
Multi-Label Imbalanced Data Enrichment Process in Neural Net

Classifier Training

Gorn Tepvorachai, Student Member, IEEE, and Chris Papachristou, Fellow, IEEE

Abstract— Semantic scene classification, robotic state recog-
nition, and many other real-world applications involve multi-
label classification with imbalanced data. In this paper, we
address these problems by using an enrichment process in
neural net training. The enrichment process can manage the
imbalanced data and train the neural net with high classification
accuracy. Experimental results on a robotic arm controller show
that our method has better generalization performance than
traditional neural net training in solving the multi-label and
imbalanced data problems.

I. INTRODUCTION

S EMANTIC scene classification, robotic state recognition,

and many other real-world applications and optimiza-

tions involve multi-label classification, where a set of inputs

is associated with multiple labels (outputs). For example,

in semantic scene, a detected object (inputs) can belong to

more than one object class (multiple labels). In robotic arm

controller, a robot arm angle position may exist in more

than one controller state. Unfortunately, most traditional

classifiers [1], [2] can only handle single-label problems—

, where a set of inputs is mapped to only one label, such

as identification for one object class or the recognition of

one controller state—or balanced data, where the classifier

training data is uniformly distributed over the data space.

On the other hand, many classification problems also in-

volve imbalanced data, where sampled data for the classifier

training is non-uniformly distributed over the data space. The

imbalanced data problem can take two distinct forms: either

one class is under-sampled relatively to other classes, or it

is over-sampled but too sparse in the sampling space. For

example, a robotic arm controller uses the arm angle position

and the sub-controller circuit gain to determine the controller

states. The sampling of the controller has one state sparsely

over-sampled relatively to other states due to the application

design specification. Other applications, such as facial image

associative memory [3] and adaptive self-configurable filters

[4], [5], are also compatible with this approach.

Most learning algorithms, like traditional neural nets [6]

and support vector machines [1], are designed for well-

balanced data and do not work well on imbalanced data.

While a traditional classifier can achieve very high accuracy

by simply ignoring the minority samples, this is obviously

This work was supported, in part, by School of Graduate Studies at

Case Western Reserve University.

Gorn Tepvorachai and Chris Papachristou are with the Department
of Electrical Engineering and Computer Science, Case Western Reserve
University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA (email:
gxt16@case.edu and cap2@case.edu).

undesirable because the minority samples may contain crit-

ical information which makes such a classifier useless in

practice.

In this paper, we introduce a data enrichment process for

neural net training to address the multi-label and imbalanced

data problem. This enrichment process manipulates the im-

balanced data into a smaller subset of more balanced data

which will be used in the training of a neural net classifier.

This subset is initialized through imbalanced data clustering

and cluster re-sampling to obtain equally represented data in

Euclidean space. The enrichment process iteratively updates

the subset throughout the training phase by incrementally

adding and removing data to maintain and improve classifier

performance. The experimental outputs of the classifier show

that our method has better generalization performance than

the traditional classifier training.

This paper is structured as follows. In the following

section, Section II, some related works and our enrichment

process overview are briefly introduced. In Section III, the

proposed enrichment processes, including initialization, up-

dates, and termination, are described in detail. In Section IV,

we perform experiments on robotic arm control problems

and compare our methods with traditional classifiers. Finally,

some conclusions are drawn in Section V.

II. BACKGROUND

A. Related works

In the recent literature, some promising works have been

reported with the development of multi-label classification

algorithms, such as non-mutually exclusive class definition

in Boutella [7], relevance feedback with supervised learning

paradigm in Dorado [8], and multi-label conditional random

field classification model in Ghamrawi [9]. These techniques

have been shown to work with support vector machines but

not for neural nets. Additionally, they assume a sparsely

distribution of the training data set.

A number of approaches have also been proposed to

address the imbalanced data problem. Examples include

over-sampling of the minority class samples in Chawla [10]

and adjusting the misclassification costs of the two classes in

Japkowicz [11]. Nonetheless, these works have shown to be

effective for Bayesian classifiers and decision tree systems–

not neural nets.

