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Abstract Although the majority of concept-
learning systems previously designed usually as-
sume that their training sets are well-balanced, this
assumption is not necessarily correct. Indeed, there
exist many domains for which one class is rep-
resented by a large number of evamples while the
other is represented by only a few. The purpose of
this paper is 1) to demonstrate experimentally that,
at least in the case of connectionist systems, class
imbalances hinder the performance of standard clas-
sifiers and 2) to compare the performance of sev-
eral approaches previously proposed to deal with the
problem.

1 Introduction

As the field of machine learning makes a rapid
transition from the status of “academic disci-
pline” to that of “applied science”, a myriad
of new issues, not previously considered by the
machine learning community, is now coming
into light. One such issue is the class imbalance
problem. The class imbalance problem corre-
sponds to domains for which one class is rep-
resented by a large number of examples while
the other is represented by only a few.!

The class imbalance problem is of crucial
importance since it is encountered by a large
number of domains of great environmental, vi-
tal or commercial importance, and was shown,
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'In this paper, we only consider the case of concept-
learning.

in certain cases, to cause a significant bottle-
neck in the performance attainable by standard
learning methods which assume a balanced dis-
tribution of the classes. For example, the prob-
lem occurs and hinders classification in appli-
cations as diverse as the detection of oil spills
in satellite radar images [5], the detection of
fraudulent telephone calls [1] and in-flight he-
licopter gearbox fault monitoring [2].

To this point, there have only been a few
attempts at dealing with the class imbalance
problem ([7], [2], [6], [4], [1], [5]); and these
attempts were mostly conducted in isolation.
In particular, there has not been, to date, any
systematic strive to link specific types of imbal-
ances to the degree of inadequacy of standard
classifiers. Furthermore, no comparison of the
various methods proposed to remedy the prob-
lem has yet been performed.

The purpose of this paper is to address these
two concerns in an attempt to unify the re-
search conducted on this problem. In a first
part, the paper concentrates on finding out
what type of imbalance is most damaging for a
standard classifier that expects balanced class
distributions; and in a second part, several im-
plementations of three categories of methods
previously proposed to tackle the problem are
tested and compared on the domains of the
first part.

The remainder of the paper is divided into
four sections. Section 2 is a statement of the
specific questions asked in this study. Sec-
tion 3 describes the part of the study focus-



ing on what types of class imbalance problems
create difficulties for a standard classifier. Sec-
tion 4 describes the part of the study designed
to compare the three categories of approaches
previously attempted and considered here, on
the problems of section 3. Sections 5 and 6
conclude the paper.

2 Questions of Interest

The study presented in this paper can be
thought of as a first step in the investigation of
the following two questions:

Question 1: What types of imbalances hin-
der the accuracy performance of standard
classifiers?

Question 2: What approaches for dealing
with the class imbalance problem are most
appropriate?

These questions are important since their
answers may suggest fruitful directions for fu-
ture research. In particular, they may help
researchers focus their inquiry onto the par-
ticular type of solution found most promising,
given the particular characteristics identified in
their application domain.

Question 1 raises the issue of when class im-
balances are damaging. While the studies pre-
viously mentioned identified specific domains
for which an imbalance was shown to hurt
the performance of certain standard classifiers,
they did not discuss the questions of whether
imbalances are always damaging and to what
extent different types of imbalances affect clas-
sification performances. This paper takes a
global stance and answers these questions in
the context of the DMLP classifier ? on a series
of artificial domains spanning a large combina-
tion of characteristics.

Question 2 considers three categories of ap-
proaches previously proposed by independent

2DMLP refers to the standard multi-layer percep-
tron trained to associate an output value of “1” with
instances of the positive class and an output value of
“0” with instances of the negative class [8].

researchers for tackling the class imbalance
problem?:

1. Methods in which the class represented by
a small data set gets over-sampled so as to
match the size of the other class [6].

2. Methods in which the class represented by
the large data set can be down-sized so as
to match the size of the other class [4].

3. Methods that mostly ignore one of the two
classes, altogether, by using a recognition-
based instead of a discrimination- based
inductive scheme ([2], [5]).

The quest of this part of the study is aimed
at finding out what approaches are most ap-
propriate given certain specific domain con-
ditions. In order to answer this question,
each scheme was implemented using closely
related methods, namely, various versions of
Discrimination-based and Recognition-based
MLP networks (DMLP and RMLP?), in an at-
tempt to limit the amount of bias that could
be introduced by different and unrelated learn-
ing paradigms. All the schemes were tested on
the artificial domains previously generated to
answer Question 1.

