
Applied Intelligence 21, 117–128, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The United States.

Neural Learning from Unbalanced Data

YI L. MURPHEY AND HONG GUO
Department of Electrical and Computer Engineering, The University of Michigan-Dearborn,

Dearborn Michigan 48128-1491, USA
yilu@umich.edu

LEE A. FELDKAMP
Research and Advanced Engineering, Ford Motor Company, Dearborn, MI 48121, USA

Abstract. This paper describes the result of our study on neural learning to solve the classification problems in
which data is unbalanced and noisy. We conducted the study on three different neural network architectures, multi-
layered Back Propagation, Radial Basis Function, and Fuzzy ARTMAP using three different training methods,
duplicating minority class examples, Snowball technique and multidimensional Gaussian modeling of data noise.
Three major issues are addressed: neural learning from unbalanced data examples, neural learning from noisy
data, and making intentional biased decisions. We argue that by properly generated extra training data examples
around the noise densities, we can train a neural network that has a stronger capability of generalization and better
control of the classification error of the trained neural network. In particular, we focus on problems that require a
neural network to make favorable classification to a particular class such as classifying normal(pass)/abnormal(fail)
vehicles in an assembly plant. In addition, we present three methods that quantitatively measure the noise level of
a given data set. All experiments were conducted using data examples downloaded directly from test sites of an
automobile assembly plant. The experimental results showed that the proposed multidimensional Gaussian noise
modeling algorithm was very effective in generating extra data examples that can be used to train a neural network
to make favorable decisions for the minority class and to have increased generalization capability.

Keywords: machine learning, neural networks, unbalanced data, data noise

1. Introduction

Neural networks have been applied to various problems
including engineering diagnosis, pattern classification,
intelligent manufacturing and control problems [1–3].
There has been much progress in developing methods
for training complex configurations of these networks,
but little has been known about the general learning
properties of neural networks [4]. Our research is fo-
cused on the following three major issues within the
problem scope of pattern classification: neural learning
from unbalanced data examples, neural learning from
noisy data, and making intentional biased decisions.

In many application problems, the training data for
each class is extremely unbalanced. One example is the

classification of defective products at the end of man-
ufacturing lines such as automobile assembly plants.
One thing in common in a manufacturing environment
is that most products are good and only a few are
defects. If we further divide the defect products into
classes of different defect types, we will have far more
data examples from the “normal” class than those in
any one of the defective classes for neural learning [1].

This problem has been referred to as classification
under unbalanced training data. If the training methods
are not proper, the features representing the classes that
have small number of examples in the training set may
likely be ignored by the neural networks. This problem
is caused by the overwhelming number of learning ex-
amples in one class input to the learning system that

118 Murphey, Guo and Feldkamp

partially undo the training effect on the small number
of learning examples of a different class. As we will
show, this problem is more serious when the data set
has a high level of noise. Data noise in classification
problems can be generally described as data examples
of different classes inseparable in the feature space.
In other words, if a data set is considered noisy, the
class boundary to separate different class examples in
the feature space is almost impossible to draw. Noise in
training and test data rises from a number of sources, the
set of features used for classification is not sufficient to
draw class boundaries, data examples are mislabeled,
poor data acquisition processes, etc. These problems
are inevitable in many engineering applications.

Another important characteristic in many applica-
tions is the control of misclassification. In other words,
if misclassification is inevitable, we need to train the
neural network to make favorable classification deci-
sions towards a particular class. For example, in the
End-of-Line test at automotive assembly plants, we
would rather have a classification system misclassify a
good car as bad instead of a bad car being identified as
a good car. The reason is that cars being identified as
bad will be checked by mechanics for repair, so a truly
good car can be returned to the pool.

In this paper, we present our study on the behav-
ior of three neural network architectures, multi-layered
Back Propagation (BP) network, Radial Basis Func-
tion (RBF), and Fuzzy Adaptive Resonance Theory
(ART) network, in response to unbalanced data with
different levels. We present three different methods to
quantitatively describe noise levels in a training data
set, addressing three major issues: neural learning from
unbalanced data examples, neural learning from noise
data, and making intentional biased decisions. We pro-
pose a noise modeling algorithm that uses the multidi-
mensional Gaussian distribution to analyze the separa-
tion of difference class examples in a training data set
and generate extra training data examples with an aim
of training a more robust neural network that is less
susceptible to noise, has a capability of making more
favorable classification decision to a particular class
and more generalization capabilities. Our approach is
based on the following hypothesis: in supervised learn-
ing, the noise model or distribution in the unknown test
data set is not grossly different from the training data
and the ability of generalization of neural networks is
very much dependent on the data noise along the class
boundaries.

2. Behavior of Neural Networks Trained
on Unbalanced Data

This section presents our research on the behavior
of neural networks on unbalanced data. We will first
introduce three different neural network architectures
used throughout this paper, and then present methods
to measure data noise levels. At the end we will show
that the three neural networks behave quite differently
in response to the unbalanced training data sets with
different noise levels.

