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Abstract. Learning from unbalanced datasets presents a convoluted
problem in which traditional learning algorithms may perform poorly.
The objective functions used for learning the classifiers typically tend
to favor the larger, less important classes in such problems. This paper
compares the performance of several popular decision tree splitting cri-
teria – information gain, Gini measure, and DKM – and identifies a new
skew insensitive measure in Hellinger distance. We outline the strengths
of Hellinger distance in class imbalance, proposes its application in form-
ing decision trees, and performs a comprehensive comparative analysis
between each decision tree construction method. In addition, we consider
the performance of each tree within a powerful sampling wrapper frame-
work to capture the interaction of the splitting metric and sampling. We
evaluate over this wide range of datasets and determine which operate
best under class imbalance.

1 Introduction

Data sets in which one class is particularly rare, but more important – termed
unbalanced or unbalanced datasets – continue to be a pervasive problem in a
large variety of supervised learning applications, ranging from telecommunica-
tions to finance to medicine to web categorization to biology. Typically sampling
methods [1,2,3,4,5] are used for countering class imbalance.

Decision trees, particularly C4.5 [6], have been among the more popular algo-
rithms that have been significantly helped by sampling methods for countering
the high imbalance in class distributions [3,4,7]. In fact, the vast majority of
papers in the ICML’03 Workshop on unbalanced Data included C4.5 as the
base classifier. While it is understood that sampling generally improves deci-
sion tree induction, what is undetermined is the interaction between sampling
and how those decision trees are formed. C4.5 [6] and CART [8] are two popu-
lar algorithms for decision tree induction; however, their corresponding splitting
criteria — information gain and the Gini measure — are considered to be skew
sensitive [9]. It is because of this specific sensitivity to class imbalance that use
of sampling methods prior to decision tree induction has become a de facto stan-
dard in the literature. The sampling methods alter the original class distribution,
driving the bias towards the minority or positive class1. Dietterich, Kearns, and
1 Without loss of generality, we will assume that positive and minority class is the

same.
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Mansour [10] suggested an improved splitting criterion for a top down decision
tree induction, now known as DKM. Various authors have implemented DKM
as a decision tree splitting criterion and shown its improved performance on un-
balanced datasets [9,11,12]. However, DKM has also been shown to be (weakly)
skew-insensitive [9,11].

We posit that class imbalance is also a characteristic of sparseness in feature
space, in addition to the skewed class distributions. Thus, it becomes impor-
tant to design a decision tree splitting criterion that captures the divergence in
distributions without being dominated by the class priors. To that end, we con-
sider the Hellinger distance [13,14] as a decision tree splitting criterion, which
we show to be skew-insensitive. We also demonstrate similarities between DKM
and Hellinger distance, albeit Hellinger distance offers a stronger skew insensitiv-
ity. Finally, we consider the popular sampling methods and study their impact
on the decision tree splitting criteria. Does having a skew insensitive splitting
criterion mitigate the need of sampling?

Contributions: Our key contributions include the following: 1) Characteriza-
tion of the Hellinger distance metric in data mining context as a skew insensitive
decision tree splitting metric. 2) Analytical demonstration of the utility of pro-
posed formulation of Hellinger distance using isometrics graphs. 3) A theoretical
comparison between Hellinger distance and DKM. 4) A decision tree algorithm
called HDDT incorporating the Hellinger distance as the tree splitting criterion.
5) Comparison of the effect of sampling on the decision tree splitting meth-
ods. We have used a total of 19 datasets, from UCI and real-world domains,
with varying properties and skew in this study. We have also used statistical
measures suggested by Demsar [15] to robustly compare the classifiers across
multiple datasets. Note that we only used unpruned decision trees for all our
experiments, irrespective of the splitting criterion used, as the previous work
has pointed to the limitations of pruning for unbalanced datasets [16,17].

2 Hellinger Distance

Hellinger distance is a measure of distributional divergence [13,14]. Let (Θ, λ)
denote a measurable space with P and Q as two continuous distributions with
respect to the parameter λ. Let p and q be the densities of the measures P and
Q with respect to λ. The definition of Hellinger distance can be given as:

dH(P, Q) =

��
Ω

(
√

P −
�

Q)2dλ (1)

This is equivalent to:

dH(P, Q) =

√
2(1 −

∫
Ω

√
PQdλ) (2)

where
∫

Ω

√
pqdλ is the Hellinger integral. Note the Hellinger distance does not

depend on the choice of the dominating parameter λ. It can also be defined for
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a countable space Φ, as dH(P, Q) =
√

Σφ∈Φ(
√

P (φ) −
√

Q(φ))2. The Hellinger

distance carries the following properties: 1) dH(P, Q) is in [0,
√

2]. 2) dH is sym-
metric and non-negative, implying dH(P, Q) = dH(Q, P ). Moreover, squared
Hellinger distance is the lower bound of KL divergence.

