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a b s t r a c t

For classification problem, the training data will significantly influence the classification accuracy. How-
ever, the data in real-world applications often are imbalanced class distribution, that is, most of the data
are in majority class and little data are in minority class. In this case, if all the data are used to be the
training data, the classifier tends to predict that most of the incoming data belongs to the majority class.
Hence, it is important to select the suitable training data for classification in the imbalanced class distri-
bution problem.
In this paper, we propose cluster-based under-sampling approaches for selecting the representative data
as training data to improve the classification accuracy for minority class and investigate the effect of
under-sampling methods in the imbalanced class distribution environment. The experimental results
show that our cluster-based under-sampling approaches outperform the other under-sampling tech-
niques in the previous studies.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Classification analysis (del-Hoyo, Buldain, & Marco, 2003; Lee &
Chen, 2005; Li, Ying, Tuo, Li, & Liu, 2004) is a well-studied tech-
nique in data mining and machine learning domains. Due to the
forecasting characteristic of classification, it has been used in a
lot of real applications, such as flow-away customers and credit
card fraud detections in finance corporations. Classification analy-
sis can produce a class predicting system (or called a classifier) by
analyzing the properties of a dataset with classes. The classifier can
make class forecasts on new samples with unknown class labels.
For example, a medical officer can use medical predicting system
to predict if a patient have drug allergy or not. A dataset with given
class can be used to be a training dataset, and a classifier must be
trained by a training dataset to have the capability for class predic-
tion. In brief, the process of classification analysis is included in the
following steps:

1. Sample collection.
2. Select samples and attributes for training.
3. Train a class predicting system using training samples.
4. Use the predicting system to forecast the class of incoming

samples.

The classification techniques usually assume that the training
samples are uniformly distributed between different classes. A
ll rights reserved.
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classifier performs well when the classification technique is ap-
plied to a dataset evenly distributed among different classes. How-
ever, many datasets in real applications involve imbalanced class
distribution problem (Chawla, 2003; Chyi, 2003; Japkowicz, 2000,
2001; Jo & Japkowicz, 2004; Maloof, 2003; Zhang & Mani, 2003).
The imbalanced class distribution problem occurs while there are
much more samples in one class than the other class in a training
dataset. In an imbalanced dataset, the majority class has a large per-
centage for all the samples, while the samples in minority class just
occupy a small part of all the samples. In this case, a classifier usu-
ally tends to predict that samples have the majority class and com-
pletely ignore the minority class.

Many applications such as fraud detection, intrusion preven-
tion, risk management, medical research often have the imbal-
anced class distribution problem. For example, a bank would like
to construct a classifier to predict that whether the customers will
have fiduciary loans in the future or not. The number of customers
who have had fiduciary loans is only 2% of all customers. If a fidu-
ciary loan classifier predicts that all the customers never have fidu-
ciary loans, it will have a quite high accuracy as 98%. However, the
classifier can not find the target people who will have fiduciary
loans within all customers. Therefore, if a classifier can make cor-
rect prediction on the minority class efficiently, it will be useful
to help corporations make a proper policy and save a lot of cost.
In this paper, we study the effects of under-sampling (Zhang &
Mani, 2003) on the neural network technique and propose some
new under-sampling methods based on clustering, such that the
influence of imbalanced class distribution can be decreased and
the accuracy of predicting the minority class can be increased.
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2. Related work

Since many real applications have the imbalanced class distri-
bution problem, researchers have proposed several methods to
solve this problem. These methods try to solve the class distribu-
tion problem both at the algorithmic level and data level. At the
algorithmic level, developed methods include cost-sensitive learn-
ing (Drummond & Holte, 2003; Elkan, 2001; Turney, 2000) and rec-
ognition-based learning (Chawla, Bowyer, Hall, & Kegelmeyer,
2002; Manevitz & Yousef, 2001).

Cost-sensitive learning approach assumes the misclassification
costs are known in a classification problem. A cost-sensitive classi-
fier tries to learn more characteristics of samples with the minority
class by setting a high cost to the misclassification of a minority
class sample. However, misclassification costs are often unknown
and a cost-sensitive classifier may result in overfitting training.
To ensure learning the characteristics of whole samples with the
minority class, the recognition-based learning approach attempts
to overfit by one-class (minority class) learning. One-class learning
is more suitable than two-class approaches under certain condi-
tions such like very imbalanced data and high dimensional noisy
feature space (Elkan, 2001).