Note that although this study is restricted
to artificial domains, it could be easily ex-
tended to real-world domains. In particular,
text classification domains could be good test
beds given the imbalanced nature of their data
sets, the wide availability of text data and the
ease with which concept complexity can be
controlled—e.g., by merging several categories
of text data together in order to form a super-
category.

%In this study, we focus on “external” approaches
to the problem which do not bring upon any modifi-
cations to the classifier. The study of “internal” ap-
proaches which bias the classifier in order to deal with
class imbalances [7] has been left for future work.

*RMLP is discussed in Section 4.1 below and in [2].



3 When does a Class Imbal-
ance Matter?

In order to answer Question 1, a series of arti-
ficial concept-learning domains was generated
that varies along three different dimensions:
the degree of concept complezity, the size of the
training set, and the level of imbalance between
the two classes. The standard classifier system
tested on this domain was a simple DMLP sys-
tem such as the one described in [8]. This sec-
tion first discusses the domain generation pro-
cess followed by a report of the results obtained
by DMLP on the various domains.

3.1 Domain Generation

For the experiments of this section, 125 do-
mains were created with various combinations
of concept complexity, training set size, and
degree of imbalance. The generation method
used was inspired by Schaffer who designed a
similar framework for testing the effect of over-
fitting avoidance in sparse data sets [9]. How-
ever, the two data generation schemes present
a number of differences.

In more detail, each of the 125 generated do-
mains is one-dimensional with inputs in the [0,
1] range associated with one of the two classes
(1 or 0). The input range is divided into a
number of regular intervals (i.e., intervals of
the same size), each associated with a differ-
ent class value. Contiguous intervals have op-
posite class values and the degree of concept
complexity corresponds to the number of alter-
nating intervals present in the domain. Actual
training sets are generated from these back-
bone models by sampling points at random (us-
ing a uniform distribution), from each of the
intervals. The number of points sampled from
each interval depends on the size of the domain
as well as on its degree of imbalance. An exam-
ple of a backbone model is shown in Figure 1.

Five different complexity levels were consid-
ered (c = 1..5) where each level, ¢, corresponds
to a backbone model composed of 2¢ regular in-
tervals. For example, the domains generated at

complexity (c) =3, + =class 1, - = class 0
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Figure 1: A Backbone Model of Complexity 3

complexity level ¢ = 1 are such that every point
whose input is in range [0, .5) is associated with
a class value of 1, while every point whose in-
put is in range (.5, 1] is associated with a class
value of 0; At complexity level ¢ = 2, points
in intervals [0, .25) and (.5, .75) are associated
with class value 1 while those in intervals (.25,
.5) and (.75, 1] are associated with class value
0; etc., regardless of the size of the training set
and its degree of imbalance.’

Five training set sizes were considered (s =
1..5) where each size, s, corresponds to a train-
ing set of size round((5000/32) x2°). Since this
training set size includes all the regular inter-
vals in the domain, each regular interval is, in
fact, represented by round(((5000/32)+2%)/2°)
training points (before the imbalance factor is
considered). For example, at a size level of
s = 1 and at a complexity level of ¢ = 1 and
before any imbalance is taken into considera-
tion, intervals [0, .5) and (.5, 1] are each repre-
sented by 157 examples; If the size is the same,
but the complexity level is ¢ = 2, then each of
intervals [0, .25), (.25, .5), (.5, .75) and (.75, 1]
contains 78 training examples; etc.

Finally, five levels of class imbalance were
also considered (¢ = 1..5) where each level,
1, corresponds to the situation where each
sub-interval of class 1 is represented by all
the data it is normally entitled to (given ¢
and s), but each sub-interval of class 0 con-
tains only 1/(32/2)th (rounded) of all its nor-
mally entitled data. This means that each of
the sub-intervals of class 0 are represented by
round((((5000/32) * 2%)/2°)/(32/2")) training
examples. For example, for ¢ =1, s = 1, and
i = 2, interval [0, .5) is represented by 157 ex-

In this paper, complexity is varied along a single
very simple dimension. Other more sophisticated mod-
els could be used in order to obtain finer-grained results.



amples and (.5, 1] is represented by 79; If ¢ = 2,
s =1 and ¢ = 3, then [0, .25) and (.5, .75) are
each represented by 78 examples while (.25, .5)
and (.75, 1] are each represented by 20; etc.
In the reported results, the number of test-
ing points representing each sub-interval was
kept fixed (at 50). This means that all do-
mains of complexity level ¢ = 1 are tested on
50 positive and 50 negative examples; all do-
mains of complexity level ¢ = 2 are tested on
100 positive and 100 negative examples; etc.