In this paper, the P and Q in Equations 1 & 2 are assumed to be the normal-
ized frequencies of feature values across classes. This allows us to capture the
notion of “affinity” between the probability measures on a finite event space. If P
= Q, then distance = 0 (maximal affinity) and if P and Q are completely disjoint
then distance =

√
(2) (zero affinity). This dictates the decision tree splitting cri-

terion for separability between classes. We want to select a feature that carries
the minimal affinity between the classes. Thus, the Hellinger distance can be
used to capture the propensity of a feature to separate class distributions.

For application as a decision tree splitting criterion, we assume a countable
space, so we discretize all continuous features into p partitions or bins. Assuming
a two-class problem (class + and class −), let X+ be class + and X− be class −.
Then, we are essentially interested in calculating the “distance” in the normalized
frequencies aggregated over all the partitions of the two class distributions X+
and X−. The Hellinger distance between X+ and X− is:

dH(X+, X−) =

����� p�
j=1

��
|X+j |
|X+| −

�
|X−j |
|X−|

	2

(3)

We postulate that this formulation is strongly skew insensitive as the prior does
not influence the distance calculation. It essentially captures the divergence be-
tween the feature value distributions given the two different classes. There is no
factor of class prior. We will show the effectiveness of this enumeration isometric
plots.

2.1 Comparing Isometrics

Vilalta & Oblinger [18] proposed the use of isometric lines to define the bias of
an evaluation metric by plotting contours for a given metric over the range of
possible values. They presented a case study on information gain. While they did
not produce isometrics under class skew, they note that “A highly skewed distri-
bution may lead to the conclusion that two metrics yield similar generalization
effects, when in fact a significant difference could be detected under equal class
distribution. [18]” Subsequently, Flach [9] connected the isometric plots to ROC
analysis, demonstrating the effects of true and false positives on several common
evaluation metrics: accuracy, precision, and f-measure. In addition, he also pre-
sented isometrics for three major decision tree splitting criteria: entropy (used
in information gain) [6], Gini index [8], and DKM [10]. Flach also established
the effect on class skew on the shape of these isometrics [9].

We adopted the formulation of Flach in this paper, where the isometric plots
show the contour lines in 2D ROC space, representative of the performance
of different decision tree splitting criteria with respect to their estimated true
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Fig. 1. Information gain isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)
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Fig. 2. DKM isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)

and false positive rates, conditioned on the skew ratio (c = neg
pos ). A decision

tree split, for a binary class problem, can be defined by a confusion matrix
as follows. A parent node will have POS positive examples and NEG negative
examples. Assuming a binary split, one child will carry the true and false positive
instances, and the other child will carry the true and false negative instances.
The different decision tree splitting criteria, as considered in this paper, can
then be modeled after this impurity (distribution of positives and negatives).
Thus, in the isometric plots, each contour represents the combinations of true
positives and false negatives that will generate a particular value for a given
decision tree splitting criterion. For example, the 0.1 contour in Figure 1 (a)
indicates that the value of information gain is 0.1 at (fpr, tpr) of approximately
(0%, 20%), (20%, 60%), (80%, 100%), (20%, 0%), (60%, 20%), (100%, 80%), and
all other combinations along the contour. In Figures 1 (a) & (b), information gain
is observed as contours formed in ROC space under a (+ : −) skew of (1 : 1) and
(1 : 10), respectively. As the skewness increases, the isometrics become flatter
and information gain will operate more poorly as a splitting criterion. Vilalta &
Oblinger [18] and Flach [9] observed similar trends. Additionally, Flach [9] notes
that DKM is (weakly) skew-insensitive. It is affected like information gain (and



Learning Decision Trees for Unbalanced Data 245

a) b)

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0.10.20.30.40.50.60.70.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.7

0.8

0 20% 40% 60% 80% 100%
0

20%

40%

60%

80%

100%

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0.1

0.2

0.10.2

0 20% 40% 60% 80% 100%
0

20%

40%

60%

80%

100%

Fig. 3. Gini isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0.10.20.30.40.50.60.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.8

0 20% 40% 60% 80% 100%
0

20%

40%

60%

80%

100%

Fig. 4. Hellinger distance isometric for any (+:-)

therefore C4.5) and Gini (and therefore CART) which are highly skew dependent,
but not to the same degree. Additionally, its contours do not “twist” – there is
some a for which each contour intersects (0, a) and (1 − a, 0) – under skew.
Gini is by far the most skew sensitive metric of this group. We only considered
two class proportions of (1 : 1) and (1 : 10) to highlight the impact of even a
marginal class skew. We point the interested reader to the paper by Flach for a
more elaborate analysis of class skew using isometrics on these three metrics [9].

