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ABSTRACT

It is often assumed that class imbalances are responsible for
significant losses of performance in standard classifiers. The
purpose of this paper is to the question whether class imbalances
are truly responsible for this degradation or whether it can be
explained in some other way. Our experiments suggest that the
problem is not directly caused by class imbalances, but rather, that
class imbalances may yield small disjuncts which, in turn, will
cause degradation. We argue that, in order to improve classifier
performance, it may, then, be more useful to focus on the small
disjuncts problem than it is to focus on the class imbalance
problem. We experiment with a method that takes the small
disjunct problem into consideration, and show that, indeed, it
yields a performance superior to the performance obtained using
standard or advanced solutions to the class imbalance problem.

Keywords

class imbalance, small disjuncts, rare cases, resampling, within-
class imbalance, between-class imbalance.

1. INTRODUCTION

Although class imbalances have been reported to hinder the
performance of standard classifiers on many different types of
problems', no study has made a point of linking the class
imbalance problem directly to this loss. As a matter of fact,
although the performance of standard classifiers may decrease on
many class imbalanced domains, that does not necessarily
demonstrate that it is the imbalance, per se, that causes this
decrease. Rather, it is quite possible that class imbalances yield
certain conditions that hamper classification, which would suggest
1) that class imbalances are not necessarily always a problem and,
perhaps even more importantly, 2) that dealing with class
imbalances alone will not always help improve performance.

The purpose of this paper is to question whether class imbalances
are truly to blame for the reported losses of performance or
whether these deficiencies can be explained in some other way.
We show that class imbalances are, actually, often not a problem
by themselves, but that, in small and complex data sets, they come
accompanied with the problem of small disjuncts [5], which in
turn causes a degradation in standard classifiers’ performance.’

! For example, the problem has been reported on cases as diverse
as: the detection of oil spills in satellite radar images [1], the
detection of fraudulent telephone calls [2], information retrieval
and filtering [2], diagnoses of rare medical conditions such as
thyroid diseases [4]

% Please note that this conclusion was reached within the settings
we used in this paper. In another setting—namely, in the
domain of microarray time-series analysis—|[6] suggests that the
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We conclude the paper by summarizing and testing an approach
that we have previously designed (and described in greater length,
elsewhere [7],[8]) that counters the effect of small disjuncts.

Though, the results presented in this paper may not be fully
surprising, it is important to note that the paper’s main
contribution rather lies in the shift of focus it proposes, which
leads to new insights and solutions.

The remainder of the paper is divided into seven sections. Section
2 discusses the class imbalance, rare case and small disjunct
problems. Section 3 describes the artificial and real domains on
which our study is based. Section 4 shows the effect of class
imbalances on these domains. The results suggest that class
imbalances are often problematic, but not always. Section 5 shows
the result of further experiments that contrast the class imbalance
problem to the problem of small disjunct. These results show that
it is the small disjunct problem rather than the class imbalance
problem that is to blame for the loss of performance. Section 6
describes four standard methods designed for the class imbalance
problem only (methods that ignore small disjuncts), a standard
method for pruning small disjuncts (a method that completely
eradicates the small disjuncts), as well as our newer approach,
cluster-based oversampling [7], [8], that oversamples while
addressing both the class imbalance and the small disjuncts
problems (a method that inflates the small disjuncts). Section 7
shows the effects of cluster-based oversampling on artificial and
real domains and contrasts them to those of the other methods
described in Section 6. Section 8 concludes the paper.

2. CLASS IMBALANCES, RARE CASES
AND SMALL DISJUNCTS

In a concept-learning problem, the data set is said to present a
class imbalance if it contains many more examples of one class
than the other. Such a situation poses challenges for typical
classifiers such as decision tree induction systems or multi-layer
perceptrons that are designed to optimize overall accuracy without
taking into account the relative distribution of each class. As a
result, these classifiers tend to ignore small classes while
concentrating on classifying the large ones accurately. Such a
problem occurs in a large number of practical domains and is
often dealt with by using re-sampling or cost-based methods.
While cost-based methods were previously reported to perform
better than random re-sampling approaches (e.g., [10]), they do
not have the flexibility offered by re-sampling approaches. In

class imbalance problem is more significant than the problem of
small disjuncts. Our results support this observation in only one
of the domains we tested [See footnote 6]. This suggests further
research into the conditions that make a domain more or less
sensitive to class imbalances than to small disjuncts.
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particular, re-sampling approaches can generate novel examples
or re-sample different parts of the space differently. Cost-based
approaches, instead, take a monolithic approach to the re-
balancing of data sets. This paper will explore whether the
flexibility of re-sampling approaches can be exploited to the
advantage of the class imbalanced problem. Its particular
emphasis is on whether isolating rare cases and inflating them at
different rates can be beneficial.

