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Abstract

This paper demonstrates that the imbalanced data sets have a negative effect on the performance of LDA theoretically. This theoretical
analysis is confirmed by the experimental results: using several sampling methods to rebalance the imbalanced data sets, it is found that
the performances of LDA on balanced data sets are superior to those of LDA on imbalanced data sets.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Supervised learning methods have advanced to the point
where they might be applied to real world problems, such
as in data mining and knowledge discovery, document cat-
egorization, and financial forecasting [1]. By being applied
in such domains, the problem of imbalanced data sets, a
huge disproportion in the number of examples belonging
to each class, is common. A lot of works [2–4] have been
focused on learning from imbalanced data sets using stan-
dard supervised learning methods, including decision trees,
support vector machines, nearest neighbor rule, etc. Nev-
ertheless, none of them have explored the effect of imbal-
anced data sets on the performance of linear discriminant
analysis (LDA). In this work, we demonstrate that the im-
balanced data sets have a negative effect on LDA theoreti-
cally. We use some sampling methods to obtain the balanced
data sets from the original imbalanced data sets, and use
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LDA to learn from both data sets. The experimental results
verify the correctness of theoretical analysis.

2. Linear discriminant analysis

The classical LDA can be developed by Gaussian distri-
bution based Bayes plug-in rule [5]. In terms of a set of dis-
criminant functions gj (x), i = 1, . . . , c, the classifier is said
to assign an example x to class �j if

gj (x) > gi(x) for all i �= j . (1)

When the underlying classes are Gaussian distributed, and
the parameters of the distribution are also known, p(x|�j ) ∼
N(�j , �j ), the discriminant functions can be derived from
the Bayes decision rule:

gj (x) = − 1

2
(x − �j )

t�−1
j (x − �j ) − 1

2
ln |�j |

− d

2
ln 2� + ln P(�j ), (2)

where d is the dimensional number of x. When all the co-
variance matrices are assumed to be equal, the discriminant
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functions can be simplified to

gj (x) = − 1

2
(x − �j )

t�−1(x − �j ) − 1

2
ln |�|

− d

2
ln 2� + ln P(�j ), (3)

where � is the common covariance matrix. The resulting
functions (3) are linear in x, hence the Bayes decision rule
belongs to the class of LDA. And we also refer this class of
LDA as the Gaussian-based LDA.

Following the common practice [2,3], we consider only
the two-category problems and therefore, the examples are
either from the minority class or the majority class, respec-
tively. It is more common to define a single discriminant
function

g(x) = g1(x) − g2(x), (4)

and to use the following decision rule: decide �1 if g(x) > 0;
otherwise decide �2. Thus, the linear discriminant functions
can be written as

gL(x) = − 1

2
(x − �1)

t�−1(x − �1)

+ 1

2
(x − �2)

t�−1(x − �2) + ln
P(�1)

P (�2)
. (5)

Expansion of the quadratic form (x − �j )
t�−1(x − �j )

results in a sum involving a quadratic term xt�−1x which
here is independent of j. After this term is dropped from (5),
the resulting discriminant functions are again linear:

gL(x) = wtx + w0, (6)

where

w = �−1(�1 − �2) (7)

and

w0 = −1

2
(�t

1�
−1�1 − �t

2�
−1�2) + ln

P(�1)

P (�2)
. (8)

As �j , �j and P(�j ) are in practice unknown, they have
to be estimated from the training data. For the estimates
of the prior probabilities P(�j ), the relative frequencies of
the examples in each class are usually used in practice. To
estimate �j and �j , one usually uses the sample mean �̂j and
the sample covariance matrix �̂j , which are the maximum
likelihood estimates of �j and �j . We denote the training
data by {x11 , x12 , . . . , x1n1

} and {x21 , x22 , . . . , x2n2
}, where

x1j
and x2j

are draw independently from their respective
classes respectively. The estimators can be written as

P̂ (�j ) = nj

n1 + n2
, j = 1, 2, (9)

�̂j = 1

nj

nj∑

i=1

xji
, j = 1, 2, (10)

�̂j = 1

nj − 1

nj∑

i=1

(xji
− �̂j )(xji

− �̂j )
t , j = 1, 2. (11)

For �1 = �2 = �, the unbiased estimator is

�̂ = (n1 − 1)�̂1 + (n2 − 1)�̂2

n1 + n2 − 2

≈ P(�1)�̂1 + P(�2)�̂2

for n1 and n2 large enough. (12)

In pattern recognition circles, LDA usually refers to
Fisher’s linear discriminant (FLD). The objective of the
FLD is to find the optimal projection so that the Fisher
criterion of between-class scatter over within-class scatter
is maximized. The within-class scatter and the projection
matrix are given by

Sj =
nj∑

i=1

(xji
− �̂j )(xji

− �̂j )
t , j = 1, 2, (13)

SW = S1 + S2, (14)

WF = S−1
W (�1 − �2). (15)

From (7)–(15), it can be seen that the only difference be-
tween FLD and Gaussian-based LDA is an unimportant di-
visor, n1 + n2 − 2. That is, the projection direction of FLD
is in fact identical to that of Gaussian-based LDA. In this
study, the Gaussian-based LDA is selected as the represen-
tation of LDA.