2.1. Three Neural Network Architectures
under Study

We study the behavior of three neural network
architectures, multi-layered BP network, RBF and
Fuzzy ARTMAP, on noisy data with unbalanced class
distributions. BP network is the most popular neural
network in pattern recognition and classification. It has
been shown that a BP network with one hidden layer
can approximate any L2 function f : [0, 1]n → Rm

in any square error ε, and a multiple hidden layer
network can approximate any function [5]. In order
to make sure that the complexity of the input space
and output space is well represented, we chose to use
a network of three layers, with two hidden layers,
and the well-known back propagation (BP) learning
algorithm [6].

A Radial Basis Function (RBF) network has a feed-
forward architecture that has an internal representation
of hidden processing elements that are radially sym-
metric [7]. The response of the hidden layer units in
a RBF network is localized and decreases as a func-
tion of the distance of inputs from the unit’s receptive
field center. The RBF network used in this study is il-
lustrated in Fig. 1. The RBF network has three major
components:

• The weight vector from input layer to the pattern
unit is defined as the center of the radially symmetric
transfer function.

• A Euclidean distance measure is defined to de-
termine how far an input vector is from the
center.

• The Gaussian function is used as a transfer function
that maps the output of the distance function to the
output of a process element.

Neural Learning from Unbalanced Data 119

Figure 1. An RBF network.

Formally, the transfer function for i th hidden unit is:

Vi = exp

[
− (X − Ci)T (X − Ci)

2σ 2
i

]

where X and Ci is the input and the weight vector to the
i th hidden unit respectively, i = 1, . . . , K . The weight
vector Ci and the width σi of the Gaussian functions
are determined during the neural learning. The learning
algorithm employed in this study uses the standard K -
means clustering to determine the centers Ci , and then
uses the nearest neighbor heuristic to determine σi . The
K -means clustering algorithm finds a set of K cluster
centers C1, C2, . . . , CK such that the sum of the squares
of the distances between each training vector X and its
closest cluster center is a local minimum. A cluster
center Ci = (C1i , . . . , CNi) is used as a weight vector
from the input layer to the i th hidden node which is
shown in Fig. 1.

We used a P nearest neighbors heuristic to determine
the σi of the transfer function. Given a cluster center Ci ,
let i1, . . . , i p be the indices of the P nearest neighboring
cluster centers, the width of the transfer function:

σi =
√√√√ 1

P

P∑
j=1

‖Ci − Ci j ‖2.

When the self-organization (with no desired output
is used) is complete, the output layer is trained using
the standard delta rule learning which adaptively min-
imizes the mean square error between desired output
vectors and actual output vectors to obtain the weights
W ji between i th node in the hidden layer and the j th
node in the output layer.

Figure 2. A Fuzzy ARTMAP network.

Fuzzy ARTMAP is a supervised version of Fuzzy
ART [3] which in turn is the Fuzzified network of Adap-
tive Resonance Theory (ART) [8–10]. Figure 2 shows
the Fuzzy ARTMAP network used in this study, which
is a supervised version of Fuzzy ART network with
an additional single output layer. The Fuzzy ARTMAP
network consists of two interconnected layers of neu-
rons, F1 and F2. The input leads to the activity in the
feature detector neurons in F1, which is also called
short-term memory activity. The short-term activity
passes through the connections to the neurons in F2.
Each F2 neuron adds together its input from all the F1
neurons and generates an output. A measure is taken
over all the neurons in F2 and the output of one neuron
will be selected as the system output, i.e. Winner-take-
all. The network allows a top-down feedback from F2
to reinforce the activity in F1 to represent a template or
set of critical features in a classification category. Dur-
ing recall and categorization, the exchange of bottom-
up and top-down information leads to a resonance in
neural activity.

The learning algorithm used in this study is described
as follows. The input nodes of a Fuzzy ART network
are considered as a set of features. If a node is active, the
corresponding feature is present; otherwise the feature
is absent. Let Ī = (I1, I2, . . . IM) be the input vector
that can take on any values between 0 and 1 to represent
the membership function value in the fuzzy set theory.
Let wi j be an element in matrix W, which represents the
top-down weight from winning node j in the F2 layer
to a node i in the F1 layer, and z ji be the corresponding
bottom-up weight in matrix Z, n be the dimension of
input vector, and M be the number of nodes in F2.
For every input Ī = (I1, I2, . . . , IM) presented to the

120 Murphey, Guo and Feldkamp

input nodes, we compute:

y j =
∑

i

z ji Ii

for j = 1, 2, . . . , M. Assuming the node m has the
maximum value of y, i.e. ym = max j=1,2,...M y j , the
similarity test is:

1

‖ Ī‖
M∑

i=1

wim Ii > ρ

where ρ is a vigilance parameter and the norm ‖ Ī‖ is
defined as ‖ Ī‖ = ∑M

i=1 |Ii |. If the similarity test is true,
the weights wim and zmi , (i = 1, 2, . . . M) are updated
as follows:

zmi (t + 1) = wim(t)Ii

0.5 + ∑M
i=1 wim(t)Ii

wim(t + 1) = βwim(t)Ii + (1 − β)wim(t),

where β controls the learning rate. The weights can be
initially set as wim = Ii for i = 1, . . . , M. After every
weight updating, the learning algorithms takes a new
input vector to the network.