On the other hand, an important observation may be drawn from an isometric
of Hellinger distance. First, using Flach’s model of relative impurity, we derive
the following for Hellinger distance:

√
(
√

tpr−
√

fpr)2+(
√

1 − tpr−
√

1 − fpr)2.
Figure 4 contains Hellinger distance contours. The Hellinger distance isometrics
will not deviate from the contours with varying class skew (c), as there is no factor
of c in the relative impurity formulation. This result follows from the previous
section and the independence of the Hellinger distance to the parameter λ, which
in our case is the respective class priors. The isometric contours for Hellinger
distance are unaffected by an increase in the class skew rate.

2.2 Comparing DKM and Hellinger Distance

We posit that DKM and Hellinger distance have similar properties, albeit
Hellinger distance has stronger skew insensitivity than DKM. We consider both
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DKM and Hellinger distance within the canonical two class, binary split problem.
P (L) and P (R) designate the weight of examples falling under the left and right
branches respectively. P (+) and P (−) represent the probability of belonging to
class + and −. In these terms, we may state DKM as follows.

dDKM = 2
�

P (+)P (−) − 2P (L)
�

P (L|+)P (L|−) − 2P (R)
�

P (R|+)P (R|−) (4)

Applying these terms to Equation 3, the same terms, Hellinger distance maybe
be stated as follows.

dH =


��
P (L|+) −

�
P (L|−)

�2
+
��

P (R|+) −
�

P (R|−)
�2

(5)

dH =



2 − 2
�

P (L|+)P (L|−) − 2
�

P (R|+)P (R|−) (6)

Representing the equations in this form demonstrate a clear similarity between
Hellinger and DKM. Both are capturing the divergence in conditionals at a
split point, albeit with some differences. DKM places the notion of “branch
strength” in terms of P (L) and P (R) for each of the corresponding left and right
branch conditionals. Moreover, DKM also takes into account the class priors as
2
√

P (+)P (−), which can also be considered as the upper bound for pure splits.
On the other hand, Hellinger is upper bounded by

√
2, and does not take into

account the notion of class skew in the calculation. It is simply capturing the
deviation between P (x|y) at a split node, without factoring in the relative class
distributions at the parent node, which DKM does. This also highlights why
DKM may be less skew insensitive than Hellinger distance.

Hellinger distance aims for “more pure” leaves as it aims for partitioning the
space by capturing the deviations in the class conditionals at the node. However,
this can result in smaller coverage, which may be damaging for more balanced
class rates, but could prove helpful for highly unbalanced datasets as it tries to
form purer leaves that are minority class specific. Nevertheless, it depends on
the relative distribution of features with respect to the classes. DKM, on the
other hand, may not be as greedy and stop the splitting for the sake of larger
coverage.

We demonstrate this property using value surfaces in Figure 5, which display
the full range of possible split values for both metrics. Figure 5(a) shows the
Hellinger distance throughout all possible class skew ratios, while Figure 5(b),(c),
& (d) display DKM values for the (+ : −) class ratios of (1:1), (1:10), & (1:100),
respectively. As skew increases, the DKM surface flattens and potentially reduces
the set of usable values, as it gets dominated by the skew factor in the favor of
majority class. We do note that in a vast number of data sets such a scenario
may not arise, and Hellinger and DKM may converge to similar performances.
Nevertheless, it is important to consider this difference as we may want to grow
a completely unpruned tree for unbalanced datasets, and at lower nodes in the
tree the class skew may get to the very extreme. This is obviously conditioned on
the property of the data, but theoretically it is possible. At this point, Hellinger
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Fig. 5. Full value surfaces for the total range of Hellinger distances and DKM. (a) The
Hellinger distance remains unchanged over all possible class skews. The range of DKM
values vary with class skew: we note the (+:-) ratios of (b) (1:1), (c) (1:10), & (d)
(1:100).

distance may prove more amenable. Thus, we suggest use of Hellinger over DKM
given its stronger skew insensitivity, albeit with the caveat that at the general
case both Hellinger and DKM will converge to similar performances. But, we
want to be prepared for the worst case.

2.3 HDDT: Hellinger Distance Decision Tree

The following algorithm outlines the approach to incorporating Hellinger dis-
tance in learning decision trees. We will refer to Hellinger distance and Hellinger
distance based decision trees as HDDT for the rest of the paper. In our algo-
rithm, Ty=i indicates the subset of training set T that has class i, Txk=j specifies
the subset with value j for feature k, and Txk=j,y=i identifies the subset with
class i and has value j for feature k .

Algorithm 1. Calc Hellinger

Input: Training set T , Feature f
1: for each value v of f do
2: Hellinger+ = (



|Txf=v,y=+|/|Ty=+| −



|Txf=v,y=+|/|Ty=+|)2

3: end for
4: return

√
Hellinger

In the case that a given feature is continuous, a slight variant to
Algorithm 1 is used in which Calc Hellinger sorts based on the feature value,
finds all meaningful splits, calculates the binary Hellinger distance at each split,
and returns the highest distance. This is identical to the methodology used by
C4.5. With this practical distance calculator, Algorithm 2 outlines the procedure
for inducing HDDT trees.