Regarding works on data enrichment on neural net train-

ing, a few techniques to improve the training process have

been proposed and proven to be effective under certain

application constrains. Liu [12], Patil [13], and Salazar [14]

1301

978-1-4244-1821-3/08/$25.00 c©2008 IEEE

propose the use of various training data clustering techniques

to find cluster centroids using the cluster centroids as a

training set for a single neural net. The results show good

improvement; however, it is uncertain on how to select an

appropriate number of clusters.

Another effort is to use multiple neural nets (ensemble)

training on data clusters reported by Arslan [15], Cunning-

ham [16], El-Gamal [17], Hartono [18], and Liu [19]. Each

neural net is dedicated for training one data cluster. The

results show better neural net performance in generalizing

new inputs. Nevertheless, these approaches suffer from the

use of multiple neural nets and their interpolation between

the transition region of two adjacent clusters.

B. Overview of the Enrichment Process

In this work, we introduce the training data enrichment

process (otherwise known as enrichment process), which is

responsible for managing the balanced/imbalanced training

data during the neural net classifier training. The enrichment

process re-samples the imbalanced data into a smaller subset

of more balanced data. This subset is initialized through

imbalanced data clustering and cluster re-sampling to obtain

equally represented data in Euclidean space. The enrichment

process iteratively updates the subset throughout the training

phase by incrementally adding and removing data to maintain

and improve classifier performance. The enrichment process

operates solely during the neural net training phase–not

during the normal operation.

The difference between our approach and other works are

that we show the multi-label and imbalanced data problem

can be addressed with a single neural net. Our result accuracy

and capability are comparable to support vector machines,

Bayesian classifiers, and decision tree systems mentioned

earlier. Additionally, we propose a data selection technique

to improve neural net classifier training from the available

imbalanced training set, which has not been addressed di-

rectly in existing works. Our approach avoids the assumption

of sparsely distribution of the available training set as in

[7], [8], [9]; it does not need data fusion techniques to

integrate multiple neural net estimations (from ensemble) as

in [16], [17], [18]. Though our approach uses a clustering

technique, it does not require knowing the number of initial

clusters in advance as in [12], [13], [14]; however, having

that knowledge can be useful.

The enrichment process manages the training data within

three steps:

1) Enrichment Initialization re-samples the available im-

balanced training data or training set scope (T) to create

a subset of more balanced training data or active training

set (τ) for the first time neural net classifier training.

2) Enrichment Update incrementally adds and removes

training data to/from the current active training set (τ) at

the end of an enrichment training iteration. Additional

training data are requested from the training set scope

(T) to train the neural net. The modified active train-

ing set (τ) (after adding and removing of some data)

remains a subset of the training set scope (T).

3) Enrichment Termination controls the enrichment pro-

cess to iterate for a pre-defined number of enrichment

training iterations.

We will describe the first two steps of managing the

imbalanced data in Section III. Then, we will illustrate their

mechanisms and the benefits of the enrichment process in

Section IV.

III. OUR APPROACH

Our enrichment process to improve the performance of

a single neural net is distinctly different from other existing

works mentioned earlier. The enrichment process manipu-

lates the available imbalanced training data or the training

set scope (T) by, first, systematically generating an initial

subset of training data or an active training set (τ) by clus-

ter re-sampling. Then, it incrementally modifies the subset

during the neural net classifier training process. The data

for neural net training is continuously added and removed

with respected to the neural net bias to certain training data

space (regions). The training data points which are relatively

well-trained in the neural net should be dropped. On the

other hand, each training data point which is relatively under

trained should recruit more neighboring training data points.

The incremental data modification process repeats to a pre-

defined number of enrichment iterations. Figure 1 presents

the pseudo code illustrating the enrichment process in three

steps.

Step 1: Initialization
a) Select a number, g.
b) Cluster the training set scope into g clusters.
c) Select equal number of data from each cluster

Step 2: Updates
a) Train the neural net with the active training set.
b) Separate the active training set into 3 groups

respecting to their energy errors.
c) Add neighbors for high−group and remove half

of the low−group.

as active training set.

Step 3: Termination
a) Check if the enrichment process repeats for

a pre−defined number of iterations.
b) If NO, repeat Step 2. Otherwise, stop.