Rare or exceptional cases correspond to small numbers of training
examples in particular areas of the feature space. When learning a
concept, the presence of rare cases in the domain is an important
consideration. The reason why rare cases are of interest is that
they cause small disjuncts to occur, which are known to be more
error prone than large disjuncts [S5]. In more detail, learning
systems usually create concept definitions that consist of several
disjuncts. Each disjunct, in turn, is a conjunctive definition of a
subconcept of the original concept. The coverage of a disjunct
corresponds to the number of training examples it correctly
classifies, and a disjunct is considered to be a “small disjunct” if
that coverage is low. In fact, small disjuncts are not inherently
more error prone than large disjuncts. What makes them more
error prone are the bias of the classifiers [5] as well as the effect
of attribute noise, missing attributes, class noise and training set
size on the rare cases which cause them [13],[14].

Table 1, in the next section, illustrates very well how, in the two
families of artificial domains, as the class imbalance and the
concept complexity increases while the size of the training set
decreases, the number of rare cases increases. For example, at
concept complexity 3, imbalance level 1:3 and large training size,
there are no rare cases since the smallest cases contain 100
examples. However, in the small setting, there are 8 rare/cases
represented by 5 or 15 examples. The situation is even worse at
class imbalance 1:9 where the smallest cases are represented by
only 2 examples.

In the real world domains, rare cases are unknown since high
dimensional data cannot be visualized to reveal areas of low
coverage. In the remainder of this paper, when the rare cases of a
real-world domain are necessary to consider, we will approximate
them, using an unsupervised method (e.g., k-means). It is
important to note that, in doing so, we make two assumptions:

1) the small disjuncts constructed by our
unsupervised algorithm do correspond fully to the
(unknown) rare cases of the domain;

2) there is a correspondence between the small
disjuncts learned by the unsupervised method (the
supposed rare cases of the domain) and those
subsequently learned by the supervised method.

3. DATA DOMAINS

This section describes the artificial and real domains on which our
experiments are based. We generated two different families of
artificial data. The first one uses a simple uni-dimensional
backbone model while the second one uses a more complex,
multi-dimensional model. The purpose of using artificial domains
is to understand the nature of the observed degradation in
domains that present a class imbalance. Using real-world domains
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only could have yielded results difficult to decipher. Nonetheless,
artificial domains are not sufficient to fully test a hypothesis. We
also need to see if this hypothesis applies to real data. In order to
do so, we selected two data sets from the UCI Repository for
Machine Learning: Wisconsin Breast Cancer and Pima Indian
Diabetes, as well as one larger domain: Customer foreign
exchange data for currency risk management. These three domains
are highly challenging and quite imbalanced, especially the
currency risk management domain whose minority class accounts
for less than 3% of the data.

3.1 Artificial Domain with Single Dimension
For our first artificial family of domains, we created 27 data sets
with various combinations of three parameters which we deemed
significant for out study: concept complexity, training set size,
and degreee of imbalance. This family of domains was already
used in our previous work and explained at length there [10].
These 27 data sets were generated in the following way: each of
the domains is one dimensional with input in the [0, 1] range
associated with one of the two classes (1 or 0). The input range is
divided into a number of regular intervals (i.e, intervals of the
same size), each associated with a different class value.
Contiguous intervals have opposite class values and the degree of
concept complexity corresponds to the number of alternating
intervals present in the domain. Actual training sets are generated
from these backbone models by sampling points at random (using
a uniform distribution), from each of the intervals. The number of
points sampled from each interval depends of the size of the
domain as well as on its degree of imbalance. An example of a
backbone model is shown in Figure 1.

Complexity (c) =3, + =class 1, - =class 0

o+ -y +y -y +4-, 4+
I 1 1 1 1

Figure 1. A Backbone Model of Complexity 3

Three different complexity levels were considered (c=1, 2, and 3)
where each level, c, corresponds to a backbone model composed
of 2° regular intervals. For example, the domains generated at
complexity level c=1 are such that every point whose input is in
range [0, 0.5) is associated with a class value of 1, while every
point whose input is in range (0.5, 1] is associated with a class
value of 0; At complexity level c=2, points in intervals [0, 0.25)
and (0.5, 0.75) are associated with class value 1 while those in
intervals (0.25, 0.5) and (0.75, 1] are associated with class value
0; etc., regardless of the size of the training set and its degree of
imbalance.

Table 1 shows the distribution of training examples in each
interval of the 27 domains. The top sub-table corresponds to c=1,
the middle one corresponds to c=2, and the bottom one
corresponds to ¢=3, where c is the level of complexity. In Table 1,
each row indicates the combination of class imbalance and
training set size and each column indicates each interval and its
label. In the definition of class imbalance, 1:9 is defined as the
high class imbalance, 1:3 corresponds to the middle class
imbalance, and 1:1 corresponds to the low class imbalance
(actually, it corresponds to a complete class balance). In the
definition of the training set sizes, 80 is defined as the small
training set size, 400 corresponds to the middle one, and 1600
corresponds to the large one. Each entry of Table 1 indicates the
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number of training examples in each interval. This table shows
that the training examples are distributed uniformly into intervals.

