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Abstract

Classification of data with imbalanced class distribution
has posed a significant drawback of the performance attain-
able by most standard classifier learning algorithms, which
assume a relatively balanced class distribution and equal
misclassification costs. This learning difficulty attracts a lot
of research interests. Most efforts concentrate on bi-class
problems. However, bi-class is not the only scenario where
the class imbalance problem prevails. Reported solutions
for bi-class applications are not applicable to multi-class
problems. In this paper, we develop a cost-sensitive boost-
ing algorithm to improve the classification performance of
imbalanced data involving multiple classes. One barrier of
applying the cost-sensitive boosting algorithm to the imbal-
anced data is that the cost matrix is often unavailable for a
problem domain. To solve this problem, we apply Genetic
Algorithm to search the optimum cost setup of each class.
Empirical tests show that the proposed cost-sensitive boost-
ing algorithm improves the classification performances of
imbalanced data sets significantly.

1 Introduction

Classification is an important task of knowledge discov-
ery in databases (KDD) and data mining. Recently, reports
from both academy and industry indicate that the imbal-
anced class distribution of a data set has posed a serious dif-
ficulty to most classifier learning algorithms which assume
a relatively balanced distribution [9, 12]. Imbalanced class
distribution is characterized as that there are many more
instances of some classes than others. With imbalanced
data, classification rules that predict the small classes tend
to be fewer and weaker than those that predict the prevalent
classes; consequently, test samples belonging to the small
classes are misclassified more often than those belonging
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to the prevalent classes. Standard classifiers usually per-
form poorly on imbalanced data sets because they are de-
signed to generalize from training data and output the sim-
plest hypothesis that best fits the data. Therefore, the sim-
plest hypothesis pays less attention to rare cases. However,
in many cases, identifying rare objects is of crucial impor-
tance; classification performances on the small classes are
the main concerns in determining the property of a classifi-
cation model.

The difficulty raised by the class imbalance problem with
both academic research and practical applications in the
community of machine learning and data mining attracts
a lot of research interests. Reported works focus on three
aspects of the class imbalance problem: 1) what are the
proper evaluation measures of classification performance in
the presence of the class imbalance problem? 2) what is
the nature of the class imbalance problem, i.e. in what do-
mains do class imbalances most hinder the performance of
a standard classifier? [9]; and 3) what are the possible so-
lutions in dealing with the class imbalance problem? With
regard to the first aspect, it is stated that accuracy is tradi-
tionally the most commonly used measure in both assessing
the classification models and guiding the search algorithms.
However, for a classification model induced from a data set
with imbalanced class distribution, accuracy is no longer a
proper measure since rare classes have very few impact on
accuracy than prevalent classes [11]. Some other evaluation
measures, such as recall, precision, F-measure, G-mean and
Receiver Operation Characteristic (ROC) Curve Analysis,
are then explored and proposed as more proper evaluation
measures [1, 10, 16]. With respect to the second aspect, a
thorough study can be found in [9]. Other relevant works
are reported in [10, 23, 24]. These studies show that the
imbalanced class distribution is not the only factor that hin-
ders the classification performance. Other factors that de-
teriorate the performance include the training sample size,
the separability and the presences of sub-concepts within a
group. The third aspect is the focus of most publications ad-
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dressing the class imbalance problem. Almost all reported
solutions are designed for the bi-class scenario.

In a bi-class application, the imbalanced problem is ob-
served as one class is represented by a large amount of sam-
ples while the other is represented by only a few. The class
with very few training samples and usually associated with
high identification importance, is referred as the positive
class; the other one as the negative class. The learning ob-
jective of this kind of data is to obtain a satisfactory identi-
fication performance on the positive (small) class. Reported
solutions for the bi-class applications can be categorized as
data level and algorithm level approaches [2]. At the data
level, the objective is to re-balance the class distribution
by re-sampling the data space including oversampling in-
stances of the positive class and undersampling instances of
the negative class, sometimes, uses the combination of the
two techniques [2]. At the algorithm level, solutions try to
adapt the existing classifier learning algorithms to bias to-
wards the positive class, such as cost sensitive learning [15]
and recognition based learning [8]. In addition to these so-
lutions, another approach is boosting. Boosting algorithms
change the underlying data distribution and apply the stan-
dard classifier learning algorithms to the revised data space
iteratively. From this point of view, boosting approaches
should be categorized as solutions at data level.

The AdaBoost (Adaptive Boosting) algorithm [5, 19] is
reported as an effective boosting algorithm to improve clas-
sification accuracies of any “weak” learning algorithms. It
weighs each sample reflecting its importance and places
the most weights on those examples which are most of-
ten misclassified by the preceding classifiers. This forces
the following learning to concentrate on those samples hard
to be correctly classified. When the AdaBoost algorithm
is adapted to tackle the class imbalance problem, advan-
tages are: 1) it is applicable to most classifier learning al-
gorithms; 2) the sample weighting strategy of the AdaBoost
algorithm is equivalent to re-sampling the data space com-
bining both up-sampling and down-sampling; 3) as a re-
sampling method, AdaBoost updates the data space auto-
matically eliminating the extra learning cost for exploring
the optimal class distribution; and 4) resampling through
weighting samples has little information loss and the Ad-
aBoost algorithm is stated to be immune to overfitting [6].
Boosting is therefore an attractive technique in tackling the
class imbalance problem. Within the bi-class applications,
some variants of the AdaBoost algorithm in tackling the im-
balance problem are reported, such as AdaCost [4], CSB1
and CSB2 [21], RareBoost [11] and AdaCl1, AdaC2 and
AdaC3 [20]. These boosting algorithms inherit the general
learning framework of the AdaBoost algorithm and feed
misclassification costs into the weight update formula of
AdaBoost to distinguish the uneven learning importance be-
tween classes. As these algorithms use cost items, they are

also regarded as cost-sensitive boosting algorithms.