We do not consider any pruning with HDDT and smoothed the leaf frequen-
cies by the Laplace estimate. This was primarily motivated by the observations
of Provost & Domingos [16]. We likewise considered only the unpruned deci-
sion trees for C4.5, CART, and DKM, and smoothed the leaf frequencies by the
Laplace estimate.
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Algorithm 2. HDDT

Input: Training set T , Cut-off size C
1: if |T | < C then
2: return
3: end if
4: for each feature f of T do
5: Hf = Calc Hellinger(T, f)
6: end for
7: b = max(H)
8: for each value v of b do
9: HDDT (Txb=v, C)

10: end for

3 Sampling Methods

Treatment of class imbalance by under- and/or over-sampling, including variants
of the same, has resulted in improvement in true positives without significantly
increasing false positives [3,19]. However, we believe it is important to under-
stand the interaction of the sampling methods with different decision tree split-
ting metrics with different skew sensitivities. This study examines combining
two samplings methods: random undersampling and SMOTE [5]. While seem-
ingly primitive, randomly removing majority class examples has been shown to
improve performance in class imbalance problems. Some training information is
lost, but this is counterbalanced by the improvement in minority class accuracy
and rank-order. SMOTE is an advanced oversampling method which generates
synthetic examples at random intervals between known positive examples.

Elkan discusses the interaction of cost and class imbalance [20], proposing
a simple method to calculate optimal sampling levels. However, our evaluation
occurs without explicit costs. In this case, Elkan’s calculation simply indicates
sampling the classes to a balanced proportion. In addition, this approach leaves
open much to interpretation: should the negative class be undersampled, the
positive class be oversampled, or should a combination be used to reach the bal-
ance point? To address this, we search a larger sampling space (which includes
several potential balance points) via wrapper to determine optimal class propor-
tions [19]. Testing for each pair of undersampling and SMOTE percentages will
result in an intractable search space. The wrapper framework first explores the
amounts of undersampling that result in an improvement in performance over
the baseline, where baseline is defined as the decision tree classifier learned on
the original distribution of data. Subsequently, once the majority class is un-
dersampled to the point where the performance does not deteriorate anymore,
the wrapper searches for the appropriate levels of SMOTE. This strategy re-
moves the “excess” negative examples, thereby reducing the size of the training
dataset and making learning time more tractable. Then SMOTE adds synthetic
positive examples and generalizes performance of the classifier over the positive
class. AUROC is the primary metric for considering performance in unbalanced
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datasets, so it will be used both as a wrapper objective function and the final
performance metric. We point the reader to the paper by Chawla et al. [19] for
further details on the wrapper framework.

We perform experiments using each base decision tree classifier in combination
with the sampling wrapper. We note that both undersampling and SMOTE
contain elements of randomization. Therefore, we first constructed an exhaustive
sets of sampled datasets at different amounts of undersampling and different
amounts of SMOTE. We let the wrapper search only on these prior constructed
undersampled datasets and SMOTE datasets to determine the appropriate levels
of sampling for different splitting criteria. For example, each splitting metric
considers the removal of exactly the same majority class examples in the first
comparison to the baseline. Of course, each splitting criterion may converge to
different amounts of undersampling. But this ensures uniformity of results and
that the potential performance differences stem from the bias of the decision
tree metrics themselves, rather than possible variance due to randomness in the
applied sampling methods.

4 Experimental Evaluation

In this section, we provide experimental results to determine performance com-
pares the characteristics of HDDT, C4.5, CART, and DKM and the combination
of each with the sampling wrapper. We use a variety of unbalanced, binary-class,
mixed feature type real-world and UCI datasets. Such a wide variety should com-
prehensively outline the strengths and weaknesses of using more skew insensitive
metrics such as DKM or Hellinger versus information gain and Gini. We used
the 5x2-fold cross-validation (cv) over 10-fold cv as that is more appropriate for
unbalanced data sets, as the latter can result in an elevated Type 1 error [21],
which is particularly punishing for unbalanced datasets because of the trade-off
between false positives and false negatives. Demsar [15] also encourages use of
5x2 cross-validation for statistical comparisons among classifiers across datasets.
We statistically evaluate and compare classifiers using the Holm procedure of the
Friedman test – a procedure to determine the statistical significance of perfor-
mance rankings across multiple datasets [15].

