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Abstract

We present a comprehensive suite of experi-
mentation on the subject of learning from im-
balanced data. When classes are imbalanced,
many learning algorithms can suffer from the
perspective of reduced performance. Can data
sampling be used to improve the performance
of learners built from imbalanced data? Is the
effectiveness of sampling related to the type of
learner? Do the results change if the objective
is to optimize different performance metrics?
We address these and other issues in this work,
showing that sampling in many cases will im-
prove classifier performance.

1. Introduction

In many real-world classification domains, the vast ma-
jority of examples are from one of the classes. In bi-
nary classification, it is typically the minority (positive)
class that the practitioner is interested in. Imbalance
in the class distribution often causes machine learning
algorithms to perform poorly on the minority class. In
addition, the cost of misclassifying the minority class is
usually much higher than the cost of other misclassifica-
tions. Therefore a natural question in machine learning
research is how to improve upon the performance of clas-
sifiers when one class is relatively rare?

A common solution is to sample the data, either ran-
domly or intelligently, to obtain an altered class distri-
bution. Numerous techniques have been proposed (Sec-
tion 3), although it is unclear which techniques work
best. Some researchers have experimentally evaluated
the use of sampling when learning from imbalanced data
(e.g., (Drummond & Holte, 2003), (Kubat & Matwin,
1997), (Maloof, 2003), (Japkowicz, 2000), (Weiss &
Provost, 2003), (Chawla et al., 2002), (Han et al.,
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2005), (Monard & Batista, 2002)). The experimentation
performed in this study, however, is more comprehensive
than related work, which typically utilize one or two
learners and a couple of datasets. In this work, we con-
sider 35 different benchmark datasets (Section 2), seven
sampling techniques (Section 3), and 11 commonly-used
learning algorithms (Section 4). As explained in Sec-
tion 5, a total of 1,232,000 classifiers were constructed
in these experiments. In addition, we perform statisti-
cal analysis using analysis of variance (ANOVA) models
to understand the statistical significance of the results.
These components make our work very comprehensive,
and dramatically increase the reliability of our conclu-
sions. We strongly advocate robust, statistically valid,
and reliable empirical work to understand the relative
strengths and weaknesses of different techniques in real-
world applications.

2. Experimental Datasets

The 35 datasets utilized in our empirical study are listed
in Table 1. The percentage of minority examples varies
from 1.33% (highly imbalanced) to almost 35% (only
slightly imbalanced). The datasets also come from a
wide variety of application domains, and 19 are from the
UCI repository (Blake & Merz, 1998). The Mammog-
raphy dataset was generously provided by Dr. Nitesh
Chawla (Chawla et al., 2002). Fifteen datasets (some
of which are proprietary) are from the domain of soft-
ware engineering measurements. We have also consid-
ered datasets with diversity in the number of attributes,
and datasets with both continuous and categorical at-
tributes. The smallest dataset had 214 total examples
(Glass-3), while the two largest datasets each contain
20,000 observations. Note that all datasets have, or were
transformed to have, a binary class. We only consider
binary classification problems in this work.

3. Sampling Techniques

This section provides a brief overview of the seven
sampling techniques considered in this work: random
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Table 1. Empirical Datasets

# % #
Name minority minority attr.

SP3 47 1.33% 43
SP4 92 2.31% 43
mammography 260 2.32% 7
nursery-3 328 2.53% 9
solar-flare-f 51 3.67% 13
letter-a 789 3.95% 17
car-3 69 3.99% 7
SP2 189 4.75% 43
cccs-12 16 5.67% 9
SP1 229 6.28% 43
pc1 76 6.87% 16
mw1 31 7.69% 16
glass-3 17 7.94% 10
kc3 43 9.39% 16
cm1 48 9.50% 16
cccs-8 27 9.57% 9
pendigits-5 1055 9.60% 17
satimage-4 626 9.73% 37
optdigits-8 554 9.86% 65
e-coli-4 35 10.42% 8
segment-5 330 14.29% 20
kc1 325 15.42% 16
jm1 1687 19.06% 16
letter-vowel 3878 19.39% 17
cccs-4 55 19.50% 9
kc2 106 20.38% 16
Contra-2 333 22.61% 10
SpliceJunc2 768 24.08% 61
vehicle-1 212 25.06% 19
haberman 81 26.47% 4
yeast-2 429 28.91% 9
phoneme 1586 29.35% 6
cccs-2 83 29.43% 9
german-credit 300 30.00% 21
pima-diabetes 268 34.90% 9

undersampling (RUS), random oversampling (ROS),
one-sided selection (OSS), cluster-based oversampling
(CBOS), Wilson’s editing (WE), SMOTE (SM), and
borderline-SMOTE (BSM). RUS, ROS, WE, SM, and
BSM require a parameter value to be set, so when it is
important to specify this value, we often use notation
such as ROS300, which denotes random oversampling
with the parameter 300 (the meanings of the parameters
in the context of each sampling techniques are explained
below).