Table 1. The Distribution of Training Examples with c=1 (Top), c=2
(middle), and c=3 (bottom)

Class  [Trainin
[mbalanc | g Set
e Size

0.0~0.5+ 05~10-

80 8 72

1:9 400 40 360

1600 160 1440

80 20 60

1:3 400 100 300

1600 400 1200

80 40 40

1:1 400 200 200

1600 800 800

Class  [Trainin

Imbalanc [ gSet | 0.0 ~0.25 +
e Size

0.25~0.5 - 0.5~0.75 + 0.75~1.0-

80 4 36 4 36

1:9 400 20 180 20 180

1600 80 720 80 720

80 10 30 10 30

1:3 | 400 50 150 50 150

1600 200 600 200 600

80 20 20 20 20

1:1 400 100 100 100 100

1600 400 400 400 400

Class  [Trainin
Imbalanc | g Set
e Size

.0~0.12 [0.125~0.2 0.25~0.37 |0.375~0. [0.5~0.62 [0.625~0.7 [0.75~0.87 [0.875~1.
5 5 5 5

80 2 18 2 18 2 18 2 18

1:9 400 10 90 10 90 10 90 10 90

1600 | 40 360 40 360 40 360 40 360

80 5 15 5 15 5 15 5 15

1:3 | 400 25 75 25 75 25 75 25 75

1600 | 100 300 100 300 100 300 100 300

80 10 10 10 10 10 10 10 10

1:1 400 50 50 50 50 50 50 50 50

1600 | 200 200 200 200 200 200 200 200

Table 2. The Distribution of Test Examples

o~0.|25|“"25_;°‘2 0.25-0.375] 0.375-0.5 | 0.5-0.625 | 0.625~0.75 | 0.75~0.875 | 0.875~1.0
=1 50 + 50 -
c=2 25 + 25 - 25+ 25 -
=3 13+| 13- | 12+ | 12- [ 13+ | 13 - 12+ | 12-

The test set size is fixed at 100 for each complexity level. Table 2
shows the distribution of the test examples per interval. In Table
2, the rows indicate the degree of complexity and the columns
represent the actual intervals. Each entry indicates the number of
test examples and the class label of each interval. In this domain
as well as in all the others used for this study, we purposely chose
to test our methods on perfectly balanced testing sets. This
decision was made in order to put more emphasis on classifying
the minority class examples correctly than accuracy on the
“properly” distributed testing set (i.e., with the same class
imbalance as in the training set) would. Separating the errors
made on the positive and the negative data or reporting ROC
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curves are alternative approaches that we have used elsewhere
[10], [12], but that were not practical here, given the large number
of experiments conducted. We believe, however, that the
performance measure used here is sufficiently indicative of the
trend exhibited by the various methods we tested.

3.2 Artificial

Dimensions

In the second artificial domains, the dimension of each feature
vector is set to five and 27 domains are generated as in the
previous subsection. The definitions of the training set size and
the class imbalance degree are the same as those used in the
previous section and they were summarized in Table 1. The
concept complexity of this domain is defined as the number of
clusters present in the domain.

Domain with Multiple

Table 3. The Definition of Clusters in this Domain

#Clusters Cluster Centers Length

2 [0.0348, 0.9225, 0.1262, 0.2717, 0.7858 +] 0.25
[0.5348, 0.4225, 0.6262, 0.7717, 0.2858 -]

4 [0.3241, 0.1006, 0.4903, 0.3863, 0.5487 +] 0.125

[0.5741, 0.3506, 0.7403, 0.6363, 0.8241 -]
[0.8241, 0.6006, 0.9903, 0.8861, 0.0487 +]
[0.0741, 0.8506, 0.2403, 0.1363, 0.2987 -]

8 [0.6819, 0.4511, 0.9610, 0.8550, 0.9932 +] 0.0625
[0.8069, 0.5761, 0.0860, 0.9800, 0.1182 -]
[0.9319, 0.7011, 0.2110, 0.1050, 0.2432 +]
[0.0569, 0.8261, 0.3360, 0.2300, 0.3682 -]
[0.1819, 0.9511, 0.4610, 0.3550, 0.4932 +]
[0.3069, 0.0761, 0.5860, 0.4800, 0.6182 -]
[0.4319, 0.2011, 0.7110, 0.6050, 0.7432 +]
[0.5569, 0.3261, 0.8360, 0.7300, 0.8682 -]

Table 3 shows the definition of the clusters we used to generate
the data for these domains. These clusters were designed so as to
display an alternance of the classes in the five-dimensional space
considered, and so as to avoid any overlap, which was previously
shown to interfere with the class imbalance problem [11] and
should be treated separately. In the column labeled “cluster
centers”, in Table 3, each vector indicates the center of each
cluster along with its class label. Each cluster is defined as a five
dimensional hyper-cube with its center and its length (indicated in
the last column of Table 3). The actual cluster points are
distributed around their centers using a uniform distribution. In
case some of the elements of the feature vectors are randomly
assigned values smaller than zero or greater than one, their values
are set to zero or one, respectively.