Yet bi-class is not the only scenario where the class im-
balance problem prevails. In practice, most applications
have more than two classes where the unbalanced class dis-
tributions hinder the classification performance. Solutions
for bi-class problems are not applicable directly to multi-
class cases. One possible solution is to convert a multi-class
problem into a number of bi-class problems, i.e., classify-
ing each individual class versus all the other classes. The
obvious drawbacks of this treatment are: 1) to learn an
identification model for each class is expensive in training;
2) results of each class label assignment are not compara-
ble due to the decision can be made differently for differ-
ent classes; and 3) one class versus the other classes will
worse the imbalanced distribution even more for the small
classes. Even though cost-sensitive boosting algorithms can
be adopted for multiple class applications, research efforts
are still limited to bi-class cases. One reason is that the
cost matrix is often unavailable for a given problem do-
main. For cost-sensitive learning and/or measures, the cost-
matrix is assumed known for different types of errors or
samples. Without the cost matrix, experiments for bi-class
problems were conducted by set up a range of cost factors
manually. Such a strategy is not applicable to multiple class
cases since to figure out satisfactory cost values manually
for multiple classes is a non-trivial job. Hence, searching a
efficient cost setup becomes a critical issue for applying the
cost-sensitive boosting approach to multiple class applica-
tions. To our knowledge, there is no reported work on the
class imbalance problem addressing multiple class cases.

In this paper, we develop a cost-sensitive boosting al-
gorithm for the class imbalance problem in the scenario of
multiple classes. We extended the original AdaBoost al-
gorithm to multi-class cases. The straightforward gener-
alization is called AdaBoost.M1 [5]. By using the same
inference methods provided in [5, 18], we prove that the
upper bound error of the final hypothesis output by Ad-
aBoost.M1 holds the same format as that by AdaBoost.
Thus, the crucial weight update parameter of AdaBoost.M1
is selected as the same as that of AdaBoost. Among those
reported cost-sensitive boosting algorithms, we select and
extend AdaC2 [20] to multi-class cases. The extension in-
heriting the framework of AdaBoost.M1 is therefore de-
noted as AdaC2.M1. We then compare the weighting strat-
egy of AdaC2.M1 with that of AdaBoost.M1 to explore the
boosting efficiency of AdaC2.M1. To decide the cost se-
tups that can be applied to the AdaC2.M1 algorithm, we
apply Genetic Algorithm (GA) which achieves outstanding
performance in finding optimal parameters. To evaluate the
performance , three “real world” data sets are tested since
their classification performances are hindered by their im-
balanced class distributions.
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Given:(z1,y1)," - -, (m,Ym) Where z; € X, y; € Y =

Initialize D! (i) = 1/m.
Fort=1,---,T:

1. Train base learner h; — Y using distribution D*
2. Choose weight updating parameter: o

3. Update and normalize sample weights:

Dt (i)exp(—aihi(z;)ys)

t+1/:\
D) = 7 (€N
Where, Z; is a normalization factor.
Output the final classifier:
T
H(z) = sign(z athi(x)) )

t=1

Figure 1. AdaBoost Algorithm

2 AdaBoost Algorithm

The original AdaBoost algorithm reported in [5, 19]
takes as input a training set {(z1, 1), - - *, (X, Ym ) } Where
each z; is an n-tuple of attribute values belonging to a cer-
tain domain or instance space X, and y; is a label in a label
set Y = {—1,+1} in the context of bi-class applications.
The Pseudocode for AdaBoost is given in Figure 1.

It has been shown in [19] that the training error of the
final classifier is bounded as

%\{iiH(Ii)fyiHSHZt 3)
¢

Let
T
f@) =) ath(z)
t=1

By unraveling the update rule of Equation 1, we have that

D) = exp(— Zz athe(xi)y:) _ exp(—y; f(x;)) @

mHtZt mHtZt

By the definition of the final hypothesis of Equation
2, if H(z;) # i, the y;f(xz;) < 0 implying that
exp(—yif(z;)) > 1. Thus,

[H(x;) # yi] < exp(—yif(z:)). (5

where for any predicate ,
(7] = 1 if 7 holds
™= 0 otherwise

(6)

Combining Equation 4 and 5 gives the error upper bound of
Equation 3 since

— Z[H 2) £yl S — Zexp(fyiﬂxi)) )
Z HZt )DL (i) = HZt ®)

To minimize the error upper-bound, on each boosting
round, the learning objective is to minimize

Zi = ZDt i)exp(—ayihi(z;)) ©)

1 + yzht (1) oo yihe(wi)

ZDt +1= 5 ) (10)

Then, by minimizing Z, on each round, o is induced as

ar llo (l yi=ht(z;) ) (11)
2D P
i,y #he(x;)

The sample weight updating goal of AdaBoost is to de-
crease the weight of training samples which are correctly
classified and increase the weights of the opposite part.
Therefore, a; should be a positive value demanding that the
training error should be less than randomly guessing (0.5)
based on the current data distribution. That is

Z DY(i) > Z DY (i) 12)

i,yi=h¢(x;) 1,y #he (@)

3 AdaBoost.M1 Algorithm

The original AdaBoost algorithm is designed for bi-class
applications. There are several methods of extending Ad-
aBoost to the multi-class cases. The straightforward gener-
alization one, called AdaBoost.M1 in [5], is adequate when
the base learner is effective enough to achieve reasonably
high accuracy (training error should be less than 0.5).