If the similarity test does not hold and the F2 layer
has more than a single active node, the node m is deac-
tivated by setting ym to zero to prevent this node from
participating in the current cluster search, and then the
algorithm finds a new winner among y j to repeat the
similarity test and weight updating procedure. If the
similarity test fails and F2 has only one active node,
the weight z ji is updated using the formula above and
wim = Ii . One problem with this weight updating rule
is that |W̄ m | = ∑M

i=1 |wim | decreases each time node
m is selected for learning because Ii less than 1. This
will lead to a proliferation of categories since eventu-
ally the training vector that originally established the
category will often no longer match the pattern stored
in weights.

The difference between the desired and actual output
is used as an error signal being sent to Fuzzy ART to try
a different F2 layer node other than the previous one.
This is implemented by changing ρ, the current value of
vigilance. If the difference between the desired output
and the actual output is larger than error tolerance ε, ρ

increases until ρ > | Ī · W̄ m ‖ Ī |−1. When this happens,
Fuzzy ART searches for another F2 layer node J such
that ρ > | Ī · W̄ j ‖ Ī |−1. If the difference between the
desired and actual output for this F2 node J is less than

ε, the learning of Fuzzy ART is performed as described
above.

2.2. Data Noise Analysis

Data noise in classification problems can be generally
described as data examples of different classes insep-
arable in the feature space. If a data set is considered
noisy, the class boundary to separate different class ex-
amples in the hyper feature space is difficult to draw. In
practical application problems noise in training and test
data arises from a number of sources; the set of features
used for classification is not sufficient to draw class
boundaries, data examples are mislabeled, poor data
acquisition processes, dirty sensors, etc. These prob-
lems are inevitable in many engineering applications.
The challenge is that for a given set of noisy data, how
can we train a neural network to learn to correctly clas-
sify data examples of different classes in the training
data and have the capability of generalizing to unknown
data? In order to find answers to this question, we need
to define measures of data noise levels over data sets.

Data noise level is traditionally being vaguely de-
fined. The objective of our research is to derive quan-
titative measures of noise level for a given set of data.
We introduce three different approaches in measuring
noise levels, inter- and intra-class distances, inter-class
distances using Mahalanobis function, and mixed ex-
amples in hyper bounding boxes.

Measuring Noise Levels Using Intra and Inter Class
Distances. For a given data set X , we take two mea-
sures for each data example, xi in X , ds

i and do
i , where

ds
i is the nearest distance from xi to the examples of

the same class, and do
i is the nearest distance from xi

to the examples of the opposite class. In another words
ds

i measures the intra-class distance and do
i measures

the inter-class distance with respect to data example
xi . If ds

i > do
i , data example xi is closer to its opposite

classes than to its own class, which implies that xi is
very likely to be misclassified. The quantitative mea-
sure of noise level of data set X is formally defined
by M

N , where N = ‖X‖, M is the number of all data
examples, xα , in X that has ds

α > do
α . Generally, the

larger the ratio M
N is, the noisier the data set X is.

Measuring Noise Levels using Linear Separability be-
tween two Classes. For a 2-class problem, we first
attempt to find if there exists a discriminant function

Neural Learning from Unbalanced Data 121

that is a linear composite of the input vector compo-
nents that can separate the data examples in the feature
space. We assume that all of the input components are
independent and have a multivariate normal distribu-
tion. Let C1 and C2 denote the data examples of X
belonging in class 1 and 2 respectively.

Suppose x̄ i , i = 1, 2, are the mean vector of the data
examples in class Ci . The pooled example variance-

� =
∑

i=0,1

∣∣{(X j ∈ C L1−i) and
(
a j1 ∈ xi

1

)
and . . . and

(
a jn ∈ xi

n

) | 1 ≤ j ≤ m
}∣∣∣∣X

∣∣ .

covariance matrix S of the input vectors is

S = 1

n1 + n2 − 1

(
X T

1 X1 + X T
2 X2

)

where n1 and n2 are the number of examples of C1 and
C2 respectively, Xi , i = 1, 2 is a matrix each row of
which is a vector coming from class Ci .

The following function Z measures the statistical
between-class distance and is developed based on linear
discriminant function [11]:

Z = n1n2

n1 + n2

n1 + n2 − p − 1

(n1 + n2 − 2)p
D2

where p is the dimension of the input vector, and D is
the Mahalanobis distance between two class centroid
defined as

D2 = (x̄1 − x̄2)T S−1(x̄1 − x̄2)

The noise level of X can be measured by the value
of Z : a larger Z indicates a larger distance between the
two classes, therefore X has less noise.