The two most common preprocessing techniques are ran-
dom minority oversampling (ROS) and random majority
undersampling (RUS). In ROS, instances of the minority
class are randomly duplicated. In RUS, instances of the
majority class are randomly discarded from the dataset.

In one of the earliest attempts to improve upon
the performance of random resampling, Kubat and
Matwin (Kubat & Matwin, 1997) proposed a technique
called one-sided selection (OSS). One-sided selection at-
tempts to intelligently undersample the majority class
by removing majority class examples that are consid-
ered either redundant or ‘noisy.’

Wilson’s editing (Barandela et al., 2004) (WE) uses the
kNN technique with k = 3 to classify each example in

the training set using all the remaining examples, and
removes those majority class examples that are misclas-
sified. Barandela et al. also propose a modified distance
calculation, which causes an example to be biased more
towards being identified with positive examples than
negative ones.

Chawla et al. (Chawla et al., 2002) proposed an intel-
ligent oversampling method called Synthetic Minority
Oversampling Technique (SMOTE). SMOTE (SM) adds
new, artificial minority examples by extrapolating be-
tween preexisting minority instances rather than simply
duplicating original examples. The technique first finds
the k nearest neighbors of the minority class for each
minority example (the paper recommends k = 5). The
artificial examples are then generated in the direction of
some or all of the nearest neighbors, depending on the
amount of oversampling desired.

Han et al. presented a modification of Chawla et al.’s
SMOTE technique which they call borderline-SMOTE
(Han et al., 2005) (BSM). BSM selects minority exam-
ples which are considered to be on the border of the
minority decision region in the feature-space and only
performs SMOTE to oversample those instances, rather
than oversampling them all or a random subset.

Cluster-based oversampling (Jo & Japkowicz, 2004)
(CBOS) attempts to even out the between-class imbal-
ance as well as the within-class imbalance. There may
be subsets of the examples of one class that are isolated
in the feature-space from other examples of the same
class, creating a within-class imbalance. Small subsets of
isolated examples are called small disjuncts. Small dis-
juncts often cause degraded classifier performance, and
CBOS aims to eliminate them without removing data.

RUS was performed at 5%, 10%, 25%, 50%, 75%, and
90% of the majority class. ROS, SM, and BSM were
performed with oversampling rates 50%, 100%, 200%,
300%, 500%, 750%, and 1000%. When performing
Wilson’s editing, we utilized both the weighted and
unweighted (standard Euclidean) versions, and denote
them WE-W and WE-E. A total of 31 combinations of
sampling technique plus parameters were utilized. In ad-
dition, we built a classifier with no sampling, which we
denote ‘NONE’. All of these sampling techniques were
implemented in Java in the framework of the WEKA
machine learning tool (Witten & Frank, 2005).

4. Learners

This section provides brief descriptions of the 11 classi-
fication algorithms along with an explanation of the pa-
rameters used in our experiments. These classifiers were
considered since they are commonly-used in the machine
learning community and in research on class imbalance.
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All learners were built using WEKA, and changes to
default parameter values were done only when experi-
mentation showed a general improvement in the classi-
fier performance across all datasets based on preliminary
analysis.

Two different versions of the C4.5 (Quinlan, 1993) deci-
sion tree learner (denoted C4.5D and C4.5N) were con-
structed using J48 in WEKA. C4.5D uses the default
WEKA parameter settings, while C4.5N uses no pruning
and Laplace smoothing (Weiss & Provost, 2003). Two
different K nearest neighbors classifiers (denoted IBk in
WEKA) were constructed, using k = 2 and k = 5, and
denoted 2NN and 5NN. The ‘distanceWeighting’ para-
meter was set to ‘Weight by 1/distance’ to use inverse
distance weighting in determining how to classify an in-
stance. For a Naive Bayes (NB) classifier, the parame-
ters were left at the default values.

Two parameters were changed from the default values
for the Multilayer perceptrons (MLP) learner. The ‘hid-
denLayers’ parameter was changed to ‘3’ to define a net-
work with one hidden layer containing three nodes, and
the ‘validationSetSize’ parameter was changed to ‘10’
to cause the classifier to leave 10% of the training data
aside to be used as a validation set to determine when to
stop the iterative training process. Radial basis function
networks (RBF) are another type of artificial neural net-
work. The only parameter change for RBF (called ‘RBF
Network’ in WEKA) was to set ‘numClusters’ to 10.