4.1 Datasets

Table 1 describes the characteristics of the datasets used in our experiments.
We have a number of real-world and UCI datasets. We will briefly describe
the real-world datasets used in this paper. E-state contains electrotopological
state descriptors for a series of compounds from the National Cancer Institute’s
Yeast AntiCancer drug screen. Mammography is highly unbalanced and records
information on calcification in a mammogram. Oil dataset contains informa-
tion about oil spills; it is relatively small and very noisy [22]. The Phoneme
dataset originates from the ELENA project and is used to distinguish between
nasal and oral sounds. Boundary, Calmodoulin, and PhosS are various biological
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Table 1. All the datasets used in this paper

No. Dataset Examples Features MinClass %
1 Boundary 3,505 174 4%
2 Breast-W 569 32 37%
3 Calmodoulin 18,916 131 5%
4 E-State 5,322 12 12%
5 Forest Cover 38,500 10 7.1%
6 FourClass 862 2 36%
7 German.Numer 1,000 24 30%
8 Letter 20,000 16 19%
9 Mammography 11,183 6 2%
10 Oil 937 49 4%
11 Page 5,473 10 10%
12 Pendigits 10,992 16 10%
13 Phoneme 5,404 5 21%
14 PhosS 11,411 479 5%
15 Pima 768 8 35%
16 Satimage 6,435 36 10%
17 Segment 2,310 19 14%
18 Splice 1,000 60 4.8%
19 SVMGuide1 3,089 4 35%

datasets [23]. FourClass, German.Numer, Splice, and SVMGuide1 all are avail-
able from LIBSV M [24]. The remaining datasets all originate from the UCI
repository [25]. Some of these are originally multiple class datasets and were
converted into 2-class problems by keeping the smallest class as minority and
the rest as majority. The exception is Letter, for which each vowel became a
member of the minority class, against all of the consonants as the majority
class. Aside from stated modifications, each dataset is used “as is.”

4.2 Experimental Results

Baseline Comparisons. We first compare all the baseline decision tree algo-
rithms. In Table 2, we report the average AUROC over the 5x2 cv experimental
framework. The relative ranking for each classifier is indicated parenthetically.
Using the Holm procedure of the Friedman test [15] for comparing the ranking
across all the 19 datasets and 4 classifiers, we determine HDDT and DKM are
statistically significantly better than C4.5 and CART decision trees at 95% confi-
dence interval. Thus, when applying decision trees to unbalanced data, selecting
HDDT or DKM will typically yield a significant edge over C4.5 and CART. In
general, DKM and HDDT converge towards similar trees and therefore the final
performance. This is reflected by ties on 15 of the 19 datasets, with a marginal
improvement in HDDT average ranks over DKM. Thus, these empirical obser-
vations agree with the isometric analyses and discussion in the previous Section
that as the splitting criterion becomes relatively more skew-insensitive, decision
trees tend to perform more strongly on unbalanced data.

Interaction with Sampling. We now consider the effect of sampling on each of
the decision tree splitting criterion. We used a wrapper approach, as described
in Section 3, to determine the potentially optimal levels of sampling for each
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Table 2. Baseline decision tree AUROC results with relative ranks in parentheses,
with the average rank applied for all ties. HDDT achieves the best over-all ranking.
We use the Friedman test to compare the ranks at 95% confidence interval as per
the recommendation of Demsar [15] that it is more appropriate to compare classifiers’
ranks when using multiple classifiers and multiple datasets. A � in the bottom row
indicates that HDDT statistically significantly improved over that classifier.

Dataset C4.5 DKM CART HDDT
Boundary 0.554 ± 0.037 (4) 0.606 ± 0.044 (1) 0.558 ± 0.029 (3) 0.594 ± 0.039 (2)
Breast-w 0.948 ± 0.011 (3) 0.952 ± 0.010 (1.5) 0.937 ± 0.017 (4) 0.952 ± 0.010 (1.5)

Calmodoulin 0.668 ± 0.009 (3) 0.670 ± 0.012 (2) 0.621 ± 0.012 (4) 0.680 ± 0.010 (1)
E-State 0.554 ± 0.035 (3) 0.579 ± 0.014 (2) 0.547 ± 0.020 (4) 0.580 ± 0.014 (1)

Forest Cover 0.978 ± 0.002 (3) 0.982 ± 0.002 (1.5) 0.963 ± 0.004 (4) 0.982 ± 0.002 (1.5)
Fourclass 0.969 ± 0.011 (3) 0.975 ± 0.013 (1.5) 0.946 ± 0.023 (4) 0.975 ± 0.013 (1.5)

German.numer 0.705 ± 0.016 (1) 0.692 ± 0.028 (2.5) 0.629 ± 0.027 (4) 0.692 ± 0.028 (2.5)
Letter 0.990 ± 0.004 (2) 0.990 ± 0.004 (2) 0.962 ± 0.006 (4) 0.990 ± 0.004 (2)

Mammography 0.889 ± 0.008 (3) 0.912 ± 0.013 (1.5) 0.858 ± 0.017 (4) 0.912 ± 0.013 (1.5)
Oil 0.787 ± 0.074 (4) 0.799 ± 0.042 (2.5) 0.815 ± 0.052 (1) 0.799 ± 0.042 (2.5)