At the data level, methods include multi-classifier committee
(Argamon-Engelson & Dagan, 1999; Freund, Sebastian Seung, Sha-
mir, & Tishby, 1997) and re-sampling (Chawla, Lazarevic, Hall, &
Bowyer, 2003; Chawla et al., 2002; Chyi, 2003; Drummond & Holte,
2003; Japkowicz, 2001; Zhang & Mani, 2003) approaches. Multi-
classifier committee approach (Argamon-Engelson & Dagan,
1999; Freund et al., 1997) makes use of all information on a train-
ing dataset. Assume in a training dataset, MA is the sample set with
majority class, and MI is the other set with minority class. Multi-
classifier committee approach divides the samples with majority
class (i.e. MA) randomly into several subsets, and then takes every
subset and all the samples with minority class (i.e. MI) as training
dataset, respectively. The number of the subsets depends on the ra-
tio of MA’s size to MI’s size. For example, suppose in a dataset, the
size of MA is 48 (samples) and the size of MI is 2 (samples). If we
think the best ratio of MA’s size to MI’s size is 1:1 in a training
dataset, then the number of training subsets will be 48/2 = 24. Each
of these 24 subsets contains MI and a subset of MA that both sizes
are 2, and the ratio of them is exactly 1:1.

After training these training datasets separately, several classi-
fiers are available as committees. Multi-classifier committee ap-
proach uses all the classifiers to predict a sample and decides the
final class to it by the prediction results of the classifiers. Voting
is one simple method for making a final class decision to a sample,
in which a minimum threshold is set up. If the number of classifiers
that predict the same class ‘‘C” for a sample exceeds the minimum
threshold, then the final class prediction of this sample will be ‘‘C”.
Though multi-classifier committee approach does not abandon any
sample from MA, it may be inefficient in the training time for all
the committees and can not ensure the quality for every commit-
tee. Further selection of the committees will make the predictions
more correct and more efficient.

As for re-sampling approach, it can be distinguished into over-
sampling approach (Chawla et al., 2002, 2003; Japkowicz, 2001)
and under-sampling approach (Chyi, 2003; Zhang & Mani, 2003).
The over-sampling approach increases the number of minority
class samples to reduce the degree of imbalanced distribution.
One of the famous over-sampling approaches is SMOTE (Chawla
et al., 2002). SMOTE produces synthetic minority class samples
by selecting some of the nearest minority neighbors of a minority
sample which is named S, and generates new minority class sam-
ples along the lines between S and each nearest minority neighbor.
SMOTE beats the random over-sampling approaches by its in-
formed properties, and reduce the imbalanced class distribution
without causing overfitting. However, SMOTE blindly generate
synthetic minority class samples without considering majority
class samples and may cause overgeneralization.

On the other hand, since there are much more samples of one
class than the other class in the imbalanced class distribution prob-
lem, under-sampling approach is supposed to reduce the number
of samples with the majority class. Assume in a training dataset,
MA is the sample set with the majority class, and MI is the other
set which has the minority class. Hence, an under-sampling ap-
proach is to decrease the skewed distribution of MA and MI by
lowering the size of MA. Generally, the performances of over-sam-
pling approaches are worse than that of under-sampling ap-
proaches (Drummond & Holte, 2003).

One simple method of under-sampling is to select a subset of
MA randomly and then combine them with MI as a training set,
which is called random under-sampling approach. Several advanced
researches are proposed to make the selective samples more repre-
sentative. The under-sampling approach based on distance (Chyi,
2003) uses distinct modes: the nearest, the farthest, the average
nearest, and the average farthest distances between MI and MA,
as four standards to select the representative samples from MA.
For every minority class sample in the dataset, the first method
‘‘nearest” calculates the distances between all majority class sam-
ples and the minority class samples, and selects k majority class
samples which have the smallest distances to the minority class
sample. If there are n minority class samples in the dataset, the
‘‘nearest” method would finally select k � n majority class samples
(k P 1). However, some samples within the selected majority class
samples might duplicate.