RIPPER (Repeated Incremental Pruning to Produce
Error Reduction) is a rule-based learner. JRip is the
implementation of RIPPER in WEKA, and the default
parameters were used in all experiments. The logistic
regression learner is denoted LR, and no changes to the
default parameter values for this learner were made.

The random forest (RF) classifier (Breiman, 2001) uti-
lizes bagging and the ‘random subspace method’ to con-
struct randomized decision trees. The outputs of en-
sembles of these randomized, unpruned decision trees
are combined to produce the ultimate prediction. No
changes to the default parameters were made in our ex-
periments. The support vector machine learner is called
SMO in WEKA and denoted SVM in this study. For our
experiments, the complexity constant ‘c’ was changed
from 1.0 to 5.0, and the ‘buildLogisticModels’ parame-
ter, which allows proper probability estimates to be ob-
tained, was set to ‘true’ (Witten & Frank, 2005). In
particular, the SVM learner used a linear kernel.

5. Experimental Design

The design of our experiments can be summarized as
follows. For each of the 35 datasets, 20 different runs
of five-fold cross validation (CV) were executed. For

Table 2. Sampling, π < 10%, SVM

Level AUC HSD Level G HSD
ROS1000 0.898 A RUS5 82.24 A
RUS5 0.897 AB CBOS 80.36 AB
SM1000 0.890 AB ROS1000 76.49 CB
BSM1000 0.886 AB SM1000 75.17 CB
CBOS 0.872 B BSM1000 71.93 C
WE-W 0.821 C OSS 51.81 D
OSS 0.818 C WE-W 45.28 E
NONE 0.809 C NONE 41.75 E

Level AUC HSD Level G HSD
ROS1000 0.861 A ROS1000 78.156 A
SM300 0.860 A SM1000 78.017 A
BSM300 0.856 A RUS5 76.431 AB
RUS25 0.849 AB BSM1000 75.851 AB
CBOS 0.830 CB CBOS 73.173 B
WE-W 0.828 C WE-W 51.725 C
OSS 0.814 CD OSS 45.977 D
NONE 0.798 D NONE 42.505 D

Table 3. Sampling, π < 10%, RF

Level AUC HSD Level G HSD
RUS5 0.892 A RUS5 83.08 A
SM1000 0.865 B SM1000 64.16 B
BSM1000 0.859 BC BSM1000 60.17 BC
ROS300 0.847 BCD ROS1000 59.47 BC
WE-W 0.842 BCD CBOS 57.20 CD
NONE 0.837 CD OSS 56.90 CD
CBOS 0.825 DE WE-E 51.69 DE
OSS 0.810 E NONE 49.08 E

Level AUC HSD Level G HSD
RUS10 0.862 A RUS10 79.16 A
SM750 0.857 AB SM1000 70.54 B
BSM1000 0.852 AB BSM1000 68.80 BC
WE-W 0.846 AB WE-W 65.29 CD
ROS200 0.844 ABC ROS300 64.33 DE
OSS 0.839 BC OSS 61.65 DEF
NONE 0.836 BC CBOS 61.24 EF
CBOS 0.825 C NONE 59.76 F

each iteration of CV, the training dataset consisted
of four folds, and the remaining fold served as a test
dataset. Each of the 31 sampling techniques (and also
no sampling) were applied to the training data, 11 dif-
ferent learners were constructed from the transformed
dataset, and each of the learners was evaluated on the
test dataset (based on CV).

In total, 20 five-fold CV runs times 35 datasets is 3500
different training datasets. 31 sampling techniques, plus
no sampling, were applied to each of the 3500 training
datasets, resulting in 32 × 3500 = 112, 000 tranformed
datasets, each of which is used for learner construction.
Since there are 11 learners, a total of 11 × 112, 000 =
1, 232, 000 classifiers were constructed and evaluated in
our experiments.