AdaBoost.M1 differs slightly from AdaBoost. The main
differences are the replacements of the weight update for-
mula of Equation 1 by:

Dt(i)exp(—aiI[hi(x;) = yi])

t+1/:\
D' (1) = 7 (13)
where, Z; is a normalization factor, and
fed =w) = { 1 ) 2 (14)

and the final hypothesis of Equation 2 by:
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T
H(x) = argmax(y _ culhu(x) = Ci)) (15)

t=1

By using the same inference methods provided in [5, 18],
we can prove the following bound still holds on the training
error of the final hypothesis output H(x) (Equation 15) by
AdaBoost.M1:

— i 1) £ < [[ 2 (19)
t

where

2=y D(ierp(~aud[hu(x:) = i) an

k3

To prove this theorem, we reduce the setup for Ad-
aBoost.M1 to an instantiation of AdaBoost. For clarity,
variables in the reduced AdaBoost space are marked with
tildes. For each of the given samples (x;, y;), an AdaBoost
sample (Z;, §;) is generated, where &; = x; and ; = 1, i.e.,
each AdaBoost sample has label 1. The AdaBoost distribu-
tion D over samples is set to be equal to the AdaBoost.M1
distribution D. On each round, an AdaBoost hypothesis h;
is defined as

T 1 ifh i) = Yqi
he(z;) = IThe(zi) = yi] = { i_l :f higi; £ zl
and
T
f@) = arhi(x) (18)
t=1

Suppose the AdaBoost.M1’s final hypothesis H(x)
makes a mistake on instance (x;,y;) so that H(x;) # ;.
Then, by the definition the final hypothesis of Equation 15,

T T
Zat[h(wi) =y < Zat[ht(xi) = H(z;)]
t=1 t=1

This implies

T 1 T
Z ailh(z;) = yi] < 5 Z at (19
t=1 t=1

and
T 1 T
Z ar[h(z:) # yil 2 5 Z o (20)
t=1 t=1
Then,
T
f@) = > audlh(w:) = yi] (21)
t=1

T T
Z ath(z;) = yi] — Z atlh(z;) # yil  (22)
t=1 t=1

IN

0 (23)

implying that exp(—f(z;)) > 1. Thus

[H (x:) # yi] < exp(—f(xi)). (24)

Thus, by using the same inference method of AdaBoost,
we can get the stated bound on training error (Equation 16).
To minimize the the error upper-bound, Z; is minimized on
each round. «y is induced the same as Equation 11. To make
o a positive value, each weak hypothesis has training error
less than 1/2 as stated by the Equation 12.

4 AdaC2.M1 Algorithm

Suppose we have k classes and m samples. Let ¢(i, j)
denote the cost of misclassifying an example of class i to
the class j. In all cases, ¢(i,5) = 0.0 for i = j. Let ¢(4)
denote the cost of misclassifying samples of class . ¢(i) is
usually derived from c(4, j). There are many possible rules
for the derivation, among which one form suggested in [22]
is:

k
c(i) = Z e(i, 7). (25)
j
Moreover, we can easily expand this class-based cost to
sample-based cost. We take the misclassification cost stand
for the recognition importance respecting to each class.
Hence for samples in the same class, their misclassification
costs can be set with the same value. Suppose that the i
sample belongs to class j. We associate this sample with a
misclassification cost ¢; which equals to the misclassifica-
tion cost of class j, i.e., ¢; = ¢(j).

AdaC2.M1 inherits the general learning framework of
the AdaBoost.M1 algorithm except that it feeds costs into
the weight update formula (Equation 13) of AdaBoost.M1
as:

¢; Dt (i)exp(—asI[h(x;) = yi))

DtJrl ) —
0 >

(26)

Unravelling the weight update rule of Equation 26, we
obtain

chexp(= ), aullhe(:) = yi])

t410,
D) 7 @)
_ ctexp(—I[ht(x;) = y;i])
B m Ht Zt o

where ¢! stands for ¢; to the power of ¢, and
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Ty = Z c; D (i)exp(—arI[he(x:) = yi)) (29)

i

By using the same inference methods of AdaBoost.M1,
we can prove the training error of the final classifier is
bounded as:

1 Dt (4)
EHZ:H(’M)#%}\SIth E c o
t

7

)1 Hzt (30)

Where  is a constant that Vi, y < ct™. Thus the learning
objective on each round is to find «; to minimize Z, (Equa-
tion 29). a4 is then selected taking costs into consideration
as:

CiDt (7,)
1 i,y;=h¢(z;)

= Slog 5

i,y; #he (@)

(31)
c; D (4)

To ensure that the selected value of «y is positive, the fol-
lowing condition should hold:

Z CiDt (3) > Z

i,y;=h¢(z;) 5,yi#he(xq)

¢; Dt (i) 32)

5 Resampling Effects

In a multi-class application of k& classes, the confusion
matrix through a classification process can be presented in
Table 1. Where C; denotes the class label of the i*"* class.