Similar to the ‘‘nearest” method, the ‘‘farthest” method selects
the majority class samples which have the farthest distances to
each minority class samples. For every majority class samples in
the dataset, the third method ‘‘average nearest” calculates the
average distances between one majority class sample and all
minority class samples. This method selects the majority class
samples which have the smallest average distances. The last meth-
od ‘‘average farthest” is similar to the ‘‘average nearest” method; it
selects the majority class samples which have the farthest average
distances with all the minority class samples. The above under-
sampling approaches based on distance in Chyi (2003) spend a
lot of time selecting the majority class samples in the large dataset,
and they are not efficient in real applications.

Zhang and Mani (2003) presented the compared results within
four informed under-sampling approaches and random under-
sampling approach. The first method ‘‘NearMiss-1” selects the
majority class samples which are close to some minority class sam-
ples. In this method, majority class samples are selected while
their average distances to three closest minority class samples
are the smallest. The second method ‘‘NearMiss-2” selects the
majority class samples while their average distances to three far-
thest minority class samples are the smallest. The third method
‘‘NearMiss-3” take out a given number of the closest majority class
samples for each minority class sample. Finally, the fourth method
‘‘Most distant” selects the majority class samples whose average
distances to the three closest minority class samples are the larg-
est. The final experimental results in Zhang and Mani (2003)
showed that the NearMiss-2 method and random under-sampling
method perform the best.

3. Our approaches

In this section, we present our cluster-based under-sampling
approach. Our approach first clusters all the training samples into
some clusters. The main idea is that there are different clusters in a



Table 2
Cluster descriptions

Cluster
ID

Number of majority class
samples

Number of minority
class samples

Sizei
MA=Sizei

MI

1 500 10 500/10 = 50
2 300 50 300/50 = 6
3 200 40 200/40 = 5
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dataset, and each cluster seems to have distinct characteristics. If a
cluster has more majority class samples and less minority class
samples, it will behave like the majority class samples. On the
other hand, if a cluster has more minority class samples and less
majority class samples, it doesn’t hold the characteristics of the
majority class samples and behaves more like the minority class
samples. Therefore, our approach selects a suitable number of
majority class samples from each cluster by considering the ratio
of the number of majority class samples to the number of minority
class samples in the cluster.

3.1. Under-sampling based on clustering

Assume that the number of samples in the class-imbalanced
dataset is N, which includes majority class samples (MA) and
minority class samples (MI). The size of the dataset is the number
of the samples in this dataset. The size of MA is represented as Si-
zeMA, and SizeMI is the number of samples in MI. In the class-imbal-
anced dataset, SizeMA is far larger than SizeMI. For our under-
sampling method SBC (under-sampling based on clustering), we
first cluster all samples in the dataset into K clusters. In the exper-
iments, we will study the performances for the under-sampling
methods on different number of clusters.

Let the number of majority class samples and the number of
minority class samples in the ith cluster (1 5 i 5 K) be Sizei

MA and
Sizei

MI, respectively. Therefore, the ratio of the number of majority
class samples to the number of minority class samples in the ith
cluster is Sizei

MA=Sizei
MI. Suppose the ratio of SizeMA to SizeMI in

the training dataset is set to be m:1 (m = 1). The number of se-
lected majority class samples in the ith cluster is shown in expres-
sion (1):

SSizei
MA ¼ ðm� SizeMIÞ �

Sizei
MA=Sizei

MIPK
i¼1Sizei

MI=Sizei
MI

ð1Þ

In expression (1), m� SizeMI is the total number of selected major-
ity class samples that we suppose to have in the final training data-
set.

PK
i¼1Sizei

MI=Sizei
MI is the total ratio of the number of majority

class samples to the number of minority class samples in all clus-
ters. Expression (1) determines that more majority class samples
would be selected in the cluster which behaves more like the
majority class samples. In other words, SSizei

MA is larger while the
ith cluster has more majority class samples and less minority class
samples.

If there is no minority class samples in the ith cluster, then the
number of minority class samples in the ith cluster (i.e., Sizei

MI) is
regarded as one, that is, we assume that there is at least one minor-
ity class sample in a cluster. After determining the number of
majority class samples which are selected in the ith cluster
(1 5 i 5 K) by using expression (1), we randomly choose majority
class samples in the ith cluster. The total number of selected
majority class samples is about m � SizeMI after merging all the se-
lected majority class samples in each cluster. Finally, we combine
the whole minority class samples with the selected majority class
samples to construct a new training dataset. The ratio of SizeMA to
Table 1
The structure of SBC

Step 1 Determine the ratio of SizeMA to SizeMI in the training dataset
Step 2 Cluster all the samples in the dataset into some clusters
Step 3 Determine the number of selected majority class samples in each cluster

by using expression (1), and then randomly select the majority class
samples in each cluster

Step 4 Combine the selected majority class samples and all the minority class
samples to obtain the training dataset
SizeMI is about m:1 in the new training dataset. Table 1 shows the
steps for our cluster-based under-sampling method SBC.