To measure the performance of the classifiation al-
gorithms, the area under the ROC curve (AUC),
Kolmogorov-Smirnov statistic (K/S) (Hand, 2005), geo-
metric mean (G), F-measure (F), accuracy (Acc), and
true positive rate (TPR) were calculated. The last four
performance measures utilize the implicit classification
threshold of 0.5 (i.e., if the posterior probability of posi-
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Table 4. Sampling, π < 10%, NB

Level AUC HSD Level G HSD
ROS750 0.896 A RUS5 81.78 A
RUS25 0.896 A SM1000 81.37 A
BSM50 0.895 A ROS1000 80.96 A
WE-W 0.895 A BSM1000 76.79 B
NONE 0.895 A CBOS 76.46 B
SM50 0.895 A OSS 70.06 C
OSS 0.894 A WE-W 61.21 D
CBOS 0.887 A NONE 60.72 D

Level AUC HSD Level G HSD
SM200 0.842 A RUS5 70.98 A
BSM50 0.841 A WE-W 70.17 A
WE-E 0.841 A SM1000 70.12 A
RUS90 0.840 A BSM1000 69.99 A
ROS750 0.840 A ROS1000 69.47 AB
NONE 0.840 A NONE 69.23 AB
OSS 0.831 A OSS 67.28 B
CBOS 0.805 B CBOS 57.70 C

Table 5. Sampling, π < 10%, C4.5N

Level AUC HSD Level G HSD
SM100 0.886 A RUS5 81.51 A
BSM1000 0.884 A SM750 66.87 B
WE-E 0.882 A ROS500 64.98 BC
ROS50 0.881 A CBOS 64.16 BCD
RUS25 0.881 A BSM750 63.52 BCD
NONE 0.881 A OSS 61.97 BCD
OSS 0.856 B WE-W 60.34 CD
CBOS 0.846 B NONE 59.39 D

Level AUC HSD Level G HSD
SM300 0.853 A RUS10 76.34 A
ROS300 0.853 A SM1000 69.74 B
BSM1000 0.844 AB BSM1000 67.97 BC
WE-W 0.833 BC ROS1000 64.87 CD
RUS25 0.829 BC WE-W 62.89 CD
OSS 0.824 C CBOS 61.58 DE
NONE 0.820 C OSS 60.98 DE
CBOS 0.814 C NONE 57.66 E

tive class membership is > 0.5, then the example is clas-
sified as belonging to the positive class). The first two,
the AUC and K/S, measure the general ability of the
classifier to separate the positive and negative classes.

6. Results

6.1. Experimental Data

The first set of results we present are for some of the in-
dividual learners separately. Due to space limitations
we can only provide a small sampling of the results,
however. First, the datasets were grouped into four
categories based on severity of imbalance: those with
π < 5%, 5% < π < 10%, 10% < π < 20%, and finally
20% < π (π is the percentage of examples belonging
to the minority class). The reason for this categoriza-
tion scheme is to capture differences in the performance
of sampling techniques given different levels of imbal-
ance. We focus primarily on the results from π < 10%
for the learners SVM, RF, NB, C4.5N, and LR (Ta-
bles 2 to 6). Each of these tables shows the ordering of
the sampling techniques, as measured by AUC and G,

Table 6. Sampling, π < 10%, LR

Level AUC HSD Level G HSD
ROS300 0.892 A RUS5 81.14 A
WE-W 0.890 A CBOS 79.08 AB
NONE 0.889 A ROS1000 77.31 AB
RUS75 0.889 A SM1000 75.27 BC
OSS 0.888 A BSM1000 71.45 BC
BSM50 0.887 A OSS 56.94 D
SM50 0.886 A WE-W 49.24 E
CBOS 0.860 B NONE 47.54 E

Level AUC HSD Level G HSD
ROS500 0.847 A ROS1000 77.09 A
WE-W 0.846 A SM1000 76.34 A
RUS75 0.843 A RUS10 76.03 AB
SM300 0.841 A BSM1000 75.04 AB
BSM500 0.840 A CBOS 72.47 B
NONE 0.839 A WE-W 52.89 C
OSS 0.839 A OSS 49.35 CD
CBOS 0.809 B NONE 46.28 D

along with a test of statistical significance. In Tables 2
to 6, the first nine rows are the results for datasets with
π < 5%, while the second nine rows are for the datasets
with 5% < π < 10%. The values for the performance
measure (either AUC or G) in Tables 2 to 6 are av-
eraged over all of the datasets with either π < 5% at
the top of the table or 5% < π < 10% at the bottom
of the table. For example, from Table 2, SVM with
ROS1000 obtained an average AUC of 0.898 over the 20
CV runs of the eight datasets with π < 5%, and SVM
with ROS1000 obtained an average AUC of 0.861 over
the 20 CV runs of the 11 datasets with 5% < π < 10%.