Measuring Noise Level Using Hyper Bounding Boxes
in Feature Space. Let X be a class of data examples
with dimension n, and X = {X1, X2, . . . , Xm}, Xi =
〈ai1, ai2, . . . , ain〉, where ai j is the j th feature of Xi .
The hyper bounding box HBBi of class CLi is an n-
tuple, HBBi = 〈xi

1, xi
2, ..., xi

n〉, such that

xi
j = (

min xi
j , max xi

j

)
=

(
min

1≤k≤m
{akj |Xk ∈ X ∩ C Li },

max
1≤k≤m

{akj |Xk ∈ X ∩ C Li }
)
.

Two class examples are well separated if HBBi con-
tains no data examples of class 1 − i , for i = 0, 1. The
noise level of X can be measured by the number of data
examples of class 1 − i inside HBBi , for i = 0, 1. In
another words, the number of examples of one class
contained in the hyper bounding box of another class
can be used as a measure of class separation. Mathe-
matically, we define

� ranges from 0 to 1. When � = 0, the two classes are
well separated by their hyper bounding boxes, which
indicates the noise level of X is minimum. When � =
1, the data examples of two classes in X are completely
enclosed in each other’s hyper bounding box, which
indicates the highest noise level of X . We use Fig. 3 to
illustrates this method. The data examples in this figure
are in a two dimensional feature space. There are two
classes of data examples, class 0 is illustrated in a shape
of triangles, and class 1 in circles. We have HBB0 =
{(5, 25), (11, 39)}, HBB1 = {(17, 33), (5, 25)}, |X | =
26, � = 7

26 .

Summary of Noise Level Measurement Methods.
These three methods use different characteristics of
data set in measuring noise level. The first method mea-
sures the noise level based on the Euclidian distance

Figure 3. Illustration of noise level measured by HBB.

122 Murphey, Guo and Feldkamp

between the opposite classes and within the each class.
The second method measures the linear separability of
the data set. The third method measures the number of
opposite class data samples falling within the bound-
ing box of each class in the feature space. The third
method is the easiest to implement, though it may not
be as accurate as the other two.

2.3. Behavior of Neural Networks on Unbalanced
Data

This section analyzes the behavior of the three neu-
ral networks presented in Section 2.1 through exper-
iments performed on three data collections collected
from three different vehicle models at a test site in an
automobile assembly plant. The neural networks are
trained to classify whether a given vehicle is “good” or
“bad” using input vectors in five dimensions. Since new
vehicles manufactured by an auto company are mostly
in the “good” class, the data examples in both the train-
ing set and test set are unevenly distributed. Through
out this paper we refer to these data collections as ve-
hicle Model I, II, and III to protect the proprietary in-
formation. The distribution of the data collections are
illustrated in the following table.

Table 1 shows that all three data collections are ex-
tremely unbalanced, the number of normal vehicle data
examples is overwhelmingly larger than abnormal ve-
hicles. Table 2 shows the noise level of three data col-
lections measured by the three methods presented in
Section 2.2. All three methods show that Model III has
a very high level of noise. The HBB method indicates

Table 1. Class distribution of three data collections.

Number of normal Number of abnormal
Data collections vehicle data vehicles data

Model I data 3960 9

Model II data 8015 15

Model III data 1083 201

Table 2. Data noise measure on the data collections used in
experiments.

Data collections M/N Z � Noise level

Model I data 0.04% 20.46 0 Very low

Model II data 0.1% 44.54 0 Very low

Model III data 23.64% 5.86 0.44 High

that Model I and Model II have noise level 0. The intra
and inter class distance measure indicates that Modle I
has a lower noise level than Model II, but the linear
separability measure indicates that Model II has lower
noise level than Model I. In summary all three methods
indicate that Model I and Model II have low noise level
and Model III has very high level of noise.

In our experiment, the parameters associated with
each of the three neural networks are set as follows:

BP network: the layers are 5-4-4-1, Momentum
= 0.90, Tanh function, epoch size = 16

RBF: the layers are 5-100-10, P = 2, Momentum
= 0.90

Fuzzy ARTMAP: the initial vigilance is set to 0, error
tolerance ε = 0.01, β = 0.5, F2 layer node number
is 100, the dimension of input vector is 5.

Table 3 shows the performance of the three neural
networks on the three data collections. One common
approach in evaluating system behavior in the pattern
recognition community is to divide the available data
into two sets, a training set and a test set. Normally, a
fixed percentage of data instances is used for training
and the remainder for testing. According to Weiss and
Kulikowski, the usual proportions of training and test
data examples are approximately a 2:1 split [12, 13],
and a neural network is evaluated based on its perfor-
mance on the test set. However, the estimate on test
data only is a relatively pessimistic estimate of the true
error rate when the identical classification method is
applied to all the cases. Therefore we also evaluate the
system performance over the entire data set after it is
trained over the 2/3 of a data collection.

Table 3. Classification accuracy of the three neural networks on
the three data collections.