Table 1. Confusion Matrix

Predicted class
o} Co  ovnnee o
True Cl ni N1+ v N1k
class (s n21 Ngg = nak
Cr i1 Nk - Nk

The general weighting strategy of AdaBoost.M1 is to
increase weights of false predictions and decrease those
of true predictions. Let T'P denote the true predictions
and F'P the false predictions of a classification output.
Referring to the confusion matrix of Table 1, for class
i, the true prediction number, denoted by T'P(i), equals
to n” and the false predlctlon number, FP( ), equals to

Z ng;. Thus, TP = ZTP Zn and FP =

Jj=1,j#i i=1

k k
Z FP(i Z Z ng;. It has been shown that after
1= 1 7

Welghts being upéateﬁ)y AdaBoost.M1, sample distribu-
tions on these two parts get to even. AdaC2.M2 adapts Ad-
aBoost.M1’s weighting strategy by inducing the cost items.
In this section, we will explore the weight updating mech-
anisms of both AdaBoost.M1 and AdaC2.M1. Our interest
focuses on the resampling effect of AdaC2.M1.

5.1 AdaBoost.M1

Based on the inference in [19], « is selected to minimize
Z as a function of « (Equation 17). The first derivative of
Z is
dz
da
= =) DH@Ilhu(i) = yileap(—and [he(wi) = vi))

= -7 Z DY) IThe (24) = i)

Zi(e) =

by definition of D(**+1) (Equation 13). To minimize Z;, oy
is selected such that Z’(«) = 0, i.e.,

> D) () = vl

- ¥ - ¥
i i he (25)Fys

i,ht (z4)=y;

D) =0

That is:

> o (33)

i,ht (24) Ay

Z DY) =

i,ht (z4)=y;

Hence, after weights being updated, weight distributions on
misclassified samples and correctly classified samples get
to even, i.e., TP = FP. This will make the learning of
next iteration the most difficult [6].

By the weight update formula of AdaBoost.M1 (Equa-
tion 13), weights of samples in two groups specified to
class i, TP(i) and FP(i), updated from the ¢** iteration to
the (¢ + 1) iteration can be summarized as TP;, (i) =
TP, (i)/e* and FP;1(i) = FP.(i) - e*t. With oy being a
number of positive, identical for all classes, weights of false
predictions (FP) are improved equally; weights of true pre-
dictions (TP) are decreased equally, i.e., weighting scheme
of AdaBoost.M1 treats samples of different classes equally.

To illustrate this weighting effect, we take an example.
Suppose we have a data set of three classes. The sam-
ple distribution after a classification process is presented
in Figure 2(a). The left side represents correctly classi-
fied samples which occupy a larger proportion of the space
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(a) (b)

Figure 2. Resampling Effects of AdaBoost.M1

and the right side shaded represents samples mis-classified.
On each side, samples are grouped by class labels, i.e.,
C1, C2 and C3. By weighting and normalizing of Ad-
aBoost.M1, correctly classified space shrinks and misclas-
sified space expands until these two parts get to equal. Fig-
ure 2 (b) demonstrates this result. The notable point is
on each part, correctly classified and misclassified, each
group (class) shrinks or expands at the same ratio. Observa-
tionally, the classes with relatively more misclassified sam-
ples will get expanded, which are not necessary the classes
we care about. To strengthen the learning on the “weak”
classes, we expect more weighted sample sizes on them.

5.2 AdaC2.M1

The learning objective of AdaC2.M1 algorithm is to se-
lect a; for minimizing Z; on each round (Equation 30). The
first derivative of Z; as a function of « is

dz
da
= =) D ()lhi(:) = yilewp(—arllhe(@:) = vil)

E— ZDtH(i)I[ht(fm) =y

Zi(a)

by definition of D(*+1) (Equation 26). To minimize Z;, oy
is selected such that Z’(«r) = 0. The unique solution for
ay is presented by Equation 31. By the definition of Dt*!
(Equation 26), for the next iteration we will have

> - X

i,ht (z4)=y; i,ht (24)#Yi

D) (34)

It indicates that weight of the correctly classified group
and that of the misclassified group get to even after sam-
ple weights being updated by AdaC2.M1, i.e., TP = F'P.
Same as AdaBoost.M1, this weighting result will make the
learning of next iteration the most difficult.

By the weight update formula of AdaC2.M1( Equation
26), sample weights of two groups respecting to class 4,
TP(i) and FP(i), updated from the ¢ iteration to the
(t + 1)*" iteration can be summarized as TP, ;1 (i) = c(i) -

(a) (b) (©)

Figure 3. Resampling Effects of AdaC2.M1

TP, (i)/e* and F' P11 (i) = c(i)- FP(i) - e*. Where ¢(7)
denotes the misclassification cost of class . This weighting
process can be interpreted in two steps. At the first step,
each sample, no matter in which groups (TP or FP), is first
weighted by its cost item (which equals to the misclassifica-
tion cost of the class that the sample belongs to). Samples
of the classes with larger cost values will obtain more sam-
ple weights, on the other side, samples of the classes with
smaller cost values will lose their sizes. Consequently, the
class with the largest cost value will always enlarge its class
size at this phase. The second step is actually the weighting
procedure of AdaBoost.M1, i.e., weights of false predic-
tions are expanded and those of true predictions are shrunk.
The expanding or shrinking ratio for samples of all classes
is the same.