For example, assume that an imbalanced class distribution
dataset has totally 1100 samples. The size of MA is 1000 and the
size of MI is 100. In this example, we cluster this dataset into three
clusters. Table 2 shows the number of majority class samples
Sizei

MA, the number of minority class samples Sizei
MI, and the ratio

of Sizei
MA to Sizei

MI for the ith cluster.
Assume that the ratio of SizeMA to SizeMI in the training data is

set to be 1:1. In other words, there are about 100 selected majority
class samples and the whole 100 minority class samples in this
training dataset. The number of selected majority class samples
in each cluster can be calculated by expression (1). Table 3 shows
the number of selected majority class samples in each cluster. We
finally select the majority class samples randomly from each clus-
ter and combine them with the minority class samples to form the
new dataset.

3.2. Under-sampling based on clustering and distances between
samples

In SBC method, all the samples are clustered into several clus-
ters and the number of selected majority class samples is deter-
mined by expression (1). Finally, the majority class samples are
randomly selected from each cluster. In this section, we propose
other five under-sampling methods, which are based on SBC ap-
proach. The difference between the five proposed under-sampling
methods and SBC method is the way to select the majority class
samples from each cluster. For the five proposed methods, the
majority class samples are selected according to the distances be-
tween the majority class samples and the minority class samples in
each cluster. Hence, the distances between samples will be
computed.

For a continuous attribute, the values of all samples for this
attribute need to be normalized in order to avoid the effect of dif-
ferent scales for different attributes. For example, suppose A is a
continuous attribute. In order to normalize the values of attribute
A for all the samples, we first find the maximum value MaxA and
the minimum value MinA of A for all samples. To lie an attribute va-
lue ai in between 0 and 1, ai is normalized to ai—MinA

MaxA�MinA
. For a cate-

gorical or discrete attribute, the distance between two attribute
values x1 and x2 is 1 (i.e. x1 � x2 = 1) while x1 is not equal to x2,
and the distance is 0 (i.e. x1 � x2 = 0) while they are the same.

Assume that there are N attributes in a dataset and VX
i represents

the value of attribute Ai in sample X, for 1 5 i 5 N. The Euclidean dis-
tance between two samples X and Y is shown in expression (2):

DistanceðX;YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

ðVX
i � VY

i Þ
2

vuut ð2Þ
Table 3
The number of selected majority class samples in each cluster

Cluster ID The number of selected majority class samples

1 1 � 100 � 50/(50 + 6 + 5) = 82
2 1 � 100 � 6/(50 + 6 + 5) = 10
3 1 � 100 � 5/(50 + 6 + 5) = 8
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The five approaches we proposed in this section first cluster all
samples into K (K P 1) clusters as well, and determine the number
of selected majority class samples for each cluster by expression (1).
For each cluster, the representative majority class samples are se-
lected in different ways. The first method SBCNM-1 (sampling based
on clustering with NearMisss-1) selects the majority class samples
whose average distances to M nearest minority class samples
(M P 1) in the ith cluster (1 5 i 5 K) are the smallest. In the second
method SBCNM-2 (sampling based on clustering with NearMisss-2),
the majority class samples whose average distances to M farthest
minority class samples in the ith cluster are the smallest will be
selected.

The third method SBCNM-3 (sampling based on clustering with
NearMisss-3) selects the majority class samples whose average dis-
tances to the closest minority class samples in the ith cluster are
the smallest. In the forth method SBCMD (sampling based on clus-
tering with Most Distance), the majority class samples whose aver-
age distances to M closest minority class samples in the ith cluster
are the farthest will be selected. For the above four approaches, we
refer to (Zhang & Mani, 2003) for selecting the representative sam-
ples in each cluster. The last proposed method, which is called
SBCMF (sampling based on clustering with most far), selects the
majority class samples whose average distances to all minority
class samples in the cluster are the farthest.
Fig. 1. The distribution of samples in a dataset.