For each learner and group of datasets, a one-factor
analysis of variance (ANOVA) (Berenson et al., 1983)
was constructed, where the factor was the sampling tech-
nique. Tukey’s Honestly Significant Difference (HSD)
test (SAS Institute, 2004) is a statistical test comparing
the mean value of the performance measure for the dif-
ferent sampling techniques. Two sampling techniques
with the same block letter are not significantly differ-
ent with 95% statistical confidence (all of the statisti-
cal tests in this work use 95% confidence level). Finally
note that these tables show the parameter value for each
of the seven types of sampling that achieved the opti-
mal value. For example, from Table 2, ROS at 1000%
obtained the highest average AUC (across all of the
datasets with π < 5%) of 0.898, followed by RUS at 5%.
Note that based on the average AUC over all datasets
with π < 5%, ROS1000, RUS5, SM1000, and BSM1000
are not significantly different from one another (they
all have the block letter ‘A’ in the HSD column) when
used with the SVM classifier. Further, RUS5, SM1000,
BSM1000, and CBOS are not significantly different from
one another, since they have the block letter ‘B’ in the
HSD column. We present the results only for these five
learners and only these two performance measures due
to space limitations. AUC and G were included because
they represent one measure that is threshold dependent
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Table 7. Best Sampling Technique By Learner, AUC

AUC < 5% 5% - 10% 10% - 20% > 20%
C4.5D RUS5 RUS10 RUS25 RUS50
C4.5N SM100 SM300 WE-W WE-W
LR ROS300 ROS500 ROS500 NONE
MLP RUS10 ROS300 ROS300 ROS200
NB ROS750 SM200 SM750 NONE
RBF BSM500 RUS10 RUS90 WE-W
RF RUS5 RUS10 WE-W WE-W
RIPPER RUS5 RUS10 SM750 SM200
SVM ROS1000 ROS1000 SM200 ROS100
2NN WE-W SM200 WE-W WE-W
5NN BSM300 SM1000 WE-W WE-W

Table 8. Best Sampling Technique By Learner, G

G < 5% 5% - 10% 10% - 20% > 20%
C4.5D RUS5 RUS10 RUS25 RUS50
C4.5N RUS5 RUS10 RUS25 RUS50
LR RUS5 ROS1000 SM500 ROS200
MLP RUS5 ROS1000 ROS500 ROS200
NB RUS5 RUS5 BSM1000 BSM200
RBF RUS5 RUS10 RUS25 ROS200
RF RUS5 RUS10 RUS25 SM1000
RIPPER RUS5 RUS10 SM750 SM300
SVM RUS5 ROS1000 ROS500 ROS200
2NN RUS5 RUS10 ROS200 ROS200
5NN RUS5 ROS500 BSM1000 SM200

(G) and one that is not (AUC). Note for example that
sampling does not significantly improve the AUC ob-
tained by NB (Table 4), however applying either RUS,
SM, or BSM does significantly improve G.

Tables 7 to 10 present the sampling technique which re-
sults in the best AUC, G, K/S, and F measures for each
learner and group of imbalance. If applying the sampling
technique resulted in performance that was significantly
better (with 95% statistical confidence) than that of us-
ing no sampling, then the technique is underlined.

Table 11 presents, over all 35 datasets, 11 learners, and
six performance measures (AUC, K/S, G, F, Acc, and
TPR), the number of times the rank of the sampling
technique was 1, 2, . . . , 8. A rank of one means that the
sampling technique, for a given dataset, learner, and
performance measure, resulted in the highest value for
the performance measure1. RUS resulted in the best
performance 748 times (or 32.0% = 748/2340), followed
by ROS (408 times). OSS and CBOS were rarely the
best technique (66 or 2.8% for OSS and 86 or 3.7%
for CBOS). Further CBOS resulted in the worst perfor-
mance (rank 8, last column) 965 or 42.0% of the time,
followed by no sampling, which was the worst 862 or
37.5% of the time.

1Note that it is possible for ties to occur. Suppose, for
example, that two sampling techniques obtained the best
AUC. Both of these techniques would be given a rank of
one, while the next best technique would be given a rank of
three. Therefore the sum of the columns is not exactly equal
for each rank.