To demonstrate this weighting process, we use the same
example as illustrated for AdaBoost.M1. In this case, we
associate each class with a misclassification cost. Suppose
the costs are 3, 1 and 2 respecting to class C'1, C2 and C3.
Each sample obtains a cost value according to its class la-
bel. Let the sample distribution after a classification process
presented in Figure 3(a) be the same with that presented in
Figure 2(a). By the weighting strategy of AdaC2.M1, the
first step is to reweight each sample by its cost item. After
normalizing, classes with relative larger cost values are ex-
panded, oppositely, the other class is shrunk. In our exam-
ple, class sizes of class C'1 and C'3 are increased and class
size of class C2 is decreased as presented in Figure 3 (b).
At the next step, correctly classified space shrinks and mis-
classified space expands until these two parts get to even.
If we compare Figure 3(c) with Figure 2 (b), obviously, we
can find out that class C'1 expands its class size updated by
AdaC2.M1 more than that updated by AdaBoost.M1.

This observation shows that we can use the cost values
to adjust the data distributions among classes. For those
classes with poor performances, we can associate them
with relative higher cost values such that relatively more
weights are accumulated on those parts. As a result, learn-
ing will bias and more relevant samples might be identi-
fied. However, if weights are over boosted, more irrelevant
samples can be included simultaneously. Precision values
of these classes and recall values of the other classes will
be decreased. Hence, how to figure out an efficient cost
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setup which is able to yield satisfactory classification per-
formance is the next problem to be solved.

6 Searching for an Optimum Cost Setup by
Genetic Algorithm

Genetic Algorithm (GA) is a directed random search
technique invented by Holland [7]. It is based on the the-
ory of natural selection and evolution. GA is a robust
search method requiring little information to search in a
large search space. Generally, GA requires two elements
for a given application: 1) Encoding of candidate solutions;
and 2) Fitness function for evaluating the relative perfor-
mance of candidate solutions to identify the better one.

Genetic Algorithm codes candidate solutions of the
search space as binary strings of fixed length. It employs
a population of strings initialized at random, which evolve
to the next generation by genetic operators such as selec-
tion, crossover and mutation. The fitness function evalu-
ates the quality of solutions. GA tends to take advantage
of the fittest solutions by giving them greater weight, and
concentrating the search in the regions which lead to better
solutions of the problem. Therefore, GA searches through a
population of points in contrast to the single point of focus
of most other search algorithms, such as Simulated Anneal-
ing and Hill Climbing algorithms. Though it might not find
the best solution, it would come up with a partially optimal
solution.

In our case, we employ GA for searching an optimal
misclassification cost setup, which will be applied to the
AdaC2.M1 algorithm trying to improve the classification
performance of the unbalanced data sets. Let c¢(¢) denote the
misclassification cost of class 7. Then cost items of % classes
making up a cost vector of & elements [¢(1) ¢(2) - -+ c(k)]
can be encoded as a binary string. The fitness value of each
vector is the measurement of the classification performance
when the vector is integrated in the AdaC2.M1 algorithm
applied to a base classification system. Evaluation of the
classification performance depends on the learning objec-
tive. According to the learning objectives, the fitness func-
tion is varied. The final output of GA is a vector that yields
the most satisfactory classification performance among all
tests.

7 Experiments

In this section, we set up experiments to investigate the
cost-sensitive boosting algorithm AdaC2.M1 respecting to
its capability in dealing with the class imbalance problem
with multiple classes. For this purpose, we apply both Ad-
aBoost.M1 and AdaC2.M1 to decision tree classification
system C4.5 [17]. Then their performances on data sets

with multiple classes where the unbalanced class distribu-
tions hinder the classification performances are compared
and analyzed. Three data sets, Car data, New-thyroid data,
and Nursery data, are taken from UCI Machine Learning
Database [14] for our experiments.

7.1 Leaning
Measures

Objectives and Evaluation

Refer to the confusion matrix of Table 1, the true pre-
diction of the i*" class is the number of n,;. Classification
accuracy is then calculated as:

S

=1 """
k
i.4=1"1

(35)

Accuracy =

The evaluation measure of accuracy is inadequate in re-
flecting the classifier’s performance on classifying each sin-
gle class, especially on those small classes. The learning
objective with unbalanced data with multiple classes can be
either to improve the recognition success on a specific class
or to balance identify ability over every classes. Respecting
to the different learning objectives, the classification per-
formance is evaluated by different measures. Regarding
to classifying a single class, one should consider both its
ability of recognizing available samples and the accuracy
of recognizing relevant samples. These two aspects are re-
ferred to as recall and precision in information retrieval. Let
R; and P; denote recall and precision of class C; respec-
tively, then R; and P; are defined as:

2521 nij

R; = (36)
and
Uz

Z§:1 Tji

Clearly neither of these measures are adequate by them-
selves. F-measure (F) is suggested in [13] to integrate these
two measures as an average:

P = (37)

2R; P;
F; — measure = —— = (38)
R; + P;

It is obvious that if the F-measure is high when both the
recall and precision should be high.