Page 0.971 ± 0.004 (3) 0.974 ± 0.005 (1.5) 0.964 ± 0.010 (4) 0.974 ± 0.005 (1.5)
Pendigits 0.985 ± 0.005 (3) 0.992 ± 0.002 (1.5) 0.976 ± 0.007 (4) 0.992 ± 0.002 (1.5)
Phoneme 0.892 ± 0.010 (3) 0.905 ± 0.006 (2) 0.887 ± 0.007 (4) 0.906 ± 0.005 (1)
PhosS 0.638 ± 0.025 (4) 0.677 ± 0.009 (1.5) 0.648 ± 0.017 (3) 0.677 ± 0.009 (1.5)
Pima 0.753 ± 0.013 (3) 0.760 ± 0.019 (1.5) 0.724 ± 0.019 (4) 0.760 ± 0.019 (1.5)

Satimage 0.906 ± 0.009 (3) 0.911 ± 0.008 (1.5) 0.862 ± 0.011 (4) 0.911 ± 0.007 (1.5)
Segment 0.982 ± 0.006 (3) 0.984 ± 0.007 (1.5) 0.977 ± 0.007 (4) 0.984 ± 0.007 (1.5)
Splice 0.954 ± 0.016 (1) 0.950 ± 0.014 (2.5) 0.806 ± 0.035 (4) 0.950 ± 0.014 (2.5)

SVMguide1 0.985 ± 0.005 (3.5) 0.989 ± 0.002 (1.5) 0.985 ± 0.002 (3.5) 0.989 ± 0.002 (1.5)
Avg. Rank 2.92 1.74 3.71 1.63

Friedman α = .05 � � —

of the decision tree algorithms. The wrapper optimized on AUROC. Note that
the wrapper uses a separate validation framework to determine the sampling
levels. Each decision tree algorithm used 5-fold cross-validation on the training
set of the 5x2 cv to determine the optimal sampling levels by optimizing on
AUROC. Once these were determined, the entire training set was resampled
by that amount and evaluated on the corresponding 5x2 cv testing set. This
approach is outlined in the paper by Chawla et al. [19]. The performances that
we report are on the testing set of the 5x2 cv.

The results on the 5x2 cv are shown in Table 3. These results show a com-
pelling trend. The benefits of DKM and HDDT over C4.5 are clearly eroded.
CART still remains the worst performing classifier, and statistically significantly
so. However, there are a couple of exceptions, such as Breast-w and Oil, in which
CART and sampling produces the best classifier. We note that these datasets
are very small (Breast-w being the smallest and Oil being the fourth smallest)
and have the lowest feature-to-example ratio, suggestive of the curse of dimen-
sionality. Moreover, Oil is also very noisy.

One question at this stage is: how much do the different decision trees benefit
from sampling when compared to their respective baseline performances? Figure
6 depicts the percentage improvement in AUROC across all the datasets after
applying sampling for each of the different decision tree splitting criteria. This
figure shows a very compelling trend: C4.5 and CART are the biggest gainers
from sampling, while DKM and HDDT, being skew insensitive, do not achieve
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Table 3. AUROC values produced by each decision tree in combination with the
sampling wrapper. Relative ranking is noted parenthetically. A � in the bottom row
indicates a 95% significant improvement over CART. There was no statistically sig-
nificant difference among the other three decision tree classifiers – C4.5, HDDT, and
DKM.

Dataset C4.5 DKM CART HDDT
Boundary 0.616 ± 0.033 (1) 0.602 ± 0.023 (3) 0.582 ± 0.026 (4) 0.604 ± 0.029 (2)
Breast-w 0.953 ± 0.008 (3) 0.953 ± 0.008 (3) 0.955 ± 0.007 (1) 0.953 ± 0.008 (3)

Calmodoulin 0.676 ± 0.007 (1) 0.660 ± 0.011 (3.5) 0.660 ± 0.007 (3.5) 0.669 ± 0.010 (2)
E-State 0.580 ± 0.016 (1) 0.575 ± 0.013 (2.5) 0.560 ± 0.012 (4) 0.575 ± 0.013 (2.5)

Forest Cover 0.980 ± 0.002 (3) 0.983 ± 0.001 (1.5) 0.974 ± 0.001 (4) 0.983 ± 0.001 (1.5)
Fourclass 0.965 ± 0.012 (3) 0.971 ± 0.009 (1.5) 0.943 ± 0.010 (4) 0.971 ± 0.009 (1.5)

German.numer 0.690 ± 0.015 (1) 0.687 ± 0.015 (3) 0.668 ± 0.016 (4) 0.688 ± 0.014 (2)
Letter 0.989 ± 0.002 (2) 0.989 ± 0.003 (2) 0.977 ± 0.004 (4) 0.989 ± 0.003 (2)

Mammography 0.909 ± 0.011 (1) 0.906 ± 0.013 (2.5) 0.905 ± 0.008 (4) 0.906 ± 0.013 (2.5)
Oil 0.789 ± 0.029 (4) 0.803 ± 0.028 (3) 0.806 ± 0.041 (1) 0.804 ± 0.029 (2)