Figure 1

PSEUDO CODE FOR ENRICHMENT PROCESS

A. Enrichment Initialization

The enrichment process starts from the available imbal-

anced training data or the training set scope (T) provided by a

human investigator or a knowledge base. As for the first step,

the enrichment process re-samples an initial subset training

data or active training set (τ) from the training set scope

(T) by applying a clustering algorithm based on Euclidean

distance 1 . The clustering technique (C) is initiated with an

arbitrary initial number of clusters (g). If we have a priori

knowledge of how the training set scope (T) is scattered

1302 2008 International Joint Conference on Neural Networks (IJCNN 2008)

in space, we can use the visual estimation for the initial

number of clusters. Regardless of how the initial number of

clusters is selected, the active training set (τ) will be balanced

later on during the neural net training. These g clusters are

solely used during the enrichment initialization; they will be

discarded afterwards.

Once the training set scope (T) has been formed into

g clusters, the enrichment process selects m training data

from each cluster to produce the initial active training set

(τ) where m is the least number of training data points in

all g clusters. The selection technique (S) of m training data

can be done by applying the same clustering algorithm (C)

to the cluster with m sub-clusters. The training data points,

which are closest (by Euclidean distance 1) to the sub-cluster

centers, represent the selected m points of the cluster. Hence,

we can write the initializing process of the more balanced

subset training data or the initial active training set (τ) in the

enrichment process as

τ = S (C(T, g)) (1)

About the computational complexity, the enrichment ini-

tialization performs the clustering algorithm (C) and the

selection algorithm (S) on the training set scope (T). Accord-

ing to Jain [20] and Berkhin [21], the clustering algorithm,

based on k-mean Euclidean distance, has complexity of

O(n · ln n · r) order where n is the number of data (|T|)
and r is the information dimensionality of data (including

input and output data). The selection algorithm applies

the clustering algorithm onto all g clusters; this requires

complexity g · O(n · ln n · r
g
) = O(n · ln n · r). The enrich-

ment initialization only occurs once at the beginning of the

enrichment training. Therefore, the enrichment initialization

computational complexity is of the order

O(n · ln n · r) (2)

B. Enrichment Update

The training process will use the active training set (τ)

to train the neural net. Once the training is suspended after

a pre-defined number of training iterations, the enrichment

process re-examines the current training data by analyzing

the energy error 2 (ej) of each training data (tj) in the

active training set (τ). The energy error of the training data

is normalized and compared against two preset thresholds

(eh, el where eh > el). These thresholds separate the subset

training data (τ) into three groups: high error (τh), middle

error (τm), and low error (τ l) groups, in Equation (3).

τh =
{
tj |tj ∈ τ, ej ≥ eh

}
τm =

{
tj |tj ∈ τ, eh > ej > el

}
τ l =

{
tj |tj ∈ τ, el ≥ ej

}
(3)

With the three groups, we can concentrate neural net

training on particular data which have not been very well-

trained (indicated in high-error group). At the same time,

we can ignore some data which are already well-trained

(indicated in low-error group). The high-error group repre-

sents all current training data which are under trained in

the neural net. The middle-error group is doing acceptable.

On the contrary, the lower-error group represents all current

training data for which the neural net is already well-trained

or is biased.

The enrichment process (E) enriches the active training

set (τ) by adding (at most doubling) training data in the high-

error group (τh) and removing (at most half) training data

in the lower-error group (τ l). The middle-error group is left

unmodified. The enrichment process for adding training data

finds the nearest neighbor (defined by Euclidean distance 1

) for each training data in the high-error group (τh). The

nearest neighbors are added to the current training data for

the next enrichment training iteration.

On the other hand, the enrichment process for removing

training data uses similar method of selecting m training

data points from a cluster in the enrichment initialization. We

need to select half number of training data in the low-error

group (n =
⌊
|τ l|
2

⌋
). To select n training data points from the

low-error group, we apply the same clustering algorithm (C)

to the low-error group with n sub-clusters. The training data

point, which are closest (by Euclidean distance 1) to the sub-

cluster centers, will be kept for the next enrichment training

iteration. The rest of the training data are removed from the

current data for the next enrichment training iteration. Hence,

we can represent the enrichment process of the training data

as

τ = τi+1 = E (τi, {ej}, eh, el) (4)

where i is the enrichment iteration index and j is training

data index in the current active training set τi. The newly

modified, more balanced training data or the new active

training set (τ = τi+1) will be used in neural net training

of the next enrichment iteration.