When the performances of all classes are interested, clas-
sification performance of each class should be equally rep-
resented in the evaluation measure. For the bi-class sce-
nario, Kubat et al [12] suggested the G-mean as the geo-
metric means of recall values of two classes. Expanding this
measure to the multiple class scenario, we define G-mean as
the geometric means of recall values of every classes:
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A 1/k
G — mean = (H Ri) (39)
i=1

As each recall value representing the classification perfor-
mance of a specific class is equally accounted, G-mean
is capable to measure the balanced performance among
classes of a classification output.

Another often used method for evaluating classification
of unbalanced data is ROC analysis [1]. A ROC graph
depicts relative trade-offs between true positives and false
positives within the bi-class concepts. The ROC analysis
method needs a classifier to yield a score representing the
degree to which an example pertaining to a class. In this
study, we will evaluate our experimental performances by
F-measure and G-mean.

7.2 Experiment Method

For each data set, available samples are used for both
cost setup searching and performance evaluation. For this
purpose, we carry on two sections of partitions. The first
section of partitions is for searching cost setups by GA. The
data set is randomly divided into two sets: 80% as the train-
ing set and the remaining 20% as the validation set for mea-
suring the goodness of a bunch of cost setups generated by
GA. The out put is a cost vector which obtains the best fit-
ness value among all tests. This process is repeated 20 times
such that one prototype is obtained from a pool of 20 cost
vectors. The second section of partitions, totally indepen-
dent from the first section, is for evaluating the classifica-
tion performance. The whole data set is repartitioned into
two sets: 80% as the training set and the remaining 20% as
the test set. This process is repeated 10 times to obtain an
average performance. For a consistent comparison, classifi-
cation models of C4.5, C4.5 applied by AdaBoost.M1 and
C4.5 applied by AdaC2.M2 are trained and evaluated with
same data partitions.

The cost setup used by AdaC2.M2 is the prototype from
the validation tests with the first section of partitions. In our
experiments, we take the mean of a pool of 20 cost vectors
as the cost setup prototype. As stated in [3], given a set of
cost setups, the decisions are unchanged if each one in the
set is multiplied by a positive constant or added with a con-
stant. The ratios among cost values denote the deviations of
the leaning importance among classes. Therefore, normal-
izing each cost vector in the pool is a necessary step before
calculating the mean value. The normalization method is,
first, to set the value of the element with the maximum value
in a vector as 1, then, to scale other elements’ values in the
vector with the ratio of 1 over the maximum value. After
normalizing of each cost vector, a mean is calculated as the
prototype. The prototype vector is also normalized before

putting it in use for further experiments.
7.3 Car Evaluation Database

This database was derived for car evaluating. There are
1728 instances with each is described by 6 nominal ordered

attributes. The whole data are grouped into 4 classes. Table
2 describes the class distribution.

Table 2. Class Distribution

index classname class size class distribution
C1 unacc 1210 70.023%
C2 acc 384 22.222%
C3 good 69 3.993%
C4 v-good 65 3.762%

Class C3 and C4 are two small classes which posses
only 3.993% and 3.762% samples respectively. We first
use the second section of data partitions to test the per-
formance of C4.5 and C4.5 applied by AdaBoost.M1. For
this part of experiments, the classification performance are
recorded respecting to both each individual class and the
overall performance. Respecting to each class F-measure
value (Equation 38) is calculated. Respecting to the over-
all performance, both classification accuracy (Equation 35)
and G-mean (Equation 39) are reported. Experiment results
are tabulated in Table 3.

Table 3. Performance of C4.5 & AdaBoost.M1

Measure Class C4.5  AdaBoost.M1
F C1 0.9754 0.9753
measure Cc2 0.8817 0.8873
C3 0.7097 0.7781
C4  0.7486 0.8845
Accuracy 0.9344 0.9440
G-mean 0.8336 0.8758

Respecting to the classification of C4.5, performances
of classes C1 and C2 are significantly better than those of
class C3 and C4, which are two small classes. By apply-
ing AdaBoost.M1, performances of class C1 and C2 remain
similar values; that of class C4 is significantly improved;
performance of class C3 is also improved but far behind
other classes’. As for the overall performance, classifica-
tion accuracy of C4.5 is improved slightly; G-mean value
is improved by 4.22% by applying AdaBoost.M1. Based
on these observations, for testing AdaC2.M1 we set up two
learning objectives: 1) to further balance the identify ability
on each class; and 2) to improve the recognition ability of
class C3. We then run GA for searching an efficient cost
setup with data partitions of the first section.
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Respecting to the first learning objective, the fitness
function is G-mean evaluation. The resulting prototype of
a cost vector is [0.3281 0.6682 0.7849 1.0000]. Integrating
this cost vector into AdaC2.M1, classification performances
are evaluated by G-mean on the data partitions of the second
section such that C4.5, C4.5 applied by AdaBoost.M1, and
C4.5 applied by AdaC2.M1 are evaluated on the same train-
ing and test partitions. Table 4 tabulates results for compar-
isons.