3.3 Real-World Domains: Wisconsin Breast
Cancer, Pima Indian Diabetes, and Currency

Risk Management

Two of the real-world domains for the experiments of this paper
were obtained from the UCI machine learning repository. This
repository is often used as a standard test bed to evaluate the
performance of classifiers. Two domains, Wisconsin Breast
Cancer and Pima Indian Diabetes were selected for the
experiments of this paper. As previously mentioned, these data
sets present a high class imbalance and are particularly complex.
This makes them good candidates to test our hypothesis.
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The first one of these domains is concerned with the diagnosis of
breast cancer, based on information about cells. Each example’s
label is ‘2’ or ‘4’; label, ‘2’, indicates that the cell described in the
example is not cancerous, while label, ‘4’, indicates that it is
cancerous. Therefore, examples with label ‘2’ represent the
negative examples while the others represent the positive
examples. The distribution of the training examples we used for
this domain is illustrated in table 4. As shown in this table, the
degree of class imbalance is defined in the same way as it was in
the artificial domains. The size of the training sets is a bit
different, however: a total number of training examples of 40
represents the small size, while one of 140 represents the large
size. The size of the test set is 100 with complete class balance: it
consists of 50 positive examples and 50 negative examples.

Table 4. The Distribution of Training Examples in Wisconsin
Breast Cancer

Positive (‘4”) Negative (‘2°)
1:9 | 40 4 36
140 14 126
1:3 | 40 10 30
140 35 105
1:1 40 20 20
140 70 70

The second real domain is concerned with the diagnosis of
diabetes based on physical information about Pima Indians. Each
example has one of two labels, ‘0’ and ‘1’; ‘0’ indicates no
diabetes and ‘1’ represents diabetes. Examples with label ‘1°, are
set as positive examples. Those with label ‘0’ represent negative
ones. The distribution of training examples is illustrated in table
5. In this domain, 40 training examples are defined as the small
set size, 100 represent the medium size, while 200 represent the
large size. The size of the test set is 100 with a perfect class
balance, like in the previous domain.

Table 5. The Distribution of Training Examples in Pima
Indian Diabetes

Positive (‘1) Negative (‘0")

1:9 40 4 36

100 10 90

200 20 180
1:3 40 10 30

100 25 75

200 50 150
1:1 40 20 20

100 50 50

200 100 100

A disadvantage of the two UCI domains is that they are relatively
small. Furthermore, their degree of imbalance is not very high. In
order to test our methods in a more realistic context, we selected a
third domain: Customer Foreign Exchange data for Currency Risk
Mangement. This domain is concerned with the prediction of
fraudulent foreign exchange transactions based on the

transactions’ profile. It is available from:
www.sis.uncc.edu/%7Emirsad/itcs6265/resource.htm. It is
Sigkdd Explorations.

composed of thirteen discrete input attributes and one output class
that can take three values: “bad”, “average”, and “good”. In order
to turn this problem into a binary classification problem, the two
values, “bad” and “average” were mapped into a negative
outcome while the value, “good”, represents the positive one.

This domain was used in our evaluation of resampling methods
(section 6) as a single experiment set. We did not use it in the
experiments of Sections 3 and 4 because of its high degree of
imbalance which prevented the more flexible experimentation
conducted there. In our experiments of Section 5, the currency
risk management domain contained 1700 negative and 50 positive
examples in the training set while the test set was composed of
100 negative and 100 positive examples.

4. THE EFFECT OF CLASS IMBALANCE

This first set of experiments attempts to determine whether the
class imbalance problem always causes a degradation in
performance or whether it does so only in certain cases.’ In order
to answer the question, we ran C4.5 and back propagation on the
artificial and real domains described in the previous section. The
results of our experiments are displayed in figures 2, 3, and 4,
which plot the accuracy of C4.5 and back propagation for each
combination of concept complexity, training set size and
imbalance level, on the entire test set. As mentionned previously,
for each experiment, we reported a single type of result: results in
which no matter what degree of class imbalance is present in the
training set, the contribution of the false positive rate is the same
as that of the false negative one in the overall report.

Table 6. The Design of Back Propagation for this set of

Experiments
Artificial Domains Real Domains
One Five Breast Pima
dimension dimensions
#input 1 5 10 8
nodes
#hidden 1 2 2 2
nodes
#output 1 1 1 1
nodes
Learning 0.2 0.2 0.2 0.2
rate
#Training 100 100 100 100
Iterations

Table 6 summarizes the design of the back propagation procedure
for this set of experiments on the artificial and UCI domains of the
previous section. In Table 6, rows indicate the parameters of the
back propagation procedure and columns indicate the domains

3 Similar experiments were already conducted in [10] and [12] on
different data sets and using different evaluation measures. We
repeat them here on other domains for the sake of conciseness
and completeness of the paper.
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considered. The number of input nodes indicates the dimension of
feature vectors of each domain. The number of hidden nodes in
each domain was set to the values presented in table 6. Since we
performed binary classification only, a single output node was
used to indicate the class. In order to compare the domains based
on their combination of concept complexity, training set size, and
class imbalance (and no other factor), the learning rate and the
number of training iterations were fixed at 0.2 and 100,
respectively, in all the domains.
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Figure 2. The Results of Class Imbalance in Backbone Model
with Classifiers (Left-C4.5, Right-Back Propagation) and
Training Set Size (Top-80, Middle-400, Bottom-1600)

