be considered independent anymore.
Finally, it is interesting to see that the highest accuracy was
achieved due to a combination of approaches, ie., an
accurate classifier (MLP) trained on a dimension-reduced
balanced data set.

With respect to future research, we note that the
moderate degree of improvement in accuracy that was
achieved through balancing the data (Section 5) suggests
that the smallness of the data is a more acute problem than
the imbalance of the data. A similar conclusion was also
made before [30]. Hence, one main goal of future research is
to study these two problems separately. Another goal is the
enlargement of the database with the emphasis on collect-
ing patterns of minority classes as the impact of the skewed
class prior probabilities on the overall accuracy is reduced
with the data sample size [33]. In addition, we will use a
panel of cytogenetic experts in order to minimize labeling
errors of the signals used for training the classifiers. If up-
sampling will still be needed, we would consider adding
random noise to the up-sampled patterns in order to better
represent the density using the finite sample size, although
other alternatives for sampling may do as well [30]. We are
also interested in evaluating the suggested solutions in
other small, imbalanced domains in order to be able to
comment more on the advantages and drawbacks of each
solution. Finally, we plan to study the clinical implications
of the proposed methodology for dot and non-dot-like FISH
signal classification.
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