Fig. 2. Example for disordered samples.
4. Experimental results

In this section, we evaluate the performances for our proposed
under-sampling approaches on synthetic datasets and real data-
sets. In the following, we first describe the method of generating
class imbalanced datasets. And then we compare the classification
accuracies of our methods for minority class with the other meth-
ods by performing neural network classification algorithm (Sondak
& Sondak, 1989) on synthetic datasets. Finally, the classification
accuracies for minority class on real datasets by applying our pro-
posed methods and the other methods are also evaluated.

4.1. Generation of synthetic datasets

In this subsection, we present the synthetic dataset generation
method to simulate the real-world dataset. This method is imple-
mented with a user interface such that the parameters can be set
for generating the synthetic dataset from the user interface, which
is called synthetic dataset generator.

A synthetic dataset includes a set of attributes and each sample
in the dataset has a set of particular attribute values. In real-world,
the samples in the same class should have similar attribute values
and the samples in different class should have different character-
istics. Even though the samples in the same class, these samples
may have different characteristics and can be clustered into some
clusters. The samples in a cluster may have the similar attribute
values and may belong to different classes. Besides, there may be
some noises or exceptions in a dataset, that is, some samples in
one class may have the similar attribute values with the samples
in the other class or may be not similar to any other samples with
the same class. According to the above observations, the following
parameters need to be set for generating the synthetic dataset:
number of samples, number of attributes and number of clusters.

Because the samples in a cluster may belong to different classes,
in a cluster, the samples are separated into two groups: the samples
in one group are assigned a class and the samples in the other group
are assigned to the other class. The attribute values for the samples
are more similar to the samples in the same group, because they are
in the same cluster and the same class. Fig. 1 shows the distribution
of samples in a dataset which has three clusters inside.
In order to make the synthetic datasets more like real datasets,
the noisy data are necessary. The synthetic datasets have two kinds
of noisy data: disordered samples and exceptional samples. A data-
set which does not have any noisy data is like the one in Fig. 1. The
disordered samples are illustrated with Fig. 2 in which some
majority class samples (or minority class samples) lie to the area
of minority class samples (or majority class samples). As for excep-
tional samples, they distribute irregularly in a dataset. The samples
outside the clusters in Fig. 3 are exceptional samples.

4.2. Evaluation criteria

For our experiments, we use three criteria to evaluate the clas-
sification accuracy for minority class: the precision rate P, the re-
call rate R, and the F-measure for minority class. The precision
rate for minority class is the correct-classified percentage of sam-
ples which are predicted as minority class by the classifier. The re-
call rate for minority class is the correct-classified percentage of all
the minority class samples. Generally, for a classifier, if the preci-
sion rate is high, then the recall rate will be low, that is, the two
criteria are trade-off. We cannot use one of the two criteria to eval-
uate the performance of a classifier. Hence, the precision rate and



Fig. 3. Example for exceptional samples.
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recall rate are combined to form another criterion F-measure,
which is shown in expression (3).

MI’s F-measure ¼ 2� P� R
Pþ R

ð3Þ

In the following, we use the three criteria discussed above to
evaluate the performance of our approaches SBC, SBCNM-1,
SBCNM-2, SBCNM-3, SBCMD, and SBCMF by comparing our methods
with the other methods AT, RT, and NearMiss-2. The method AT
uses all samples to train the classifiers and does not select samples.
RT is the most common-used random under-sampling approach
and it selects the majority class samples randomly. The last
method NearMiss-2 is proposed by Zhang & Mani, 2003, which
has been discussed in Section 2. The two methods RT and Near-
Miss-2 have the better performance than the other proposed meth-
ods in Zhang and Mani (2003). In the following experiments, the
classifiers are constructed by using the artificial neural network
technique in IBM Intelligent Miner for Data V8.1, and the k-means
CNM-
1

SBCNM-
2

SBCNM-
3

SBCMD SBCMF

proach

DS4E10D20
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clustering algorithm is used for our methods. In our experiments,
the clustering algorithms would not influence the performances
of our methods.