It is clear that the imbalanced data sets will not have ef-
fects on the projection matrix if the two sample covariance
matrices are identical. However, the assumption of equal
sample covariance matrices is restricted to particular cases
in real-life scenarios. Therefore, we should consider the ef-
fect of the imbalanced data sets on the performance of LDA
in practice. It is also clear that, if the two sample covariance
matrices are different, the huge imbalance in class distribu-
tion is very problematic for LDA because the prior proba-
bility of majority class overshadows the differences in the
sample covariance matrix terms. That is, the imbalanced data
sets may hinder the performance of LDA.

3. Experimental methodology

The main objective of our experiment is to compare the
performance of LDA on imbalanced data sets with that of
LDA on balanced data sets. To make this comparison ob-
jective, a common method is to calculate the area under
the ROC curve (AUC) [6]. The reason why AUC is used
is that it has an important statistical meaning: it is equiv-
alent to the probability that the classifier will rank a ran-
domly chosen positive instance higher than a randomly cho-
sen negative instance. This is equivalent to the Wilcoxon test
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Table 1
Description of data sets

Data set Examples Attributes Class (min., maj.) Class (min., maj.) %

Letter-a 20000 16 (a, remainder) (3.95%, 96.05%)
Satimage-3 6435 36 (3, remainder) (21.1%, 78.9%)
Waveform 5000 21 (1, remainder) (33.33%, 66.67%)
Image∗ 2310 18 (BRICKFACE, remainder) (14.29%, 85.71%)
Vehicle 846 18 (van, remainder) (23.52%, 76.48%)
Pima 768 8 (1, 0) (34.77%, 65.23%)
New-thyroid 215 5 (hypo, remainder) (16.28%, 83.72%)
Glass 214 9 (Ve-win-float-proc, remainder) (7.94%, 92.06%)
Wine 178 13 (3, remainder) (26.97%, 73.03%)
Iris 150 4 (3, remainder) (33.33%, 66.67%)

of ranks [7], which is twice the area between the diagonal
and the ROC curve. Therefore, AUC has been a common
method to compare classifiers [2–4].

In order to allow us to generalize from our results, we
have selected ten data sets from UCI [8], which have dif-
ferent degrees of imbalance. Table 1 summarizes the data
employed in this study. For each data set, it shows the
number of examples, number of attributes and class at-
tribute distribution. For data sets having more than two
classes, we chose the class with fewer examples as the mi-
nority class, and collapsed the remainder as the majority
class. It should be noted that for data set Image, which
are identified with an asterisk (*), the third column of the
original data set is deleted because of they are identical
to a constant.

To get the balanced data sets, four sampling methods are
used to rebalance the original data sets. They are briefly
described as following:

• Random over-sampling is a non-heuristic method that
aims to balance the class distribution through the random
replication of minority-class examples. In this paper, the
simplest form of over-sampling, duplication of minority
class, is used to rebalance the original data sets.

• Random under-sampling is also a non-heuristic method
that aims to balance class distribution through the random
elimination of majority-class examples.

• Tomek links [9] can be defined as follows: given two
examples Ei and Ej belonging to different classes,
and d(Ei, Ej ) be the distance between Ei and Ej ,
then a (Ei, Ej ) pair is called a Tomek link if there is
not an example El , such that d(Ei, El) < d(Ei, Ej ) or
d(Ej , El) < d(Ei, Ej ). If two examples form a Tomek
link, then either one of these examples is noise or both
examples are borderline cases. As an under-sampling
method, examples belonging to the majority class are
removed.

• Synthetic minority over-sampling technique (Smote)
[10] is a heuristic over-sampling method. Its main idea
is to form new minority-class examples by interpolat-

ing between several minority-class examples that lie
together.

4. Experimental results and analysis

In this work, we calculate the AUC for each data set using
4-fold cross-validation. The training and test sets are formed
as follows. First, the test set is one of the four subsets of each
cross validation, which is formed by 25% of the minority-
class examples and 25% of the majority-class examples from
the original data set, without replacement. The resulting test
set will therefore adhere to the original class distribution.
The remaining data set is as the original training set. It was
worth noting that Smote, random over-sampling and random
under-sampling are used to set up the approximate 1:1 class
distribution in training set.