Figure 2 displays the result of the performance of the two
classifiers, C4.5 and back propagation, on the first artificial
domain (with single dimension). In figure 2, each column
indicates the result of a specific classifier; the graphs in the left
column are the results of C4.5 and those in the right column are
the results of back propagation. The rows in the figure indicate the
training set size; the graphs in the top row are the results obtained
with 80 training examples (i.e., the small size), those in the middle
row are those obtained with 400 training examples (i.e., the
middle size), and those in the bottom row are those obtained with
1600 training examples (i.e., the large size). In each graph, the y-
axis indicates the “balanced accuracy” (i.e., the correct
classification rate on the balanced test set) of each classifier, and
the x-axis corresponds to the concept complexity (i.e., each
cluster of three bars represents the results obtained at a different
complexity level). In each cluster, the white bar indicates a high
class imbalance, the gray bar indicates a middle class imbalance,
and the black bar indicates a low class imbalance (i.e., a complete
class balance). The results in figure 2 show that while class
imbalances hinder classification performance in small data sets
(and more so in domains with high concept complexity), this loss
of performance gets gradually eradicated as the training set size
increases. This suggests that the class imbalance problem may not
always be to blame for the often observed performance loss that
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accompanies it. Rather, we suggest that this performance loss may
be caused by the small disjuncts that can develop due to the
presence of rare cases in domains with a small training set size
and high complexity settings (as shown in Table 1 and discussed
in Section 2).* The next section will test this hypothesis, but we
first look at whether the phenomena just observed on our first
artificial domains also recur in the second artificial domains and
the real-world domains.
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Figure 3. The Results of Class Imbalance in Five Dimensional
Artificial Domains with Classifiers (Left-C4.5, Right-Back
Propagation) and Training Set Size (Top-80, Middle-400,
Bottom-1600)

Figure 3 displays the results observed on the second artificial
domains with five dimensions. The arrangement of these graphs is
identical to that in figure 2. Each cluster of bars in each graph
corresponds to the number of clusters in the domain (that
represents the concept complexity of these domains). These
results also show that the performance loss experienced by the
classifiers in small, complex and imbalanced domains disappears
as the size of the training sets increases. As previously, these
results suggest that the small disjunct problem may be more to
blame than the class imbalance problem.

Figure 4 displays the results obtained by the classifiers on the two
UCI domains. These results are based on the degree of class
imbalance and the training set size (in real-world settings, we
cannot vary the concept complexity of our domains, but our
assumption is that it is quite high). In the arrangement of the
graphs in figure 4, the columns indicate which classifier is
considered (as in the two previous figures), but the rows indicate
the domains of application. The top row represents the results
obtained for the Wisconsin Breast Cancer Domain while the

* The fact that such small disjuncts are a problem for accurate
classification is well documented in [14] which discusses the
negative effect of a small training set size on the error rate of
small disjuncts.
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bottom row represents the Pima Indian Diabetes domain. Each
cluster of bars in each graph indicates the size of the training set.

These results show that the performance of classifiers, though
hindered by class imbalances, is repaired as the training set size
increases. This, again, suggests that small disjuncts play a role in
the performance loss of class imbalanced domains.
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Figure 4. The Results of Class Imbalance in two Real
Domains with Classifiers (Left-C4.5, Right-Back
Propagation) (Top-Wisconsin Breast Cancer, Bottom-
Pima Indian Diabetes)

S. CLASS IMBALANCE VERSUS SMALL
DISJUNTS

The experiments of this section were designed to test the
hypothesis suggested in the previous section. Namely, we will
verify whether or not the loss of performance experienced by our
classifiers is caused by the presence of rare cases in our domains
(which lead to small disjuncts) rather than, simply, by the class
imbalance. In order to test this hypothesis in our artificial
domains, we kept the same generation scheme with respect to
concept complexity and class imbalance, but we eliminated the
notion of training set size. Instead, we set the cluster or interval
size to 50 training examples in the small class and generated the
number of data points necessary per cluster or interval to
implement the particular imbalance level considered in the large
class; This means that no rare cases remain.

In the real-world domains, the process was a little bit more
complex since the rare cases are not explicit. We approximated
these rare cases using a clustering algorithm (k-means, with k=4)
on each class.’ Unlike in the artificial domains, the generative
model of the UCI domains is unknown. We approximated it by
generating artificial examples based on the rare cases isolated by
the k-means procedure. This example generation was done by

3 As pointed out by both Thomas Dietterich and Peter Turney (in
separate comments during presentations of this work), this
solution is problematic since there is not guarantee that the
clusters learned in the unsupervised step correspond to the
small disjuncts created by the supervised step. However, as
mentioned in Section 2.4, this is just an approximation which
we assume sheds light on the identity of the rare cases. Future
work will look at how to improve upon this approximation.
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injecting random values into the rare cases’ input vectors
following An’s resampling method [9] (See Section 6.1). In these
domains, rare cases consisted of the clusters (learned by k-means)
of size smaller than 3 and such clusters were inflated to a cluster
size of 30 examples.

The goal of our experiments in both the artificial and the UCI
domains is to observe whether the performance of the classifiers
improves as we inflate the rare cases, in an effort to eliminate the
small disjuncts, without altering the degrees of class imbalance or
concept complexity.