The computational complexity of the enrichment update

depends on two main factors: the number of data (n = |T|)
and the number of enrichment iterations (p). The three-

group separation (τh, τm, τ l) is a simple comparison against

two preset threshold (eh, el), which takes O(n) complexity.

Then a neighbor for each high-group data points (τh) is

added to the active training set; the computation of finding

an appropriate neighbor takes O(n) for one data point.

Thus, the total addition of the active training set requires

O(n · |τh|) = O(n2) complexity. Next step is to half the

low-group (τ l) by applying the clustering technique (C); this

needs O(|τ l| · ln |τ l| · r) = O(n · ln n · r) complexity. The

enrichment update is repeated for a predefined number of

enrichment iterations (p). Therefore, the enrichment update

computational complexity is of the order

O(p · n2 · r) (5)

2008 International Joint Conference on Neural Networks (IJCNN 2008) 1303

C. Enrichment Termination

The enrichment process iterates through the enrichment

update step for a pre-defined number of enrichment training

iterations. The enrichment update uses the active training set

(τ) to train the neural net using the evolutionary training

technique in Tepvorachai [4] which is based on a modified

back propagation. Similar to a conventional back propagation

in Haykin [6], the evolutionary training repeats the training

process for a pre-defined number of iterations. Like the

neural net training, the longer the enrichment process repeats,

the better the trained neural net can estimate the active

training set. However, if we have a priori knowledge of

how well the training neural net performs after a number of

iterations, we can select the number of iterations that trains

the neural net to a desired level of accuracy.

IV. EXPERIMENTATION

In this section, we are going to illustrate the results and

the benefits of our enrichment process in neural net training.

The scenario is the following. We face a great need to define

a mapping between two input parameters and an output

parameter. Such mapping is used in various applications,

such as classification problems (i.e. image, fluorescence

spectra, and gas dynamics) and control problems (i.e. robot

arm, state space). The relationship between the two input

parameters and the output is generally non-linear. Fitting and

calculating an explicit mathematical 3-dimension function

can be extremely tedious and computationally intensive. We

choose, as an alternative, to use neural net as a candidate

mapping function. In this example, we sampled data of

a robotic arm controller in Figure 2 and plot them in 3

dimensions in Figure 3, where Angle and Gain are the two

input parameters and State is the output parameter. Angle

represents the current robot arm angle measured from a

reference point (normalized from 0 to 1). Gain is an adaptive

sub-controller unit input-output gain (normalized from 0 to

1). State refers to the expected system state of the robot

arm.

Figure 3 shows the same sampled imbalanced control

data of 100 sampling points. To calculate and fit all the

sampling points with an explicit mathematical 3-dimensional

function, we need to do trial-and-error on various modeling

functions or require a certain high level of data modeling

expertise. Alternatively, we can use the sampled points to

train a neural net which also supports a powerful interpola-

tion function between the sampled points [2], [6]. However,

using all 100 sampled points in conventional training can

prove to deteriorate the training process (slow convergence

rate and imbalanced data effect) [10], [11], [14], [15]. We

will be using our training data enrichment process on a single

neural net to speed up the training process with imbalanced

data while improving or maintaining the neural net accuracy

in multi-label problems. Our results will be compared against

a training process using all 100 sampled points on a single

neural net and another training process with a randomly

selected subset of the sampling points on a single neural

Figure 2

SAMPLED IMBALANCED CONTROL DATA (MULTI-LABEL) [NOTE:

BLUE “©” REPRESENTS ROBOT ARM IN STATE 0; RED “�”

REPRESENTS STATE 1; AND MAGENTA “♦” REPRESENTS STATE

2]

Figure 3

SAME SAMPLED IMBALANCED CONTROL DATA AS IN FIGURE 2

IN 3-DIMENSIONAL PLOT (MULTI-LABEL)

net.