BP network RBF network Fuzzy ARTMAP
majority class/ majority class/ majority class/
minority class minority class minority class

Model I data
Entire set 99.87%/100% 99.95%/0% 100%/100%

Test set 99.97%/88.89% 99.71%/0% 99.81%/100%

Model II data
Entire set 100%/100% 100%/100% 100%/100%

Test set 99.98%/86.67% 99.97%/6.67% 100%/100%

Model III data
Entire set 99.63%/9.86% 100%/9.86% 74.24%/71.83%

Test set 98.89%/0% 91.97%/1.35% 76.45%/20.27%

Neural Learning from Unbalanced Data 123

The first finding from the study is that if the data
between the two classes are well separated such as
Model I and Model II, both the BP network and FUZZY
ARTMAP give excellent performance on unbalanced
data. The RBF network does not learn the features of
the minority class well.

The second finding is that when data is noisy, none of
the three networks performed well if a simple training
method is used. All three classifiers are poor in perfor-
mance when the data set has noise, e.g. Model III data
(see Table 3). In particular, BP and RBF are weak in
learning features of the minority class. Both networks
perform better on the majority class, which is the good
example class, than the minority class, which is the
bad example class. Although Fuzzy ARTMAP was a
little better than the other two, it still ignored the mi-
nority class on the test set. This experiment suggests
that in the case of unbalanced, noisy training data ex-
amples, multi-layered backpropagation network (BP),
Radial-Basis Function (RBF) and FUZZY ARTMAP
all ignore the minority class, namely minority data ex-
amples are often misclassified. This motivated us to
find a different neural training method that can control
the classification decision over unbalanced and noise
data.

3. Neural Learning from Unbalanced Data Using
Gaussian Noise Estimation and Modeling

We developed an algorithm with the aim of training
a neural network that can learn minority class fea-
tures and have better generalization. The algorithm
was based on the estimation of local densities and dis-
tance between two different classes in a given training
data set. For every data example in the minority class,
we attempt to construct the constant potential surface
(CPF) of the Gaussian function which is an ellipsoid in
a multi-dimension space.

3.1. Noise Modeling Using Gaussian CPF

Mathematically the problem of data noise around a
given data si in a given class can be described as fol-
lows. If we assume data noise is in a Gaussian distri-
bution, for data example si the data examples of its
opposite class distributed around si can be modeled as
random vectors Z that have the density function:

fz(Z | si) = (2π)
−M

2 |�i |− 1
2 exp

(
− (Z − si)T (Z − si)

2|�i |
)

where M is the dimension of each data example and �

is the covariance matrix of si and its M nearest neigh-
bors. We can further decompose � as � = Q	QT ,
where the diagonal entries of 	 and the column vec-
tors of Q are the eigenvalues and eigenvectors of �

respectively. Since � is symmetric, all eigenvalues and
eigenvectors are real.

According to [14], if covariance matrix � is positive
definite and symmetric, there exists a unique lower tri-
angular matrix C such that � = CCT . The random
vector Z can be represented as:

Z = CY + si

where Y = (y1, y2, . . . , yM) is a random vector gener-
ated by a Gaussian function with zero mean and identity
covariance matrix.

The jth column vector of Q, q j , j = 1, 2, . . . , M , is
computed recursively using the following formula:

q j = b j

‖b j‖ , and b j = (a j − si)−
j−1∑
k=1

bT
k (a j − si)bk .

The initial vector is computed using b1 = a1 − si ,
where a1 is the nearest neighbor of the opposite class
of si . The successive column vectors can be com-
puted recursively using the formula above. The eigen-
values of 	 can be obtained by λ j = 1

4r2 ‖b j‖2, for
j = 1, 2, . . . , M , where r is the radius of a hyper-
sphere that the probability of the hypersphere enclose
the local density is v. Musavi et al. showed that for a
given v, there is a fixed function relation between r and
M , and the values of r for M = 1, . . . , 10 can be found
in [15].

The eigenvectors of Q are the principal axes of the
ellipsoid of the constant potential surface (CPS) of the
Gaussian distribution function, and the square roots of
the eigenvalues define the lengths of the principal axes
of the ellipsoid. The M nearest neighbors of the oppo-
site class are all on the surface of the hyper-rectangle
around si . We use Fig. 4 to illustrate the CPS and its
relationship to class boundary in the 2D space. In the
figure, A is a example data from one class, B and C are
its two nearest neighbors of the opposite class. B and
C are on the boundary of larger rectangular bounded
by 2||b j ||, for j = 1, 2. The classification boundary
between the two classes can be drawn by the smaller
rectangle, which is bounded by ||b j || and encloses the
CPS ellipse. The new random vectors Z j shown in
green “x”’s were generated using the formula above.

124 Murphey, Guo and Feldkamp

Figure 4. Illustration of Gaussian local density. A is a data example
from one class, B and C are its two nearest neighbors of the opposite
class. The generated random vectors are green “x”’s.

It is clear that the new vectors Z j were mostly located
within an ellipse. In our implementation, we chose
v = 0.9545, with M = 2, r2 = 6.18 according to [15].

The shape of the hyper-ellipsoid is controlled by the
distribution of the M nearest neighbors of the opposite
class of the example data si . We use Fig. 4 and the
three examples in Fig. 5 to analyze the relationship
between the distribution of the data examples in the
feature space and the Gaussian CPS. In each example in
Fig. 5, we marked one example data in the “blue” class,
and its two nearest neighbors of opposite “red” class
marked as neighbor 1 and neighbor 2. One hundred
new data examples were generated by the procedure
described above and are represented by green “x”’s in
all examples.