Table 7. The Distribution of Training Examples in Artificial

Domain
Concept Complexity | Positive Negative
c=1, #Clusters =2 50 * 1 =50 450 * 1 =450
c=2, #Clusters =4 50 *2 =100 450 *2 =900
c=3, #Clusters =8 50 *4 =200 450 * 4 = 1800

Table 7 shows the distribution of the training examples in the
artificial domains used in these experiments. The degree of class
imbalance is set to 1:9 and each cluster or interval contains 50
positive examples or 450 negative examples.

Figure 5 shows the results obtained by the classifiers with and
without inflation of rare cases using the means just described on
the artificial domains. In the arrangement of Figure 5, the graphs
in the top row indicate the results obtained on the one-
dimensional domain; the white bars correspond to the case where
the rare cases were not inflated (white bars of top row in figure 2)
while the black bars correspond to the results of the experiments
of this section, with inflation of rare cases); The graphs in the
bottom row show results obtained on the 5-dimensional domain.
Once again, the white bars correspond to the white bars appearing
in the graph of the top row of figure 3 (the case where the rare
cases are not inflated) and the black bars correspond to the results
obtained in this set of experiments (with inflation of the rare
cases). In each graph, each cluster of bars corresponds to the
concept complexity, i.e., the degree of complexity in the backbone
model at the top and the number of clusters at the bottom. All the
results are computed for a 1:9 class imbalance. Figure 5 shows
that the inflation of rare cases improves the performance of the
classifiers by eliminating the need for small disjuncts. The results
are more notable at high concept complexity where the number of
small disjuncts is the greatest. These results, thus, support our
hypothesis stipulating that the loss of performance observed in the
case of class imbalances is not caused by the class imbalance per
se, but rather, by the fact that in cases of class imbalances, the
small class contains rare cases leading to small disjuncts which, in
turn, cause a decrease in performance.

% Note, however, that in the single dimension artificial domain, the
class imbalance problem seems to be more relevant than the
small disjunct problem (in the other domains, this is not the
case). This is seen at concept complexities c=2 and c¢=3 and for
C4.5 where the performance obtained by inflating the small
disjuncts remains inferior to the performance obtained by the
fully balanced set (compare the black bar in the top left graph of
Figure 5 to the black bar in the top left graph of Figure 2). This
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Figure 6 shows the results obtained by the classifiers on the UCI
domains with the same 1:9 class imbalance as in the artificial
domains, and with and without the inflation of rare cases. The left
graph indicates the result obtained in the Wisconsin Breast Cancer
domain while the right graph corresponds to the results obtained
in the Pima Indian Diabetes Domain. In both graphs, the white bar
corresponds to the case where the rare cases remain (these bars
correspond to the white bars in the left clusters of the graphs of
Figure 4), while the black bars show the results obtained in the
new experiments of this section, with the rare cases inflated. Each
cluster of bars corresponds to a specific classifier: C4.5 or
backpropagation. We note that the inflation of rare cases improves
upon the performance of both classifiers in both domains and is
especially pronounced in the Pima Indian Diabetes Domain.
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Figure 5. The Results of Removing Small Disjuncts in the
Artificial Domains with Classifiers (Left-C4.5, Right-Back
Propagation) (top-one-dimensional domain, bottom- 5-
dimensional domain)

Figure 6. The Results of Removing Small Disjuncs in
Real Domains with Classifiers (Left-Wisconsin Breast
Cancer, Right-Pima Indian Diabetes)

The results on both the artificial and real-world domains, thus,
show that the elimination of small disjuncts through inflation of
rare cases improved the performance of both classifiers. In the
artificial domains, the performance of the classifiers is improved

observation corroborates the observation made in [6] and
supports our use of a method that handles the small disjunct and
class imbalance problems simultaneously. (In, [7] we had tested
two variations of the same method: the one described in this
paper as well as one that handles rare cases but does not
guarantee that the classes will ultimately be balanced. The
method tested in this paper performed better, which is why we
retained it).
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when they are applied to the domains with the highest concept
complexity. This is because these domains cause the largest
number of small disjuncts. In the real-world settings, the Pima
Indian Diabetes domain is more complex than the Wisconsin
Breast Cancer domain (as shown in the experiments reported in
Figure 4 by the fact that the accuracy obtainable in the Pima
Indian Diabetes domain is smaller than that obtainable in the
Wisconsin Breast Cancer domain). This leads to a greater amount
of improvement in the Pima Indian Diabetes data set. These
observations, thus, support the hypothesis that the elimination of
small disjuncts through the inflation of rare cases is useful and
particularly effective in imbalanced domains of high concept
complexity.

6. METHODS CONSIDERED IN OUR
EXPERIMENTS

This section describes the various methods tested in our
experiments. The first category of methods described corresponds
to standard methods that have previously been applied to the class
imbalanced problem. These methods do not concern themselves
with the problem of small disjuncts. The second type of method
considered here considers the small disjunct problem, but does
not consider the class imbalanced problem. Furthermore, it treats
the small disjuncts in quite a radical way, simply removing them
from the learned hypothesis. The last type of methods is the one
we proposed in [7] and [8], cluster-based oversampling. It
considers both the class imbalance and the small disjunct problem
and, rather than removing the small disjuncts, it inflates the rare
cases from which they are based so as to enhance them.