Page 0.978 ± 0.004 (1) 0.976 ± 0.004 (2.5) 0.970 ± 0.006 (4) 0.976 ± 0.004 (2.5)
Pendigits 0.987 ± 0.003 (3) 0.991 ± 0.002 (1.5) 0.982 ± 0.003 (4) 0.991 ± 0.002 (1.5)
Phoneme 0.894 ± 0.005 (3) 0.902 ± 0.006 (1.5) 0.890 ± 0.006 (4) 0.902 ± 0.006 (1.5)
PhosS 0.670 ± 0.013 (1) 0.666 ± 0.015 (2) 0.665 ± 0.019 (3.5) 0.665 ± 0.015 (3.5)
Pima 0.755 ± 0.013 (3) 0.759 ± 0.014 (1) 0.742 ± 0.014 (4) 0.758 ± 0.013 (2)

Satimage 0.904 ± 0.004 (3) 0.910 ± 0.005 (1.5) 0.887 ± 0.006 (4) 0.910 ± 0.005 (1.5)
Segment 0.982 ± 0.006 (3) 0.984 ± 0.007 (1.5) 0.980 ± 0.006 (4) 0.984 ± 0.007 (1.5)
Splice 0.942 ± 0.013 (1) 0.933 ± 0.010 (2) 0.829 ± 0.015 (4) 0.932 ± 0.009 (3)

SVMguide1 0.987 ± 0.002 (3) 0.988 ± 0.001 (1.5) 0.985 ± 0.001 (4) 0.988 ± 0.001 (1.5)
Avg. Rank 2.16 2.13 3.71 2.08

Friedman α = .05 � � — �

significant gains from sampling. In fact, we note that DKM and HDDT often
experience a reduction in performance when sampling is applied. 14 out of 19
datasets show a reduction in AUROC for HDDT, and 15 out of the 19 datasets
show a reduction in AUROC for DKM. This also points out that the wrapper
overfits on the sampling amounts over the validation set, and diminishes gener-
alization capability of HDDT or DKM. Thus, using the natural distribution and
letting one of the skew insensitive splitting criteria work the way through the
data can be potentially more beneficial over using the computationally expensive
step of sampling with DKM and HDDT.

We consider a comparison of all eight potential classifiers: each baseline deci-
sion tree and its wrapper-enhanced counterpart. We re-ranked all the 8 classifiers
across the 19 datasets. Note that exactly the same training and testing sets were
used for all decision tree classifiers, albeit the training sets were modified by
sampling when used with the wrapper. These comparative rankings across each
dataset are presented in Table 4. There are some interesting observations from
this table. The baseline HDDT still achieves the best rank. Wrapper has a pos-
itive effect on C4.5 and CART, as pointed out earlier, but a negative effect on
both DKM and HDDT. Thus, there is merit to using skew insensitive metrics
over sampling. The statistical significance test establishes that HDDT is better
than C4.5, CART, and Wrapper + CART.

Finally, we point out that the amounts of sampling determined for each of the
decision trees varied. We elucidate that we had first generated the various levels
of samplings and then let the wrapper search from that space for each decision
tree metric. This ensured that the differences were not due to randomness in
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Table 4. Comparative AUROC ranks across the entire set of tested classifiers. A
� in the bottom row indicates that using the Friedman test HDDT is statistically
significantly better (at 95%) than the respective classifier.

Baseline Wrapper
Dataset C4.5 DKM CART HDDT C4.5 DKM CART HDDT

Boundary 8 2 7 5 1 4 6 3
Breast-w 7 5.5 8 5.5 3 3 1 3

Cam 5 3 8 1 2 6.5 6.5 4
Covtype 6 3.5 8 3.5 5 1.5 7 1.5
Estate 7 3 8 1.5 1.5 4.5 6 4.5

Fourclass 5 1.5 7 1.5 6 3.5 8 3.5
German.numer 1 2.5 8 2.5 4 5 6.5 6.5

ism 7 1.5 8 1.5 3 4.5 6 4.5
Letter 2 2 8 2 4 4 7 4

Oil 8 5.5 1 5.5 7 4 2 3
Page 6 4.5 8 4.5 1 2.5 7 2.5

Pendigits 6 1.5 8 1.5 5 3.5 7 3.5
Phoneme 6 2 8 1 5 3.5 7 3.5
PhosS 8 1.5 7 1.5 3 4 5.5 5.5
Pima 6 1.5 8 1.5 5 3 7 4

Satimage 5 1.5 8 1.5 6 3.5 7 3.5
Segment 5.5 2.5 8 2.5 5.5 2.5 7 2.5
Splice 1 2.5 8 2.5 4 5 7 6

SVMguide1 7 1.5 7 1.5 5 3.5 7 3.5
Avg. Rank 5.61 2.58 7.42 2.5 4 3.76 6.13 3.79

Friedman α = .05 � � — �
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Fig. 6. Percent improvement in AUROC from sampling for each decision tree type,
with relative rankings. We note that CART generally exhibits the highest improvement
yielded from the wrapper. Position on the x-axis corresponds to the dataset number in
Table 1.
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sampling, and were more intrinsic to the base decision tree splitting metric.
Table 5 in the Appendix shows the different sampling levels. HDDT and DKM
continued to share similarities in the amounts of sampling level as well. C4.5
and CART generally required higher sampling levels than DKM and HDDT.
While there were variations in the amounts of sampling, Friedman test’s Holm
procedure shows that there is no statistically significant difference in the ranks
of levels of sampling for each decision tree.