A. Setup

The following section describes the setups of the enrich-

ment process. Besides the difference in the training data,

all trainings share the following parameters. The neural net

trainings are repeated for 80 iterations. The neural nets are

setup with 2 inputs, 1 output, and 4 hidden neurons in 1

hidden layer. Note that, for the enrichment process, we do

data enrichment update every 20 iterations. This means the

enrichment initialization is at iteration 0; the enrichment

updates are at iteration 20, 40, and 60. The reason we

choose to do 4 enrichments at 20 iterations is to generate

a fair comparison among the trainings to the total sum of 80

iterations (arbitrary number). The 4 enrichment splits the 80

iterations into even interval of 20 iterations. From our prior

1304 2008 International Joint Conference on Neural Networks (IJCNN 2008)

knowledge, the interval of 20 iterations is sufficient to train

a neural net with the given architecture to a stable accuracy.

Figure 4 illustrates the imbalanced training data (sampled

control) or the training set scope (T) for neural net training

where blue “•” marks all 100 training data (sampled control

points), red “©” around a blue “•” means the selected

training data will be used for initial enrichment neural net

training, and dotted splines indicate initial enrichment clus-

ters. The enrichment initialization divides the 100 training

data into 3 initial clusters, from the visual inspection of the

training data scattering in space. As indicated by the dotted

splines, each cluster consists of 10, 42, and 48 training data

points, respectively, from left to right. The least number of

training data in all 3 initial clusters (m) is 10. Thus, 10

data points are selected from each cluster contributing to

the initial more balanced training data or the initial active

training set (τ) (total of 30 points).

Figure 4

INITIAL ENRICHMENT ACTIVE TRAINING SET AT ENRICHMENT

ITERATION 1 [NOTE: THE DOTTED SPLINES INDICATE 3 INITIAL

CLUSTERS.]

B. Results and Measurements

In the following section, we describe the neural nets eval-

uation after their trainings. During the enrichment training,

we observe the trained neural net performance. We measure

neural net performance in two ways:

1) Control effort accuracy (Ac) defined as the percentage

of accepted effort in the sampled points. This measures

how acceptable the neural net controller is within a

given tolerance level. Our robotic arm control process

has the control state tolerance of 0.07 normalized units.

If the estimated control state generated by the neural

nets is within the tolerance range, it is considered

acceptable. Otherwise, it will be rejected. The control

effort accuracy can be mathematically defined as the

percentage of acceptable control states (accepted) from

all sample control states (all):

Ac =
accepted

all
∗ 100% (6)

2) Control effort energy error (Ee) defined as the Eu-

clidean distances (energy error 2) between the estimated

control states and the sampled target control states. This

measures how closely the neural net is trained to the

given target regardless of the tolerance. The smaller the

energy error, the better the neural net performance is.

The control effort energy error can be mathematically

defined as:

Ee =

√∑
j

(tj − oj)2 (7)

where j is all sampled control points.

We measure the neural net’s performance after enrich-

ment iteration. The total number of enrichment iterations

for this example is 4. Table I shows the two neural net

performance measurements at the end of iterations. Figure 5

illustrates the last enrichment update training data where blue

“•” marks all 100 training data (sampled control points), red

“©” around a blue “•” means the selected training data for

enrichment iteration 4. We show Figure 5 as the enriched data

selection comparable to the initial data selection in Figure 4.

Iterations Accuracy Energy Error

1 27.00% 2.0759

2 87.00% 0.4353

3 89.00% 0.3958

4 98.00% 0.3104

TABLE I

NEURAL NET PERFORMANCE OVER ENRICHMENT TRAINING

PROCESS

Figure 5

ENRICHMENT TRAINING DATA UPDATE AT ITERATION 4

During the enrichment training process, we observe the

number of training data points being clustered into three error

groups: high-error, middle-error, and low-error groups, as

mentioned in Subsection III-B. The number of training data

points in the three group assignment is illustrated in Figure 6.

The first enrichment iteration (iteration 1) is the enrichment

2008 International Joint Conference on Neural Networks (IJCNN 2008) 1305

initialization. The enrichment update occurs after enrichment

iteration at 2, 3, and 4.

Figure 6

NUMBER OF TRAINING DATA POINTS IN HIGH-ERROR,

MIDDLE-ERROR, AND LOW-ERROR GROUPS

In addition to the three error group observation, a few

training data have been added and removed to/from the active

training set due to the enrichment update. The number of

training data points being added and removed to/from the

active training set is shown in Figure 7. The first enrichment

iteration (iteration 1) is the enrichment initialization; there

is no enrichment update (no training data being added or

removed).