The purpose of our experiments will be to pit cluster-based
oversampling against the large variety of other approaches
described in this section. The comparison against the first
category of methods is meant to compare cluster-based
oversampling to other kinds of re-sampling methods as well as to
cost-sensitive learning, which was previously reported (e.g., [10])
to be slightly superior to random re-sampling. The comparisons
against the method of removing small disjuncts was done to verify
that our somewhat complicated handling of small disjuncts is
worthwhile.

6.1 Methods for Handling Class Imbalances

with no regard for the Small Disjuncts

Three of the methods described in this subsection are re-sampling
methods while the fourth one is a cost-based approach.
Resampling is the process of manipulating the distribution of the
training examples in an effort to improve the performance of
classifiers. There is no guarantee that the training examples occur
in their optimal distribution in practical problems and, thus, the
idea of resampling is to add or remove examples with the hope of
reaching the optimal distribution of the training examples and,
thus, realizing the potential ability of classifiers. We describe two
simple and one advanced methods designed for the class
imbalanced problem without regard to the small disjunct problem
(oversampling, undersampling and An’s oversampling) as well as
one method that seeks to address the class imbalance problem
without re-sampling the data: cost-based learning.

Before discussing our various methods, let’s assume that the given
problem is one of binary classification in an unbalanced
distribution of training examples. The minority class is the class
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with the lowest number of training examples and the majority
class is the class with the highest number of training examples.

The first simple resampling method is (random) oversampling,
which is the process of adding examples to the minority class by
copying existing examples at random. It has one parameter, the
addition rate, which corresponds to:

(Number of examples to add) /
(Difference in number of examples between the majority and the
minority class)

If the addition rate is set to 1.0, then the strategy produces a
completely balanced distribution.

The second simple resampling method is (random)
undersampling, which is the process of removing examples in the
majority class at random. It has one parameter, the removal rate,
which corresponds to:

(Number of examples to remove) /
(Difference in number of examples between the majority and the
minority class)

If the removal rate is set to 1.0, then the majority class is reduced
to the size of the minority class to produce a completely balanced
distribution.

The third strategy is more sophisticated than the two just
described. It was proposed in 1996 by G. An [8]. This strategy
contrasts with simple oversampling in that it generates additional
training examples different from the existing ones. Such examples
are called artificial training examples [8] and they are built by
creating random vectors that follow the Gaussian distribution with
a mean of zero and a covariance matrix that takes into
consideration the values of each of the original training examples.
For each original training example, an artificial training example
is built by adding a random vector following the Gaussian
distribution just mentioned (which corresponds to random noise
[8]) to its input vector and keeping the label of the original data
point. There are, thus, as many artificial training examples as there
are original training examples. Both artificial and original training
examples are used to train classifiers. This strategy of resampling
doubles the number of training examples, but does not change the
ratio of the minority to the majority class.

Cost modification consists of weighing errors made on examples
of the minority class higher than those made on examples of the
majority class in the calculation of the training error. This, in
effect, rectifies the bias given to the majority class by standard
classifiers when the training error corresponds to the simple (non-
weighted) accuracy. In this experiment, errors on the positive
examples (the minority class) have a weight of 1.0, while those on
the negative ones (the majority class) have a weight of 0.1. These
parameters were chosen so as to counter the 1:9 imbalance present
in the domains we tested in the next section.

6.2 A Method for Eradicating Small Disjuncts

This section describes the radical method used to dispose of small
disjuncts. It is based on the assumption that small disjuncts are
unimportant to the learning task.

Punning of small disjuncts, which is only applicable to the
decision trees of our experiments, consists of pruning branches of
our decision trees, not based on the reduction of training error
(regular pruning), but based on the number of covered training
examples (our implemented pruning). In a decision tree, the
branches containing a small number of covered training examples
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correspond to small disjuncts. In our experiments, branches
covering fewer than three training examples were removed during
the pruning step.

6.3 Cluster-Based Oversampling: A Method

for Inflating Small Disjuncts

The resampling strategy proposed in this section consists of
clustering the training data of each class (separately) and
performing random oversampling cluster by cluster. This method
was previously described and applied to several artificial domains
as well as to letter recognition [10] and text classification [8]
tasks. Its idea is to consider not only the between-class imbalance
(the imbalance occurring between the two classes) but also the
within-class imbalance (the imbalance occurring between the
subclusters of each class) and to oversample the data set by
rectifying these two types of imbalances simultaneously.

Before performing random oversampling, the training examples in
the minority and the majority classes must be clustered. In this
study, the k-means algorithm was adopted as our clustering
algorithm, but many other algorithms could have been selected.
K-means works as follows: k training examples are first selected
at random as representative of each cluster. The input vector of
these representative examples represents the mean of each cluster.
The other training examples are processed one by one. For each of
these examples, the distance between it and the k cluster centers is
calculated. The example is attributed to the cluster closest to it.
The cluster that received the example, has its mean vector updated
by averaging the input vectors of all its corresponding examples.