4.3. Experimental results on synthetic datasets

For each generated synthetic dataset, the number of samples is
set to 10,000, the number of numerical attributes and categorical
attributes are set to 5, respectively. The dataset DSi means that
the dataset potentially can be separated into i clusters, and our
methods also cluster the dataset DSi into i clusters. Moreover, a
dataset DSi with j% exceptional samples and k% disordered samples
is represented as DSiEjDk. If there is no disordered sample in the
synthetic dataset, the dataset is represented as DSiEjDN.

Fig. 4 shows the MI’s F-measures for our method and the other
methods on datasets DS4E10DN and DS4E10D20. The ratio of the
number of majority class samples to the number of minority class
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Fig. 7. MI’s F-measure for each method on the datasets with
samples is 9–1 in the two datasets for this experiment. In Fig. 4, the
method AT has the highest MI’s F-measure in DS4E10DN because
AT puts all the samples in the dataset into training and there is
no disordered samples and just few exceptional samples in the
dataset. The data distribution and characteristics can be com-
pletely represented from all the samples if there is no noise in
the dataset. Hence, the classifier on DS4E10DN has the best classi-
fication accuracy when the method AT is applied. However, the
method AT has to put all the samples into training, which is very
time-consuming. Our method SBC and RT just need to put 20% of
all samples into training since the ratio of SizeMA to SizeMI is set
to be 1:1, and the MI’s F-measures are above 80%. The method AT
on dataset DS4E10D20 becomes worst and the classification accu-
racy is below 10%, because the dataset includes some noises, that
is, 10% exceptional samples and 20% disordered samples for all
the samples and all the noises are put into training. The classifica-
tion accuracy for our method SBC and RT are significantly better
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than AT, since some noises can be ignored by applying SBC and RT.
In this experiment, the performances of classification by using SBC
and RT are better than the other methods.

Fig. 5 shows the experimental results in the datasets in which
the ratios of the number of majority class samples to the number
of minority class samples are 2:1, 4:1, 9:1, 18:1, 36:1, and 72:1,
respectively. For each specific ratio, we generate several synthetic
datasets DSiE10D20 in which i is from 2 to 16. Hence, the average
MI’s F-measures are computed from all the datasets for each spe-
cific ratio. In Fig. 5, we can see that the average MI’s F-measure
for SBC is higher than the other methods in most cases. Fig. 6 shows
the performances of our approaches and other approaches on data-
sets DSiE10D20, in which i is from 2 to 16. In these synthetic data-
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sets, the ratio of the number of majority class samples to the
number of minority class samples is 9–1. In Fig. 6, we can see that
the average MI’s F-measure for SBC and RT are better than the other
methods and our method SBC outperforms RT in most cases.

We raise the percentage of exceptional samples and disordered
samples to 30% and 40%, respectively. And then we continue to
raise the percentage of exceptional samples and disordered sam-
ples to 50% and 60%, respectively. Figs. 7 and 8 show the experi-
mental results in DSiE30D40 and DSiE50D60, respectively, in
which i is from 2 to 16. The experimental results show that SBCMD
is the most stable method and has high MI’s F-measure in each
synthetic dataset. RT is also a stable method in the experiments,
but the performance for SBCMD is better than RT in most cases.
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Table 4
The experimental results on Census-Income Database

Method MI’s
precision

MI’s
recall

MI’s F-
measure

MA’s
precision

MA’s
recall

MA’s F-
measure

SBC 47.78 88.88 62.15 94.84 67.79 79.06
RT 30.29 99.73 46.47 99.63 23.92 38.58
AT 35.1 98.7 51.9 98.9 39.5 43.8
NearMiss-2 46.3 81.23 58.98 91.70 68.77 78.60
SBCNM-1 29.28 99.80 45.28 99.67 20.07 33.41
SBCNM-2 29.6 99.67 45.64 99.49 21.39 35.21
SBCNM-3 28.72 99.8 44.61 99.63 17.9 30.35
SBCMD 29.01 99.73 44.94 99.54 19.05 31.99
SBCMF 43.15 93.48 59.04 96.47 59.15 73.34
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Although the MI’s F-measure for SBCMF is higher than the other
methods in some cases, the performance for SBCMF is not stable.
Hence, the performance for SBCMD is the best in most of the cases
when the datasets contain more exceptional samples and disor-
dered samples, and SBC is stable and performs well in any case.