3.2 Results for DMLP

The results for DMLP are displayed in Figure 2
which plots the error DMLP obtained for each
combination of concept complexity, training
set size, and imbalance level. Each plot in Fig-
ure 2 represents the plot obtained at a differ-
ent size. The leftmost plot corresponds to the
smallest size (s = 1) and progresses until the
rightmost plot which corresponds to the largest
(s = 5). Within each of these plots, each clus-
ter of five bars represent the concept complex-
ity level. The leftmost cluster corresponds to
the simplest concept (¢ = 1) and progresses
until the rightmost one which corresponds to
the most complex (¢ = 5). Within each clus-
ter, finally, each bar corresponds to a partic-
ular imbalance level. The leftmost bar corre-
sponds to the most imbalanced level (i = 1)
and progresses until the rightmost bar which
corresponds to the most balanced level (i =5,
or no imbalance). The height of each bar rep-
resents the average percent error rate obtained
by DMLP (over five runs on different domains
generated from the same backbone model) on
the complexity, class size and imbalance level
this bar represents. Please note that all graphs
indicate a large amount of variance in the re-
sults despite the fact that all results were aver-
aged over five different trials. The conclusions
derived from these graphs thus reflect general
trends rather than specific results. Because the
scaling of the different graph is not necessarily
the same, lines were drawn at 5, 10, 15, etc.
percent error marks in order to facilitate the
interpretation of the results.

Because the performance of DMLP depends
upon the number of hidden units it uses, we
experimented with 2, 4, 8 and 16 hidden units
and reported only the results obtained with the
optimal network capacity. Other default val-
ues were kept fixed (i.e., all the networks were
trained by the Levenberg-Marquardt optimiza-
tion method, the learning rate was set at 0.01;
the networks were all trained for a maximum
of 300 epochs or until the performance gradi-
ent descended below 107!%; and the threshold
for discrimination between the two classes was
set at 0.5). This means that the results are re-
ported a-posteriori (after checking all the pos-
sible network capacities, the best results are
reported). Given the fact that each experi-
ment is re-ran 5 times, it is believed that the
a-posteriori view is sufficient, especially since
all the systems are tested under the same con-
ditions.

The results indicate several points of inter-
est. First, no matter what the size of the train-
ing set is, linearly separable domains (domains
of complexity level ¢ = 1) do not appear sen-
sitive to any amount of imbalance. Related
to this observation is the fact that, as the de-
gree of concept complexity increases (to a point
where the problem still obtains an acceptable
accuracy when the domain is balanced—i.e.,
with complexity levels of ¢ < 4, in our partic-
ular case), so does the system’s sensitivity to
imbalances. Indeed, the gap between the dif-
ferent imbalance levels seems to increase as the
degree of concept complexity increases (again,
up to ¢ = 4) in all the plots of Figure 2.

Finally, it can also be observed that the size
of the training set does not appear to be a fac-
tor in the size of the error-rate gap between bal-
anced and imbalanced data sets. This suggests
that the imbalance problem is a relative prob-
lem (i.e., it depends on the proportion of imbal-
ance experienced by the domain) rather than a
problem of intrinsic training set size (i.e., it is
meaningless to say that a system will perform
poorly on a domain that contains only n neg-
ative training examples without specifying the
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Figure 2: Experimental Results # 1

size of the positive class®).

4 A Comparison of Various
Strategies

Having identified the domains for which a class
imbalance does impair the accuracy of a regu-
lar classifier such as DMLP, this section now
proposes to compare a few of the methodolo-
gies that have been proposed to deal with this
problem. First, the various schemes used for
this comparison are described, followed by a re-
port on their performance. Rather than com-
paring specific methods, this study compares
various kinds of methods. These methods are
all implemented in the connectionist paradigm
and are closely related so as to minimize dif-
ferences in performance caused by phenomena
other than their particular methodology.

4.1 Schemes for Dealing with Class
Imbalances

Re-Sampling Two re-sampling methods
were considered in this category. The first one,
rand_resamp, consists of re-sampling the small
class at random until it contains as many ex-
amples as the other class. The second method,
focused_resamp, consists of re-sampling the
small class only with data occuring close to the
boundaries between the concept and its nega-
tion. A factor of @ = .25 was chosen to repre-

®Note, however, that too small a class size is also
inherently harmful, but this issue is separate from the
one considered here.

sent closeness to the boundaries.”