It is clear that the newly generated data examples
form an ellipse centered at the selected data example.
The principal axes are proportional to the two eigenval-
ues. In both Figs. 5(a) and (b), the two nearest neighbors
of the si are located in the same direction, and the re-
sulting ellipse is long and narrow. In both Figs. 4 and
5(c), the two nearest neighbors of each data example
are located in different directions in the feature space,
more than 90◦ apart, the resulting ellipses are more like
a circle, which means that the two eigenvalues in each
example have very close values. Table 4 illustrates the
eigenvalues, eigenvectors and the Euclidean distances
between every example data to its nearest neighbors.

The characteristics of the eigenvalues and eigenvec-
tors of the CPS are summarized as follows:

1. According to its definition, the first eigenvalue λ0 is
a monotonically increasing function of the distance

Figure 5. Three examples of different Gaussian CPS generated by
different distributions of example.

between example data and its nearest neighbor of
the opposite class. This is verified by our experiment
result shown in Table 4.

2. If the nearest neighbors are located in the same ori-
entation with respect to the example point, the CPS
ellipsoid is long in the principal axis but narrow at
the others, and the new data examples have high
density in the ellipse. In Fig. 5(a), the two nearest

Neural Learning from Unbalanced Data 125

Table 4. The Euclidean distances di , eigenvectors qi , eigenvalues λi for i = 0, 1 of the examples
shown in Figs. 1 and 2.

Figure 1 Figure 2(a) Figure 2(b) Figure 2(c)

d0 0.1211 0.9727 0.224 0.26

λ0 0.0049 0.0393 0.00906 0.0105

E0 [0.2873, −0.9578]T [−0.6438, 0.7652]T [−0.873, 0.488]T [−0.1961, −0.9806]T

d1 0.3600 1.10269 0.933 0.6678

λ1 0.01336 0.000059 0.000045 0.0228

E1 [−0.9578, −0.2873]T [0.7652, 0.6438]T [0.488, 0.873]T [−0.9806, 0.1961]T

neighbors are close and at the same direction with
respect to the example data, and in (b), the two near-
est neighbors are in the same direction but quite
apart. However the two CPS’s in Figs. 5(a) and (b)
are similar in shape, and the new data examples have
high density in the both ellipses.

3. If the neighboring examples are far away from one
another in terms of direction with respect to the ex-
ample data, the corresponding principal axes in the
Gaussian CPS should be similar in lengths and the
CPS is more like a circle. Both Figs. 4 and 5(c) along
with Table 4 show this property of CPS. Quantita-
tively, this property can be measured by the ratio
of λi i = 0, 1. The difference between eigenval-
ues can help us to understand the distribution of
the examples of the opposite class. For example, if
λ0 is much larger than all of the other eigenvalues
λi (I = 1, 2, . . . M − 1), most of the data examples
of the opposite class concentrate in the direction of
the eigenvector corresponding to λ0. If all of the M
eigenvalues are very close to each other, the exam-
ples of the opposite class distribute evenly (to some
extent) in a hyper-sphere around the example.

These properties of eigenvalues and the correspond-
ing CPS ellipsoid are used to develop the following
algorithm to solve the unbalanced data problem for
neural network learning.

3.2. Generating Data Examples Using Gaussian
CPS

The objective of this algorithm is to train a neural net-
work to learn the classification features from the data
examples of a minority class in the training set and to
make more favorable decisions to the minority class.
The algorithm we investigated was to generate new mi-
nority data examples near the classification boundary

using the Gaussian CPS and add these new data exam-
ples to the training data. The neural networks trained on
this set should make more favorable decision to the mi-
nority class with the minimization of misclassification
of the majority class and have increased generalization
capability.

The algorithm generates p new data examples around
every minority data example s subject to its local Gaus-
sian distribution of the opposite class through the fol-
lowing computational steps.

Let us assume the input vector is M dimensional.
The noise modeling algorithm first finds the M data
examples of the majority class that are closest to
s, t1, t2, . . . , tM , from which we construct the M × M
covariance matrix of the Gaussian probability density
function described in the last section, and obtain M
eigenvalues of the covariance matrix λ0, λ1, . . . λM−1.

We need to be cautious about generating extra data
examples. If we generate unnecessary ones, we may
weaken the classification capability of the neural net-
work on the majority class. For example, if λ0 is large,
it implies that s is quite apart from the majority class,
and a neural network may easily learn the classifica-
tion boundary around s. If we artificially generate more
minority examples, we may force the trained neural
network to make more classification errors on the ma-
jority class than necessary. The noise modeling algo-
rithm generates new data examples only at the locations
where it is difficult to differentiate minority data ex-
amples from the majority examples, and adding noisy
random vectors does not affect too many majority ex-
amples.