Table 2 lists the AUC for LDA on the original and the
balanced data sets. It clearly shows that, except for Tomek
links, the other three sampling methods lead an improve-
ment in AUC for all data sets but Pima. This is consistent
with the above theoretical analysis. That is, for the assump-
tion of equal sample covariance matrices being restricted to
particular cases in real-life scenarios, the most imbalanced
data sets have a negative effect on the performance of LDA.
For data set Pima, we attribute the experimental result to

Table 2
AUC for the imbalanced and balanced data sets

Data set Original Random Random Tomek Smote
over under

Letter-a 0.9754 0.9855 0.9853 0.9754 0.9800
Satimage-3 0.9860 0.9876 0.9871 0.9861 0.9877
Waveform 0.9414 0.9434 0.9425 0.9413 0.9437
Image∗ 0.9925 0.9939 0.9928 0.9925 0.9941
Vehicle 0.9828 0.9906 0.9902 0.9834 0.9908
Pima 0.8317 0.8303 0.8293 0.8296 0.8309
New-thyroid 0.9788 0.9977 0.9957 0.9761 0.9977
Glass 0.7497 0.8392 0.7884 0.7593 0.9147
Wine 0.9987 1.0000 0.9990 0.9987 1.0000
Iris 0.9673 0.9839 0.9825 0.9673 0.9877
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Table 3
Cosine values of the angles between different projection directions

Data sets Sampling methods Original Random over Smote Tomek Random under

Letter-a Original 1 0.9652 0.9855 1 0.9592
Random over 1 0.994 0.9653 0.9931
Smote 1 0.9856 0.9868
Tomek 1 0.9593
Random under 1

Satimage-3 Original 1 0.9242 0.9017 0.9882 0.8328
Random over 1 0.9809 0.9136 0.9023
Smote 1 0.8945 0.8752
Tomek 1 0.8341
Random under 1

Waveform Original 1 0.997 0.9928 0.9961 0.9801
Random over 1 0.9985 0.9955 0.9835
Smote 1 0.9923 0.9857
Tomek 1 0.979
Random under 1

Image∗ Original 1 0.9818 0.9174 1 0.4251
Random over 1 0.9307 0.9818 0.4483
Smote 1 0.9174 0.534
Tomek 1 0.4251
Random under 1

Vehicle Original 1 0.9932 0.9781 0.9987 0.947
Random over 1 0.9899 0.9942 0.9549
Smote 1 0.9814 0.9721
Tomek 1 0.9513
Random under 1

Pima Original 1 0.9957 0.99 0.997 0.9852
Random over 1 0.9975 0.9916 0.9913
Smote 1 0.9869 0.9896
Tomek 1 0.9787
Random under 1

New-thyroid Original 1 0.7413 0.7348 0.9994 0.7645
Random over 1 0.9985 0.7428 0.9783
Smote 1 0.7473 0.9772
Tomek 1 0.776
Random under 1

Glass Original 1 0.8627 0.9767 0.9851 0.4502
Random over 1 0.8734 0.8156 0.7417
Smote 1 0.9696 0.4399
Tomek 1 0.4365
Random under 1

Wine Original 1 0.9676 0.9535 1 0.9338
Random over 1 0.9967 0.9676 0.9712
Smote 1 0.9535 0.9707
Tomek 1 0.9338
Random under 1

Iris original 1 0.9286 0.8055 0.9967 0.946
Random over 1 0.9629 0.93 0.9226
Smote 1 0.8083 0.8265
Tomek 1 0.9636
Random under 1

the fact that the two sample covariance matrices may be
equal. However, the Tomek links method rarely leads to
an improvement in AUC for most data sets. This can be
explained by the fact that there are so few majority-class
examples are removed that the training set is yet imbalanced.
Table 2 also shows that Smote and random over-sampling
are more effective than random under-sampling in improving
the performance of LDA. We attribute this to the fact that

random under-sampling discards potentially useful majority-
class examples and thus can degrade classifier performance.

In order to make the above analysis more comprehensible,
Table 3 lists the average cosine values of angles between
different projection directions of LDA on cross validation
imbalanced and balanced data sets. The values near 1 mean
that the two projection directions are near identical. Table 3
shows that, for most data sets, the projection directions of
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Fig. 1. AUC of LDA on the original and balanced data sets of each cross validation.

LDA on balanced data sets are different from that of LDA on
the original data sets. The experimental results of Pima data
set in Table 2 can be easily explained by that fact that the

cosine values of angles between all the projection directions
are near 1. That is, the two sample covariance matrices are
nearly equal.
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Fig. 1 clearly shows a comparison of the performance of
LDA of each cross validation. Line x = y represents when
both LDA on imbalanced and balanced data sets obtain the
same AUC. Plots above this line represent that LDA on
balanced data sets obtain better results, and plots under this
line the opposite. It can be seen that most results of each
cross validation are consistent with the above analysis.

5. Conclusion

In this paper, we demonstrate that the imbalanced data sets
have a negative effect on LDA theoretically. This theoretical
analysis is confirmed by the experimental results: using four
sampling methods to rebalance the imbalanced data sets, it
is found that the performances of LDA on balanced data sets
are better than those of LDA on imbalanced data sets. The
experimental results also show that the two over-sampling
methods are more effective than the two under-sampling
methods in improving the performance of LDA.
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