Down-Sizing Two down-sizing methods,
closely related to the re-sampling methods
were considered in this category. The first one,
rand_downsize, consists of eliminating, at ran-
dom, elements of the over-sized class until it
matches the size of the other class. The sec-
ond one, focused_downsize, consists of eliminat-
ing only elements further away (where, again,
a = .25 represents closeness to the boundaries)

Learning by Recognition Two methods
were, omnce again, considered in this cate-
gory. Both of these methods are based on the
autoassociation-based classification approach
described in [2]. The approach consists of
training an autoassociator—a multi-layer per-
ceptron designed to reconstruct its input at the
output layer—to learn how to recognize one
of the two classes. Once trained, the network
will either recognize a testing example as an
example of the class it was trained on or re-
ject it as belonging to the class on which it
was not trained. This training scheme was
used first on the over-represented class of the
domain (over_recog) and then on the under-
represented class (under_recog). On every do-
main, the threshold for discriminating between
recognized and nomn-recognized examples was
set by comparing the accuracy obtained with

"This factor means that for interval [a, b], data
considered close to the boundary are those in [a, a+
.25 x (b-a)] and [a+.75 x (b-a), b]. If no data were
found in these intervals (after 500 random trials were
attempted), then the data were sampled from the full
interval [a, b] as in the rand_resamp methodology.




100 different threshold values and retaining the
one yielding optimal performance.

4.2 Results

The results for rand_resamp, rand_downsize
and over_recog are reported in Figure 3,
while the results for focused_resamp, fo-
cused_downsize and under_recog are reported
in Figure 4. We only report the results ob-
tained for a single domain size (Size=3).®

The results of Figures 3(a), 3(b), 4(a) and
4(b) as compared to those of Figure 2(c)
(i.e., DMLP at Size=3) indicate that both re-
sampling and down-sizing methods are very
effective especially as the concept complexity
gets larger. In addition, comparisons of Fig-
ures 3(a) and 4(a) as well as 3(b) and 4(b)
indicate that there is no clear advantage in
using sophisticated re-sampling or down-sizing
schemes, at least, in our particular domains.

On the other hand, the performance of
over_recog and under_recog is generally not as
good as that of rand_resamp, rand_downsize,
focused_resamp, and focused_downsize: the
overall results obtained by over_recog are less
accurate than those of the re-sampling and
down-sizing methods. It is only when the com-
plexity of the concept reaches ¢ = 5 (i.e.,
when, we assume, the problem of recognizing
one class is simpler than that of discriminat-
ing between two classes) that over_recog be-
comes slightly more accurate. Furthermore,
there does not seem to be any advantage to
using under_recog since its results are compa-
rable to those of DMLP used on unaltered im-
balanced domains.

5 Conclusion

The purpose of this paper was to unify some
of the research that has been conducted in iso-
lation on the problem of class imbalance and
to guide future research in the area. The pa-
per was concerned with two issues: (1) When

8Results involving different domain sizes can be

found in [3].

does the class imbalance problem matter? and
(2) How do the various categories of methods
attempted to solve the problem (and their dif-
ferent realizations) compare?

It concluded that while a standard multi-
layer perceptron is not sensitive to the class im-
balance problem when applied to linearly sep-
arable domains, its sensitivity increases with
the complexity of the domain. The size of the
training set does not appear to be a factor.

The paper also showed that both over-
sampling the minority class and down-sizing
the majority class are very effective methods
of dealing with the problem. In addition, it
showed that using more sophisticated over-
sampling or down-sizing methods than a simple
uniformly random approach appears unneces-
sary (at least in the case of feedforward neural
networks and simple artificial domains of the
type designed for this study).

The recognition-based approach was shown
to have the potential to help when used on the
majority class. However, it appears less effec-
tive than the re-sampling and down-sizing ap-
proaches. When applied to the minority class,
it does not present any advantages over the
discrimination-based approach (DMLP) ap-
plied to unaltered imbalanced domains.

6 Future Work

There are many directions left to explore in the
future. First, it would be useful to test differ-
ent types of imbalances: so far, only “balanced
imbalances” were considered. “Imbalanced im-
balances” in which different subclusters of a
class have different numbers of examples rep-
resenting them should also be surveyed.

In order to get a more precise understanding
of the different results it would also be useful
to report the results in terms of false positives
and false negatives or to run ROC Analyses.

A third issue has to do with the type of
classifier used. In this study, only feedforward
neural networks were considered. It would be
worthwhile to check the performance on the
problems of Section 3 of other standard classi-
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Figure 3: Experimental Results # 1

(a) focused_resamp (b) focused_downsize

(c) under_recog

Figure 4: Experimental Results # 2

fiers (e.g., C4.5, Nearest-Neighbours, etc.).
Finally, the wuse
throughout this study may have occulted im-

of artificial domains
portant issues pertaining to practical prob-
lems. It would, thus, be useful to repeat the
experiments on real-world domains.
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