Figure 7

NUMBER OF TRAINING DATA POINTS BEING ADDED AND

REMOVED

From the result in Figure 6 (magenta “�” marker) and

Figure 7, we observe the number of training data points

during the training process. Enrichment initialization pro-

duces training data with 30 points (1st enrichment iteration);

enrichment updates (2nd − 4th iterations) have 26, 27, and

29 data points, respectively.

Moreover, we measure how the active training set (τ)

from the enrichment initialization and the enrichment up-

date distributed over the training data space. We measure

the distribution by the training data variance. Recall that

the variance (ρ2) of 1-dimensional data is defined as the

average of the Euclidean distance square from data mean in

Equation (8) [22].

ρ2 =
1

N

N∑
i=1

(xi − x̄)2 (8)

We can calculate the variance of our 3-dimensional data

by replacing the 1-dimensional Euclidean distance square by

3-dimensional Euclidean distance square. Hence, we obtain

our training data distribution (variance) measurement in

Equation (9).

ρ2 =
1

N

N∑
i=1

3∑
j=1

(xi,j − x̄j)
2 (9)

The training data distribution and data mean (average)—as a

vector of the low-error, middle-error, and high-error groups,

respectively,—for the active training set (τ) in enrichment

iteration is shown in Table II.

Iterations Distribution Mean

1 0.5311 (0.3700 , 0.4183 , 0.7303)

2 0.4734 (0.5019 , 0.4827 , 0.9591)

3 0.6185 (0.4056 , 0.4278 , 0.7748)

4 0.4958 (0.4500 , 0.4931 , 0.8940)

TABLE II

ACTIVE TRAINING SET DISTRIBUTION AND TRAINING DATA

MEAN (AVERAGE)

Besides the neural net training with the enrichment

process, we created two comparison neural net trainings. We

refer to the neural net with enrichment training as “enriched”

neural net. One of the comparison trainings, indicated as

“all-data” neural net, refers to a neural net training with

all sampled imbalanced control data from Figure 3. Another

comparison training, indicated as “random” neural net, refers

to a neural net training with some randomly selected training

points from the sampled imbalanced control data in Figure 3.

The “random” neural net uses 29 randomly selected training

data which is about the same number of training data points

that “enriched” neural net uses. The comparison of neural

net performance at iteration 80 is shown in Table III. The

Accuracy, Energy Error, and training data Distribution are

defined in Equation (6), (7), and (9).

Neural net Accuracy Energy Error Distribution

“enriched” 98.00% 0.3104 0.5297∗

“all-data” 75.00% 1.2655 0.3903

“random” 72.00% 1.4792 0.4958

TABLE III

COMPARISON NEURAL NET PERFORMANCE AT ITERATION 80 [∗

IS THE AVERAGE DISTRIBUTION OVER THE ENRICHMENT

PROCESS IN TABLE II]

1306 2008 International Joint Conference on Neural Networks (IJCNN 2008)

C. Analysis and Discussion

From Figure 6, the “enriched” neural net training (with

more balanced data about 26-30 points) uses much less

training data than the “all-data” training (with 100 imbal-

anced training data points). The “enriched” and “random”

(29 randomly selected training data points) neural net use

about one-third of the available imbalanced data.

Regardless of the number of training data points for

neural net training, the measurement in Table III shows

the “enriched” neural net has higher accuracy (98.00%)

than the “all-data” (75.00%) and “random” (72.00%) neural

net classifier; at the same time, it has lower energy error

(0.3104) than the others (1.2655 and 1.4792). Additionally,

the training data distributions of “enriched” and “random”

training (0.5297 and 0.4958) are almost indistinguishable;

however, they are differentiated from the “all-data” distribu-

tion (0.3903).

Additionally, with regards to the result in Table I, the

enrichment process has incrementally improved the neural

net classifier performance. These results demonstrate that

the enrichment process contributes significant improvement

to the neural net classifier training process on multi-label

imbalanced training data. The enrichment training loop can

also be extended into higher information dimension neural

net training (including input and output data).