Table 9. Best Sampling Technique By Learner, K/S

K/S < 5% 5% - 10% 10% - 20% > 20%
C4.5D RUS5 RUS10 RUS25 BSM50
C4.5N SM500 SM300 BSM50 WE-W
LR ROS500 ROS1000 ROS1000 OSS
MLP RUS10 ROS1000 ROS300 ROS200
NB WE-W WE-E BSM50 WE-W
RBF RUS5 RUS10 RUS90 WE-W
RF RUS10 SM1000 WE-W WE-W
RIPPER RUS5 RUS10 SM750 SM300
SVM ROS1000 ROS1000 ROS300 ROS100
2NN WE-W SM1000 WE-W WE-W
5NN ROS750 SM1000 WE-E WE-W

Table 10. Best Sampling Technique By Learner, F

F < 5% 5% - 10% 10% - 20% > 20%
C4.5D SM300 SM300 SM100 RUS50
C4.5N SM200 SM300 SM100 WE-W
LR ROS300 ROS500 SM300 ROS200
MLP ROS300 ROS300 SM200 ROS200
NB RUS25 NONE WE-W BSM200
RBF RUS25 RUS25 SM200 ROS300
RF SM1000 SM750 WE-E WE-E
RIPPER CBOS SM1000 SM500 SM300
SVM ROS300 SM500 SM300 ROS200
2NN ROS200 ROS750 WE-W WE-W
5NN ROS200 ROS200 BSM100 SM200

Tables 12 and 13 display the ranking of each sampling
technique separately for the four groups of imbalance
(π < 5% at the top of Table 12 and 5% < π < 10% at
the bottom, with 10% < π < 20% at the top of Table 13
and π > 20% at the bottom). Note that adding the
individual cells of Tables 12 and 13 produces Table 11.
Finally, Tables 14 to 16 show the rankings of the sam-
pling techniques only for datasets with π < 5% and sep-
arately for each of the six performance measures, AUC,
K/S, G, F, Acc, and TPR (adding the individual cells
of Tables 14 to 16 produces the top half of Table 12).

6.2. Discussion of Results

Based on the experiments conducted in this work, a
number of conclusions can be drawn. The utility of
sampling depends on numerous factors. First, different
types of sampling work best with different learners. RUS
worked very well for C4.5D (not shown) and RF, while
ROS works well with LR. Second, the value of sampling
is heavily dependent on the performance measure being
used. AUC and K/S, which are classification-threshold
independent, generate different results than G, F, TPR,
and Acc, which utilize the standard 0.5 threshold on
the posterior probability. For numerous learners, such
as NB, LR, 2NN, and 5NN (and to a slighly lesser ex-
tent RBF and MLP), none of the sampling techniques
significantly improved the performance of the learner
as measured by the AUC or K/S. However, when the
performance is measured using the threshold-dependent
measures, significant improvements for all learners are
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Table 11. Rank of Sampling Techniques, All Datasets

Number of times Ranked
Method 1 2 3 4 5 6 7 8

BSM 274 352 470 451 250 246 209 58
CBOS 86 112 115 170 406 180 276 965
NONE 236 130 147 115 165 248 407 862
OSS 66 135 167 128 234 482 809 289
ROS 408 442 365 410 325 209 145 6
RUS 748 354 367 369 270 118 67 17
SM 302 586 488 362 249 208 97 18
WE 220 195 184 303 410 610 306 82

Table 12. Rank of Sampling Techniques, Datasets π < 10%

Number of times Ranked
Method 1 2 3 4 5 6 7 8

BSM 48 68 90 72 81 93 54 22
CBOS 45 59 38 30 101 26 58 171
NONE 44 40 30 25 40 82 94 173
OSS 22 42 35 29 56 84 142 118
ROS 107 91 94 120 63 31 19 3
RUS 212 89 93 61 42 12 17 2
SM 37 104 99 118 76 57 31 6
WE 18 39 44 70 73 140 117 27

Method 1 2 3 4 5 6 7 8

BSM 86 112 177 151 69 59 62 10
CBOS 22 23 35 73 140 74 66 293
NONE 84 27 37 37 50 82 123 286
OSS 26 37 45 36 57 128 294 103
ROS 107 133 123 143 105 72 40 3
RUS 273 99 97 103 94 46 10 4
SM 113 227 138 90 75 50 29 4
WE 39 61 65 99 131 211 104 16

obtained. For NB, for example, none of the sampling
techniques improved the performance on datasets with
π < 5% as measured by the AUC, however, relative to
G, RUS, SM, and ROS significantly improved the per-
formance (RUS, SM, and ROS achieved G > 80, while
no sampling resulted in G = 60.72).

Further, consider Tables 7 to 10. Using the AUC, sam-
pling significantly improved upon the performance of the
classifier constructed with the unaltered data in only
15 of 44 scenarios (12 of the 15 occurrences were for
datasets with π < 10%). For K/S, sampling improved
the performance in 12 of the 44 scenarios. For G and
F, however, in 42 and 34 of 44 scenarios, respectively,
sampling significantly outperformed not using sampling.