The average execution time for each method is shown in Fig. 9.
The execution time includes the time for executing the under-sam-
pling method and the time for training the classifiers. According to
the results in Fig. 9, both SBC and RT are most efficient among all
the methods, and NearMiss-2 spends too much time for selecting
the majority class samples.
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Fig. 10. The execution times on Census-
4.4. Experimental results on real datasets

We compare our approaches with the other under-sampling ap-
proaches in two real datasets. One of the real datasets is named
Census-Income Database, which is from UCI Knowledge Discovery
in Databases Archive. Census-Income Database contains census data
which are extracted from the 1994 and 1995 current population
surveys managed by the US Census Bureau. The binary classifica-
tion problem in this dataset is to determine the income level for
each person represented by the record. The total number of sam-
ples after cleaning the incomplete data is 30,162, including
22,654 majority class samples which the income level are less than
50K dollars and 7508 minority class samples which the income le-
vel are greater than or equal to 50K dollars. We use 80% of the sam-
ples to train the classifiers and 20% to evaluate the performances of
the classifiers. The precision rates, recall rates, and F-measures for
our approaches and the other approaches are shown in Table 4. Fig.
10 shows the execution time for each method, which includes
selecting the training data and training the classifier. In Table 4,
we can observe that our method SBC has the highest MI’s F-mea-
sure and MA’s F-measure while comparing with other methods.
Besides, SBC only needs to take a short execution time which is
shown in Fig. 10.

The other real dataset in our experiment is conducted by a bank
and is called Overdue Detection Database. The records in Overdue
n Overdue Detection Database.
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Fig. 12. Execution times on Overdue Detection Database for each method.
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Detection Database contain the information of customers, the sta-
tuses of customers’ payment, the amount of money in customers’
bills, and so on. The purpose of this binary classification problem
is to detect the bad customers. The bad customers are the minori-
ties within all customers and they do not pay their bills before the
deadline. We separate Overdue Detection Database into two subsets.
The dataset extracted from November in 2004 are used for training
the classifier and the dataset extracted from December in 2004 are
used for testing task. The total number of samples in the training
data of Overdue Detection Database is 62,309, including 47,707
majority class samples which represent the good customers and
14,602 minority class samples which represent the bad customers.
The total number of samples in the testing data of Overdue Detec-
tion Database is 63,532, including 49,931 majority class samples
and 13,601 minority class samples. Fig. 11 shows the precision
rate, recall rate and F-measure of minority class for each approach.
From Fig. 11, we can see that our approaches SBC and SBCMD have
the best MI’s F-measure. Fig. 12 shows the execution times for all
the approaches in Overdue Detection Database.

In the two real applications which involve the imbalanced class
distribution problem, our approach SBC has the best performances
on predicting the minority class samples. Moreover, SBC takes less
time for selecting the training samples than the other approaches
NearMiss-2, SBCNM-1, SBCNM-2, SBCNM-3, SBCMD, and SBCMF.

5. Conclusions

In a classification task, the effect of imbalanced class distribu-
tion problem is often ignored. Many studies (Japkowicz, 2001;
Lee & Chen, 2005; Li et al., 2004) focused on improving the clas-
sification accuracy but did not consider the imbalanced class dis-
tribution problem. Hence, the classifiers which are constructed
by these studies lose the ability to correctly predict the correct
decision class for the minority class samples in the datasets
which the number of majority class samples are much greater
than the number of minority class samples. Many real applica-
tions, like rarely seen disease investigation, credit card fraud
detection, and internet intrusion detection always involve the
imbalanced class distribution problem. It is hard to make right
predictions on the customers or patients who that we are inter-
ested in.

In this study, we propose cluster-based under-sampling ap-
proaches to solve the imbalanced class distribution problem by
using backpropagation neural network. The other two under-sam-
pling methods, Random selection and NearMiss-2, are used to be
compared with our approaches in our performance studies. In
the experiments, our approach SBC has better prediction accuracy
and stability than other methods. SBC not only has high classifica-
tion accuracy on predicting the minority class samples but also
has fast execution time. Our another approach SBCMD has better
prediction accuracy and stability when the datasets contain more
exceptional samples and disordered samples. However, our other
approaches SBCNM-1, SBCNM-2, SBCNM-3, and SBCMF do not have
stable performances in our experiments. The five methods take
more time than SBC on selecting the majority class samples as
well.
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