V. CONCLUSION

We have used the enrichment process for neural net

training to address the multi-label and imbalanced data

problems. We proposed enrichment initialization, update, and

termination processes. From the results, we can see that

the enrichment process has better generalization performance

than the traditional neural net training. Moreover, in order to

achieve the best performance, the initial enrichment cluster

size and update error thresholds should be selected according

to the given imbalanced training data. In the future, we will

incorporate this enrichment process with other neural net

training techniques to improve the neural net performance

and reduce the training time.

NOTES

1Other clustering techniques and distance measurements are also possible
as mentioned in Jain [20] and Berkhin [21].

2Energy error (Ee) is defined as a measurement of difference (or
closeness or similarity) between the neural net estimated output (y) and
the training data desired outputs (t) as described by

Ee =
1

2

v∑
i=1

(ti − yi)
2

where t and y are vectors of same lengths.

REFERENCES

[1] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods, 1st ed. Cam-
bridge University Press, 2000.

[2] R. Rojas, Neural Networks - A Systematic Introduction. Berlin, New-
York: Springer-Verlag, 1996.

[3] G. Tepvorachai and C. Papachristou, “Facial image associative mem-
ory model,” in NASA/ESA Conference on Adaptive Hardware and

Systems, 2007.
[4] ——, “Self-configurable neural network processor for fir filter applica-

tions,” in NASA/ESA Conference on Adaptive Hardware and Systems,
2006.

[5] ——, “Configurable fir filter scheme based on an adaptive multilayer
network structure,” in NASA/ESA Conference on Adaptive Hardware

and Systems, 2007.
[6] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.

Prentice Hall, 1998.
[7] M. R. Boutella, J. Luo, X. Shen, and C. M. Brown, “Learning multi-

label scene classification,” Pattern Recognition, vol. 37, pp. 1757–
1771, 2004.

[8] A. Dorado, D. Djordjevic, E. Izquierdo, and W. Pedrycz, “Super-
vised semantic scene classification based on low-level clustering and
relevance feedback,” in European Workshop on the Integration of

Knowledge, Semantics and Digital Media Technology, London, UK,
2004.

[9] N. Ghamrawi and A. McCallum, “Collective multi-label classifica-
tion,” in Conference on Information and Knowledge Management,
Bremen, Germany, 2005, pp. 195–200.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of

Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.
[11] N. Japkowicz and S. Stephen, “The class imbalance problem: A

systematic study,” Intelligent Data Analysis, vol. 6, no. 5, pp. 429–449,
2002.

[12] Y. Liu, X. Dai, and Y. Shi, “Self-organizing fuzzy clustering neural
networks controller for robotic manipulators,” in International Confer-

ence on Innovative Computing, Information and Control, vol. 2, 2006,
pp. 171–174.

[13] P. M. Patil, M. P. Deshmukh, and P. M. Mahajan, “A novel fuzzy
clustering neural network,” in IEEE International Joint Conference on

Neural Networks, vol. 3, 2005, pp. 1989–1994.
[14] H. Salazar, R. Gallego, and R. Romero, “Artificial neural networks

and clustering techniques applied in the reconfiguration of distribution
systems,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp.
1735–1742, 2006.

[15] M. A. Arslan, “The bp neural networks with data clustering enhance-
ment - an emerging optimization tool,” in International Symposium on

Intelligent Control, Dearborn, MI, 1996.
[16] P. Cunningham, J. Carney, and S. Jacob, “Stability problems with

artificial neural networks and the ensemble solution,” Artificial In-

telligence in Medicine, vol. 20, no. 3, pp. 217–225, 2000.
[17] M. A. El-Gamal and M. D. A. Mohamed, “Ensembles of neural

networks for fault diagnosis in analog circuits,” Journal of Electronic

Testing, vol. 23, no. 4, pp. 323–339, 2007.
[18] P. Hartono and S. Hashimoto, “Adaptive neural network ensemble

that learns from imperfect supervisor,” in International Conference

on Neural Information Processing, vol. 5, 2002, pp. 2561–2565.
[19] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory under-sampling

for class-imbalance learning,” in International Conference on Data

Mining, 2006, pp. 965–969.
[20] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”

ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.
[21] P. Berkhin, “A survey of clustering data mining techniques,” in

Computer Science. Springer Berlin Heidelberg, 2006, pp. 25–71.
[22] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and

Statistics for Engineers and Scientists, 7th ed. Prentice Hall, 2002.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 1307

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