RUS performed very well in our experiments, although
for individual learners or datasets, other methods were
sometimes better. Overall, however, RUS resulted in
very good performance, being the best sampling tech-
nique 748 of 2340 times. ROS performed the second
best overall, followed by SM and BSM. OSS and CBOS
in particular performed very poorly, with the latter ob-
taining the worst overall ranking of the sampling tech-
niques 965 of 2297 times. For datasets with more severe
imbalance, RUS does even better, as can be seen from
Tables 12 and 13, where RUS was the best technique
39.8% and 36.4% of the time for datasets with π < 5%

Table 13. Rank of Sampling Techniques, Datasets π > 10%

Number of times Ranked
Method 1 2 3 4 5 6 7 8

BSM 72 56 75 93 33 22 27 18
CBOS 14 17 13 33 56 25 66 172
NONE 33 17 32 19 35 37 77 146
OSS 6 20 26 25 40 99 136 44
ROS 70 82 55 52 55 53 29 0
RUS 104 48 61 86 56 28 12 1
SM 55 111 105 49 35 25 15 1
WE 43 44 33 37 86 105 34 14

Method 1 2 3 4 5 6 7 8

BSM 68 116 128 135 67 72 66 8
CBOS 5 13 29 34 109 55 86 329
NONE 75 46 48 34 40 47 113 257
OSS 12 36 61 38 81 171 237 24
ROS 124 136 93 95 102 53 57 0
RUS 159 118 116 119 78 32 28 10
SM 97 144 146 105 63 76 22 7
WE 120 51 42 97 120 154 51 25

Table 14. Rank of Sampling Techniques, Datasets π < 5%,
AUC and K/S

Number of times Ranked
AUC 1 2 3 4 5 6 7 8

BSM 13 15 12 12 7 14 8 7
CBOS 2 8 3 2 11 6 15 41
NONE 1 8 10 8 19 20 8 14
OSS 3 1 4 8 14 14 22 22
ROS 22 12 16 19 10 6 3 0
RUS 35 12 16 10 7 3 5 0
SM 7 23 12 11 8 14 13 0
WE 5 11 13 18 13 10 14 4

K/S 1 2 3 4 5 6 7 8

BSM 16 18 15 5 9 13 6 6
CBOS 9 4 6 4 12 1 14 38
NONE 1 8 10 7 8 24 16 14
OSS 4 3 5 4 10 16 22 24
ROS 22 13 18 15 14 4 2 0
RUS 26 15 12 15 14 0 6 0
SM 8 21 12 18 5 13 9 2
WE 3 8 10 17 20 14 12 4

and 5% < π < 10%.

Finally, considering in more detail those datasets with
π < 5% in Tables 14 to 16, RUS maintains a slight edge
over ROS as the best sampling technique relative to the
AUC, K/S, and F. Relative to G, RUS is clearly the
best sampling technique. As would be expected, not
using sampling typically results in the highest overall
accuracy (Table 16), however since we are interested in
detecting examples of the positive class, this measure is
very misleading. We believe overall accuracy is not an
appropriate measure, especially given imbalanced data,
however it is presented because it is often used in related
work. When considering the TPR, RUS is clearly the
most successful.

One of the most important conclusions that can be
drawn from these experiments is the inferior perfor-
mance of the ‘intelligent’ sampling techniques, SM,
BSM, WE, OSS, and CBOS (especially the last two).
While these techniques seem to be promising solutions to
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Table 15. Rank of Sampling Techniques, Datasets π < 5%,
G and F

Number of times Ranked
G 1 2 3 4 5 6 7 8

BSM 6 8 19 14 19 17 2 3
CBOS 6 14 15 11 28 6 1 7
NONE 0 0 1 0 4 10 22 51
OSS 3 7 4 3 6 17 30 18
ROS 16 19 21 28 4 0 0 0
RUS 53 20 9 2 4 0 0 0
SM 5 19 19 27 16 0 2 0
WE 0 0 0 3 7 38 33 7

F 1 2 3 4 5 6 7 8

BSM 8 17 18 16 11 10 8 0
CBOS 9 5 1 2 27 10 12 22
NONE 1 5 2 5 4 17 20 34
OSS 4 8 4 4 8 16 20 24
ROS 26 20 11 21 5 4 1 0
RUS 28 11 15 17 10 3 3 1
SM 10 18 32 16 6 4 1 1
WE 3 3 5 7 18 23 24 5