5 Conclusions

The primary focus of this paper is learning decision trees on unbalanced datasets.
We first propose Hellinger distance as a decision tree splitting criterion. We then
thoroughly compare four different decision tree splitting criteria with different
reactions to the skew in data distribution. We also considered an evaluation of
the effect of sampling and how it impacts the different metrics differently. We
draw the following conclusions.

Hellinger distance and DKM share similar properties. The isometric in
Section 2.1 show Hellinger distance to be skew-invariant while the isometric
plot for DKM varies with class skew ratio. However, in Section 2.2, we go on to
demonstrate that although there are divergent components of both metrics.This
carries over into our experimental results where we note frequent convergence to
identical performance.

HDDT and DKM produce superior decision trees under class imbalance. With-
out using any sampling, both DKM and HDDT statistically significantly out-
performed C4.5 and CART.

Sampling generally benefits C4.5 and CART, and hurts DKM and HDDT.
We believe this is a compelling observation of this study. We can avoid the
use of sampling when using more appropriate decision tree splitting criteria,
as those remain superior even after considering sampling. In general, we can
recommend the use of HDDT as a decision tree methodology given its skew
insensitive properties and the best ranks (no statistical significance over DKM).

As part of future work, we are expanding this study to include balanced
and multi-class datasets. We also want to explore the effect of pruning and what
pruning methods may be more appropriate for DKM and HDDT. While the focus
of this study has been largely on decision trees, we believe rule-based classifiers
can also consider Hellinger distance to separate and conquer the instance space.
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A Appendix: Wrapper Selected Sampling Levels

Table 5. Optimized (Undersample, SMOTE) levels for each respective splitting met-
ric, along with relative ranking for sampling level among all classifiers. The noted
undersample level reflects the percentage of negative class examples removed while the
SMOTE level represents the percent of synthetic examples added to the training data
relative to the original positive class size.

Dataset C4.5 DKM CART HDDT
Boundary (76,320) (1,1) (44,160) (4,4) (54,210) (3,3) (59,230) (2,2)
Breast-w (7,270) (4,4) (26,350) (2.5,2.5) (28,280) (1,1) (26,350) (2.5,2.5)

Calmodoulin (35,210) (2,1) (29,90) (4,3) (57,170) (1,2) (33,40) (3,4)
E-State (44,280) (2,1) (41,120) (3.5,3.5) (57,250) (1,2) (41,120) (3.5,3.5)

Forest Cover (11,440) (3,1.5) (6,420) (3.5,3.5) (13,440) (1,1.5) (6,420) (3.5,3.5)
Fourclass (14,270) (2.5,3) (14,320) (2.5,1.5) (14,100) (2.5,4) (14,320) (2.5,1.5)

German.numer (41,250) (1,4) (39,280) (2.5,3) (32,330) (4,1) (39,300) (2.5,2)
Letter (45,200) (2,4) (38,210) (3.5,2.5) (54,410) (1,1) (38,210) (3.5,2.5)

Mammography (32,370) (4,2) (62,360) (1.5,3.5) (58,420) (3,1) (62,360) (1.5,3.5)
Oil (44,330) (1,1) (39,280) (3,3) (38,180) (4,4) (41,310) (2,2)

Page (9,350) (4,4) (19,370) (2,2.5) (19,430) (2,1) (19,370) (2,2.5)
Pendigits (38,420) (1,1.5) (33,320) (2.5,3.5) (28,420) (4,1.5) (33,320) (2.5,3.5)
Phoneme (5,340) (2,4) (4,370) (2.5,1.5) (9,350) (1,3) (4,370) (2.5,1.5)
PhosS (64,180) (1,1) (21,0) (3,3.5) (32,50) (2,2) (20,0) (4,3.5)
Pima (15,180) (4,4) (38,220) (2.5,3) (40,360) (1,1) (38,270) (2.5,2)

Satimage (32,280) (2,2) (22,240) (3.5,3.5) (56,370) (1,1) (22,240) (3.5,3.5)
Segment (34,260) (1,1) (23,140) (3.5,3.5) (30,250) (2,2) (23,140) (3.5,3.5)
Splice (10,80) (4,3) (12,100) (3,1.5) (25,20) (1,4) (13,100) (2,1.5)

SVMguide1 (18,300) (1,1) (12,210) (2.5,2.5) (5,140) (4,4) (12,210) (2.5,2.5)
Avg. Undersample Rank 2.24 2.97 2.08 2.76

Avg. SMOTE Rank 2.32 2.89 2.11 2.68

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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