Based on the properties of Gaussian CPS, we de-
veloped the following rules. Let ρ1 and ρ2, the num-
ber of majority and minority examples falling within
the hyper bounding box R of example data s and
s, t1, t2, . . . , tM respectively. Specifically, R is equal to
||s − t1||x ||s − t2||x . . . ||s − tM ||.

126 Murphey, Guo and Feldkamp

Rule 1: If ρ1, the density of majority class exam-
ples around s, is large, do not generate noisy data
around s.

Rule 2: If ρ2, the density of minority class exam-
ples around s, is small, do not generate noisy data
around s.

Rule 3: If λ0, the 1st eigenvalue of Gaussian covari-
ance matrix, is large, do not generate noisy data
around s.

For a minority data example s, only if s does not
satisfy any of the three rules will the noise modeling
algorithm generate p new data examples around s. The
value p can be determined based on the ratio of the num-
ber of data examples in the majority and the minority
class.

Another important issue is to limit the noise random
vectors in the hyper bounding box R. As we discussed
in the last section, the random vectors fall within the
CPS ellipsoid with probability v. However with prob-
ability 1 − v, the new random vectors may fall outside
the Gaussian CPS. Furthermore, the CPS ellipsoid may
exceed the hyper bounding box R due to the symmetry
of Gaussian distribution. Since we have no knowledge
of what is beyond these data examples, the noise mod-
eling algorithm discards the new extra data examples
generated beyond the hyper bounding box (see Fig. 6).
Therefore, the noise modeling algorithm accepts a ran-
dom vector as a noise data example only it belongs
to the conjuncture of the rectangular and the ellipse

Figure 6. Only the data examples that are within the conjuncture
of the bounding box and the ellipse are accepted as new training data
examples.

(see Fig. 6, where the rectangle is the bounding box
equal to ||s − t1||x ||s − t2||.)

3.3. Experiment Results

The ultimate goal of this study is to find a neural net-
work architecture along with a training method that
gives the best and most robust performance. In this
section we will compare the experimental results gen-
erated by the Gaussian CPS method with the two rela-
tively simple methods that also attempt to make a neural
network to learn minority class features.

Duplicating Data Examples of Minority Class. The
first method is called duplicating-x that duplicates data
examples of the minority class by a fixed number
of times in a training data set before a training pro-
cess. After the duplication, the new training data set
has about the same number of data examples in both
classes.

Snowball Training. The snowball training method
was used to train neural networks for multi-font char-
acter recognition by Wang and Jean [16]. The basic
idea of the snowball method is to first train a neural
network purely with the examples of the minority class
so that a set of connection weights favorable to these
examples are established. Then we increase the neural
network’s capability to recognize the examples of the
majority class by using a dynamic training set which
includes all the examples of minority class and an in-
creasing number of examples of the majority class. In
this way, the undo effect of the presentation of minority
class examples can be greatly reduced. The algorithm
was implemented as follows. Assume the trained net-
work is R, the set of the examples in the minority class
is denoted as MN. MJ, the set of all the examples in the
majority class, is randomly divided into q disjoint sub-
sets of roughly equal size, MJ1, MJ2, . . . MJq , where
MJ1 ∪ MJ2 ∪ . . . ∪ MJq = MJ. There are three pa-
rameters t1, t2, t3 to be used during the training for the
number of sweeps. First we train a neural network on
MN until it converges or t1 sweeps have been tried.
The we train the neural network on a subset MJ j of
the majority class. If it converges within t2, train the
neural network on the next majority subset. If it does
not converge within t2 sweeps, train the network on
MN ∪ MJ j−1 until it converges or t1 sweeps have been
tried. This process repeats until the neural network is
trained on all of the majority subsets except the last

Neural Learning from Unbalanced Data 127

Table 5. System performance using more complicated training methods.

BP Major/ RBF Major/ Fuzzy ARTMAP
Model III data minority class minority class Major/minority class

Train-Test 100%/0% 91.97%/1.35% 76.45%/20.27 %

Duplicate 48.31%/32.47% 57.06%/12.16% 80.06%/27.03%

Snowball 60.54%/45.54% 88.09%/5.35% 67.31%/93.24%

Gaussian CPS algorithm 70.56%/45.57% 80.03%/8.54% 71.91%/94.25%

one MJq . The last step is to train the neural network
on MN ∪ MJ. If the neural network does not converge
within t3 sweeps, we repeat the above training steps
starting from MN, then MJ1, MJ2, . . . MJq .

Table 5 shows the experiments conducted on the
Model III collection, which has been shown to have
a high level of noise. The training data contains 722
normal vehicles and 134 problematic vehicles, the test
data contains 361 normal vehicles and 67 problematic
vehicles. For duplicating-x method, we duplicated 5
copies of every abnormal vehicle. For the snowballing
method, we set t1 = 40, t2 = 20 and t3 = 30.
The MN = all abnormal vehicle cases, and MJ =
all normal vehicle cases. The NM was divided into
10 equal size subsets, MJ j , j = 1, . . . , 10. A neural
network was trained continuously with the data sets,
MN ∪ MJ1, . . . , MN ∪ MJ10.