Table 16. Rank of Sampling Techniques, Datasets π < 5%,
Acc and TPR

Number of times Ranked
Acc 1 2 3 4 5 6 7 8

BSM 2 5 3 12 16 19 28 3
CBOS 7 7 1 1 0 2 12 58
NONE 41 19 7 4 1 5 11 0
OSS 7 15 14 7 9 3 13 20
ROS 17 5 3 9 22 16 13 3
RUS 6 15 34 16 7 6 3 1
SM 3 4 10 15 23 25 5 3
WE 7 17 16 24 8 14 2 0

TPR 1 2 3 4 5 6 7 8

BSM 3 5 23 13 19 20 2 3
CBOS 12 21 12 10 23 1 4 5
NONE 0 0 0 1 4 6 17 60
OSS 1 8 4 3 9 18 35 10
ROS 4 22 25 28 8 1 0 0
RUS 64 16 7 1 0 0 0 0
SM 4 19 14 31 18 1 1 0
WE 0 0 0 1 7 41 32 7

the problem of class imbalance, simpler techniques such
as RUS or ROS often performed much better. CBOS
and OSS especially performed very poorly in our exper-
iments, very rarely being the best sampling technique
and often being among the worst.

6.3. Threats to Validity

Two types of threats to validity are commonly discussed
in empirical work (Wohlin et al., 2000). Threats to in-
ternal validity are unaccounted influences that may im-
pact the results. Threats to external validity consider
the generalization of the results outside the experimen-
tal setting, and what limits, if any, should be applied.

All experiments were conducted using WEKA (Witten
& Frank, 2005), which is commonly used in machine
learning research. Some enhancements were required to
implement some of the sampling techniques, and all de-
veloped software was thoroughly tested. ANOVA analy-
sis was performed using the SAS GLM procedure (SAS

Institute, 2004), and all assumptions for valid statisti-
cal inference were verified. Extensive care was taken to
ensure the validity of our results.

External validity questions the reliability and generaliz-
ability of the experimental results. The comprehensive
scope of our experiments greatly enhances the reliability
of our conclusions, which is why we utilized 35 different
real-world datasets. Performing numerous repetitions of
cross validation greatly reduces the likelihood of anom-
alous results due to selecting a lucky or unlucky partition
of the data. Building over one million learners in these
experiments allows us to be confident in the reliability
of our experimental conclusions.

One important consideration is the ‘free’ parameter as-
sociated with the four sampling techniques RUS, ROS,
SM, and BSM. Prior work has suggested that no uni-
versal prior is optimal for tree construction (Weiss &
Provost, 2003), so instead of only using one selected
parameter (e.g., balanced classes), we tried numerous
possibilities, but only from a limited selection - in other
words, no attempt was made to optimize over all possible
sampling percentages. Further, when utilizing sampling
in practice, the user does have the ability to choose a
value which produces good results, for example using
cross validation. Our work has shown that in many
cases, a sampling percentage which is more towards
balanced is better than other choices, and future work
should explore this further. In addition, as the sampling
percentage varied near the one we deemed ‘best’, the re-
sults did not change dramatically. For example, RUS5
was the best technique for C4.5D for the datasets with
π < 5% with respect to AUC (Table 7), but the AUC of
RUS10 was very similar. Further, with OSS and CBOS,
the techniques explicitly describe how to add/remove in-
stances, so there was no ability to directly alter the level
of sampling and we reported the single level of perfor-
mance achieved. Therefore, we do not believe that the
comparison of sampling techniques was unfairly biased
towards those with a free parameter.

7. Conclusions

We have presented a comprehensive and systematic ex-
perimental analysis of learning from imbalanced data,
using 11 learning algorithms with 35 real-world bench-
mark datasets from a variety of application domains.
The objective of this research is to provide practical
guidance to machine learning practitioners when build-
ing classifiers from imbalanced data, and to present to
researchers some possible directions for future study. To
our knowledge, no related work has attempted to empir-
ically analyze class imbalance from such a wide scope,
comparing learners, sampling techniques, and perfor-
mance measures using many different datasets. Unfor-
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tunately due to space limitations, we can only present a
small fraction of our experimental results, however the
data clearly demonstrate that sampling is often critical
to improving classifier performance, especially optimiz-
ing threshold-dependent measures such as the geometric
mean or TPR. Further, individual learners respond dif-
ferently to the application of sampling. Much of the
related work on class imbalance has focused on decision
tree learners, however these results show that the ob-
servations made for decision trees will not carry over to
neural networks, regression, or nearest neighbor classifi-
cation algorithms. Future work may consider additional
learners, e.g., different variations of neural network or
SVM learners. Sampling can also be compared to cost-
sensitive learning in future work. Alternative measures
of classifier performance can also be analyzed. Future
work should also consider sampling in the context of
multi-class learning.
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