Table 4. G-mean Evaluation

Class C45 AdaBoostM1 AdaC2.M1
Ci(R) 0.9637 0.9707 0.9586
C2(R) 0.9083 0.9056 0.9459
C3(R) 0.7175 0.7395 0.8540
C4(R)  0.7902 0.9151 0.9139
G-mean 0.8336 0.8758 0.9146

As G-mean is calculated as the geometric means of re-
call values of every classes, each row indicated by class la-
bel in Table 4 are the recall values achieved by C4.5, C4.5
applied by AdaBoost.M1, and C4.5 applied by AdaC2.M1
respectively and the row indicated by “G-mean” are those
G-mean values. Respecting to the two small classes C3 and
C4, recall value of C4 is improved and that of C3 fails to be
improved by AdaBoost.M1. By applying AdaC2.M1, recall
value of C3 is greatly improved. In general, G-mean value
of C4.5 is increased by 4.22% by applying AdaBoost.M1
and by 8.10% by applying AdaC2.M1, which obtains the
highest G-mean values through increasing recall values of
both classes C3 and C4.

Respecting to the second learning objective, the fitness
function is the F-measure evaluation of class C3. The result-
ing prototype cost vector is [0.5412 0.8217 0.7536 1.0000].
Integrating this cost vector to AdaC2.M1, classification per-
formance of class C3 is evaluated by the data partitions of
the second section. Table 5 presents the performances of
C4.5, AdaBoost and AdaC2.M1 including recall (R), preci-
sion (P) and F-measure (F) values of class C3. F-measure
value of C4.5 is improved by AdaBoost.M1 through in-
creasing the precision value. By applying AdaC2.M1, both
recall and precision values are improved and keep relatively
even. AdaC2.M1 hence achieves the best F-measure value.

Table 5. F-measure Evaluation on Class C3
C45 AdaBoostM1 AdaC2.M1

R 0.7175 0.7395 0.8364
P 0.7068 0.8389 0.8289
F 0.7097 0.7781 0.8304

7.4 New-Thyroid Database

The goal of this data set is to predict a patient’s thyroid to
the class euthyroidism (normal), hypothyroidism or hyper-
thyroidism. This data is a simple database containing 215
instances of patients, each described by 5 attributes. Table
6 describes the class distribution.

Table 6. Class Distribution

index classname class size class distribution
C1l normal 150 69.77%
C2 hyper 35 16.28%
C3 hypo 30 13.95%

Two classes of this data set, C2 and C3, are small classes.
By the same experiment method as described previously for
the Car data, we first test C4.5 and C4.5 applied by Ad-
aBoost.M1. Experiment results are tabulated in Table 7.

Table 7. Performance of C4.5 & AdaBoost.M1

Measure Class C45  AdaBoost.M1
F Cl1 0.9398 0.9344
Measure C2 0.8625 0.8831
C3 0.8504 0.8197
Accuracy 0.9157 0.9112
G-mean 0.8538 0.8661

Respecting to classification performance of C4.5, per-
formance on class C1 is significantly better than the other
two small classes C2 and C3. By applying AdaBoost.M1,
performance of class C1 remains the similar value; that of
class C2 is improved by 2.06%; and that of class C3 is
decreased by 3.13%; Classification accuracy of C4.5 does
not change a lot and G-mean value is slightly improved by
1.23%. Based on these observations, we set up two learning
objectives: 1) to further balance the identify ability on each
class; and 2) to improve the recognition ability of class C3.

Respecting to the first learning objective, the fitness
function is G-mean evaluation. The resulting prototype of
a cost vector is [0.4206 0.6256 1.0000]. Integrating this
cost vector into AdaC2.M1, classification performance of
each individual class reported by recall value and the over-
all performance evaluated by G-mean, together with those
yielded by C4.5 and C4.5 applied by AdaBoost.M1 are tab-
ulated in Table 8. Recall value of class C1 is decreased by
both AdaBoost.M1 and AdaC2.M1, but still keeps a good
performance. Recall value of C2 is increased by 5.84%
through applying Adaboost.M1 and by 9.49% through ap-
plying AdaC2.M1. For the class C3, recall value of C4.5
fails to be improved by AdaBoost.M1 and is increased
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by 9.08% through applying AdaC2.M1. G-mean value of
C4.5 is slightly improved by applying AdaBoost.M1 and
significantly improved by 5.75% by applying AdaC2.M1.
AdaC2.M1 achieves the best G-mean value by increasing
recall values of both classes C2 and C3.

Table 8. G-mean Evaluation

Class C45 AdaBoostM1 AdaC2.M1
Ci(R) 0.9703 0.9447 0.9106
C2(R) 0.8229 0.8813 0.9178
C3(R) 0.7966 0.7955 0.8874
G-mean 0.8539 0.8661 0.9014

Respecting to the second learning objective, the fitness
function is the F-measure evaluation of class C3. The re-
sulting prototype cost vector is [0.7697 0.9804 1.0000]. In-
tegrating this cost vector into AdaC2.M1, classification per-
formance of class C3 together with those of C4.5 and C4.5
applied by AdaBoost.M1 are stated in Table 9. The F-
measure performance of C4.5 is decreased by applying Ad-
aBoost.M1 since the recall value is not changed a lot and
precision value is lowered. By applying AdaC2.M1, recall
value is increased and precision value is lowered such that
these two values get closer. The resulting F-measure value
obtained by AdaC2.ML1 is a little bit better than that of C4.5.