Our experiments showed that the proposed Gaussian
CPS algorithm showed better control over the error
rates of both the majority and minority classes. When
all three neural networks trained using the training data
generated by the Gaussian CPS algorithm, the clas-
sification accuracy over the minority class improved
significantly with a minimal increase of error over the
majority class. Using the Duplicate-x and the Snow-
ball training method, both the BP and RBF networks
increased the classification accuracy over the minority
class with the price of dramatically decreasing clas-
sification accuracy over the majority class. In general
Fuzzy ARTMAP responded very well to the unbal-
anced noise data when snow ball or Gaussian CPS al-
gorithm is applied to the training data. RBF did not re-
spond well to unbalanced noise data with either training
method.

4. Conclusions

This paper presents our study on solving the classi-
fication problem in which data population is unbal-
anced among different classes and has a high level of
noise. Our study used three neural networks, BP, RBF

and Fuzzy ARTMAP. We presented three methods for
measuring noise levels for a given data set. Our study
showed that the neural network performance on un-
balanced data very much depends on how well the two
classes are separated. The BP and Fuzzy ARTMAP can
learn classification features over minority class when
data noise level is low; the RBF network does not learn
the features of the minority class well. When data is
noisy, none of the three networks performs well without
any additional processes over unbalanced data. When
we introduced two training methods, duplicating-x and
Snowball technique, into neural training, our experi-
ments showed that they are not effective on BP and
RBF networks. For the Fuzzy ARTMAP network, the
Snowball technique has made great improvement on
the minority class.

We presented an algorithm, noise modeling algo-
rithm, for training a neural network to learn the classi-
fication features from unbalanced data examples. The
algorithm was developed based on the Gaussian CPS
theory to generate random noise over the classification
boundary for a given training set with the aim of in-
creasing classification features of a given class and the
capability of generalization for the neural networks.
We showed through experimental results that the noise
modeling algorithm is effective in the training of both
BP and FUZZY ARTMAP neural networks. We spec-
ulate that the algorithm can be extrapolated to the gen-
eral classification problem of P classes within which
p classes are to be emphasized, where p < P . By
generating noisy data examples along the classification
boundaries for these p classes using the noise model-
ing algorithm, the trained neural network would have
increased classification capability and generalization
ability over the p classes.

Acknowledgments

This work was supported in part by a Grant from NSF
DMII and a research contract from the Ford Motor
Company.

128 Murphey, Guo and Feldkamp

References

1. Y. Lu, H. Guo, and L. Feldkamp, “Robust neural
learning from unbalanced data examples,” IEEE IJCNN,
1998.

2. C.H. Dagli (Eds.), Artificial Neural Networks for Intelligent
Manufacturing, 1992.

3. B. Kosko, Neural Networks and Fuzzy Systems: A Dynami-
cal Systems Approach to Machine Intelligence, Prentice-Hall,
1992.

4. D. Mackay, “Bayesian methods for adaptive models,” Ph.D the-
sis, CIT, 1991.

5. B. Irie and S. Miyake, “Capabilities of three-layered percep-
trons,” in Proc. of the International Conference on Neural Net-
works, pp. 641–648, 1988.

6. D.E. Rummelhart and J.L. McClelland. Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, vol 1:
Foundations. MIT Press: Cambridge, MA, 1986.

7. J. Moody and C.J. Darken, “Fast learning in networks of locally
tuned processing units,” Neural Computation, vol. 1, pp. 281–
294, 1989.

8. G.A. Carpenter and S. Grossberg, “ART 2: Self-organization
of stable category recognition codes for analog input patterns,”
Applied Optics, pp. 4919–4930, 1987.

9. G.A. Carpenter, S. Grossberg, N. Markuzon et al., “Fuzzy
ARTMAP: An adaptive resonance architecture for incremental

learning of analog maps”, IJCNN, June 1992, pp. 309–
314.

10. G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and
D.B. Rosen, “Fuzzy ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional
maps,” IEEE Trans. on Neural Networks, vol. 3, pp. 698–713,
1992.

11. K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press Inc., 1972.

12. S.M. Weiss and C.A. Kulikowski, Computer Systems that Learn,
Morgan Kaufmann Publishers, Inc., 1991.

13. S. Amari, N. Murata, K.-R. Muller, M. Finke, and H. Yang,
“Statistical theory of overtraining—Is cross-validation asymp-
totically effective?,” Advances in Neural Information Process-
ing Systems 8, Proceedings of the 1995 Conference, David S.
Touretzky, Michael C. Mozer, and Michael E. Hasselmo (Eds.),
1996, pp. 176–182.

14. R.Y. Rubinstein, Simulation and the Monte Carlo method, John
Wiley & Sons, 1981.

15. M.T. Musavi, K.H. Chan, D.M. Hummels, and K. Kalantri, “On
the generalization ability of neural network classifiers,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol.
16, no. 6, pp. 659–663, 1994.

16. J. Wang and J. Jean, “Resolve multifont character confusion
with neural network,” Pattern Recognition, vol. 26, no. 1, pp.
173–187, 1993.