Table 9. F-measure Evaluation on Class C3
C45 AdaBoostM1 AdaC2.M1

R 0.7966 0.7955 0.8763
P 0.9467 0.8574 0.8547
F 0.8504 0.8197 0.8613

7.5 Nursery Database

Nursery Database was derived to rank applications for
nursery schools. There are 12960 instances, each described
by 8 nominal attributes. The original data has 5 classes.
Since one class, “recommend”, has only 2 instances, we
therefore combine this class with class “very-recommend”.
Table 10 describes the class distribution.

Table 10. Class Distribution

index classname class size  class distribution
C1 not-recom 4320 33.33%
C2  very-recom 330 2.55%
C3 priority 4266 32.92%
C4 spec-prior 4044 31.20%

With this data set, class C2 is the only small class. Ex-
periment results of C4.5 and C4.5 applied by AdaBoost.M1.
are tabulated in Table 11.

Table 11. Performance of C45 & Ad-
aBoost.M1
Measure Class C45  AdaBoost.M1
F C1 1 1
Measure C2 0.7784 0.8992
C3 0.9617 0.9829
C4 0.9765 0.9895
Accuracy 0.9747 0.9887
G-mean 0.9250 0.9625

Obviously, performance of class C2 is the worst among
these 4 classes by both C4.5 and AdaBoost.M1, even
thought it is improved by applying AdaBoost.M1. Classifi-
cation accuracy and G-mean value of C4.5 are improved by
applying AdaBoost.M1. We set up two learning objectives:
1) to further balance the identify ability on each class; and
2) to improve the recognition ability of class C2.

Respecting to the first learning objective, the fitness
function is G-mean evaluation. The resulting prototype
of a cost vector is [0.7072 1 0.4888 0.6516]. Integrating
this cost vector into AdaC2.M1, classification recall value
of each individual class and the G-mean value, together
with those generated by C4.5 and C4.5 applied by Ad-
aBoost.M1 are tabulated in Table 12. Respecting to class
C2, recall value is increased by 10.40% through applying
AdaBoost.M1 and by 15.68% through applying AdaC2.M1.
The G-mean value achieved by C4.5 is increased by 3.75%
through applying AdaBoost.M1 and by 4.95% through ap-
plying AdaC2.M1. Both improvements are achieved mainly
through increasing the recall value of class C2.

Table 12. G-mean Evaluation

Class C45 AdaBoostM1 AdaC2.M1
CI(R) T T il
C2(R) 0.7776 0.8816 0.9344
C3(R) 0.9630 0.9851 0.9755
C4(R) 0.9750 0.9889 0.9906
G-mean 0.9250 0.9625 0.9745

Respecting to the second learning objective, the fitness
function is the F-measure evaluation of class C2. The re-
sulting prototype cost vector is [0.7131 1 0.5310 0.2895].
Integrating this cost vector into AdaC2.M1, classification
performance of class C2 together with those of C4.5 and
C4.5 applied by AdaBoost.M1 are stated in Table 13. By
applying AdaBoost.M1, F-measure value of C4.5 is signif-
icantly improved, from 77.84% to 89.92%. Both recall and
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precision values are increased simultaneously. By apply-
ing AdaC2.M1, recall value is further improved and pre-
cision value is slightly decreased comparing with that of
AdaBoost.M1. The combination evaluation F-measure of
AdaC2.M1 is better than that of AdaBoost.M1.

Table 13. F-measure Evaluation on Class C3

C45 AdaBoostM1 AdaC2.M1
R 0.7809 0.8816 0.9371
P 0.7776 0.9191 0.9043
F 07784 0.8992 0.9197

8 Conclusion

In this paper, we developed a cost-sensitive boosting al-
gorithm AdaC2.M1 to tackle the class imbalance problem
with multiple classes (more than two classes). The main
contributions of this research are: 1) to the best of our
knowledge, this is the first work to address the class im-
balance problem involving multiple classes. The signifi-
cant hardness and importance in solving the class imbal-
ance problem attracts a lot of research interests. However,
most the existing approaches assume a bi-class setting. Due
to the complicated situations when multiple classes present,
methods for bi-class problems are not directly applicable; 2)
the AdaC2.M1 algorithm has been developed by reducing
its weight update parameter to minimize the overall train-
ing error of the combined classifier taking the misclassifi-
cation costs into consideration. This process is crucial for
the boosting efficiency; 3) our study shows that AdaC2.M1
is capable to adjust the data distributions and bias the lean-
ing focuses among classes by setting up different cost val-
ues; and 4) we set up efficient cost vectors for apply-
ing AdaC2.M1 by the searching of the Genetic Algorithm.
Conducted experimental tests on three “real world” data sets
indicate that, with the searching results of GA, AdaC2.M1
is capable to improve the base classification’s performances
and accomplish better results than AdaBoost.M1 when both
boosting algorithms are applied to the C4.5 classification
systems. Due to the nature of GA, searching of cost setups
might be time-consuming with some applications. This ap-
proach is still respectable considering that this searching is
usually an off-line procedure such that the learning speed is
not a crucial issue.
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