Once the training examples of each class have been clustered,
oversampling starts. In the majority class, all the clusters, except
for the largest one, are randomly oversampled so as to get the
same number of training examples as the largest cluster. Let
maxclasssize be the overall size of the large class. In the minority
class, each cluster is randomly oversampled until each cluster
contains maxclasssize/Nsmallclass where Nsmallclass represents
the number of subclusters in the small class.

For example, please consider that the training examples of
majority and minority classes are respectively clustered as follows
(the numbers represent the number of examples in each cluster of
each class).

Majority Class: 10, 10, 10, 24
Minority Class: 2, 3, 2

This resampling strategy turns the above distribution into the one
below.

Majority Class: 24, 24, 24, 24
Minority Class: 32, 32, 32

In the majority class, all the size 10 clusters get oversampled to 24
training examples, the largest majority subcluster. Since the
minority class contains three clusters and since the size of the
majority class after re-sampling is 96, all the minority class
clusters are randomly oversampled until they contain 96/3= 32
examples. In this strategy, we see that oversampling is applied to
both classes so that in the end, no between-class and no within
class imbalance remains.
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7. THE EFFECT OF CLUSTER-BASED
OVERSAMPLING

This section reports on the effect of the -cluster-based
oversampling method described in the previous section. This
effect is contrasted to that of all the other methods discussed in
Section 6. For our experiments, all these methods were applied to
the small training set (80 training examples) in the artificial
domains and to the small (40 training examples) and the
large/medium (140/100 training examples) training sets in the
Wisconsin Breast Cancer and Pima Indian Diabetes domains,
respectively. The degree of class imbalance in all cases is 1:9. In
the testing set, the distribution is completely balanced with 50
positive and 50 negative examples in all cases. In addition, we
report our results on the currency risk management problem
which, as mentionned before, is a larger real world data set with a
higher class imbalance. For both oversampling and
undersampling, the resampling rate is set to 0.8”. In cluster-based
oversampling, the k-means algorithm was run with k=4. In An’s
oversampling approach, the random values added to the elements
of the input vector of each example were based on the Gaussian
distribution of mean zero and variance 0.1. All our results are
reported in Figures 8 and 9.

Figure 8 shows the results obtained on the artificial domains of 1)
no resampling, 2) cost modification, 3) pruning the small
disjuncts, and our four resampling methods ( 4) Oversampling, 5)
Undersampling, 6) An, and 7) Cluster-Based Oversampling [Our
proposed method]), in this order. The top row in this figure
represents the first artificial domain and the bottom row represents
the second. The graphs in the left column are the results obtained
with C4.5, while those in the right column are those obtained with
back propagation [Please, note that the backpropagation graphs
have one less column than the C4.5 graphs (Column 3). This is
because pruning of small disjuncts cannot be precisely
implemented with backpropagation]. As before, each cluster of
columns represents a different complexity level, and each column
in each cluster represents a different method, displayed in the
order listed above.

In the artificial domains, oversampling and cluster based
oversampling show better result than cost modification and
pruning based on small disjuncts. But undersampling and An’s
based oversampling show worse result than them. Since the
artificial domains are simple problems, there is no notable
difference between oversampling and cluster-based oversampling.

" If the resampling rate is 1.0, then the resampling methods build
data sets with complete class balance. However, it was shown
previously [12], that the perfect balance is not always the
optimal rate. In this paper, we set the resampling rate to 0.8,
since there were a number of cases in [12] where 0.8 was the
optimal rate.
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Figure 7. The Result of Performance of Classifiers with
Resampling Methods in Artificial Domains with Classifiers
(Left-C4.5, Right-Back Propagation) and Dimension (Top-

Single Dimension, Bottom — Five Dimensions)

Figure 9 shows the results obtained on the three real-world
domains. In figure 9, the top row represents the first domain,
“Wisconsin Breast Cancer”, the middle row represents the second
one, “Pima Indian Diabetes”, and the bottom row represents the
third one, “Customer Decision in Foreign Currency Exchange”.

In all three figures, we find that with the exception of An’s
oversampling, the resampling methods work generally better than
cost modification and pruning of small disjuncts; An’s
oversampling shows the worst results among the four resampling
methods. In these real-world domains, cluster based oversampling
works better than any other method. In the first and second
domains, cluster based oversampling is particularly effective in
the small training set size case. This shows that this approach is
quite tolerant to small domains.

Altogether, these experiments support the hypothesis that cluster
based oversampling works better than simple oversampling or
other methods for handling class imbalances or small disjuncts,
especially when the number of training examples is small and the
problem, complex. The reason is that cluster-based resampling
identifies rare cases and re-samples them individually, so as to
avoid the creation of small disjuncts in the learned hypothesis.

Volume 6, Issue 1 - Page 48



1 1
L= aeEH
==} [=1-]
o 3
=} o3
10
o7 k)
L2 E
[e]=] =]
0= o=
oz oF
40 100
1 1
o a |
a3 [k
aTH a7l
o os
0= e

Figure 8. The Result of Performance of Classifiers with
Resampling Methods in Real Domains with Classifiers (Left-
C4.5, Right-Back Propagation) (Top-Wisconsin Breast
Cancer, Middle — Pima Indian Diabetes, Bottom — Customer
Decision in Foreign Currency Exchange)

8. CONCLUSION

The purpose of this study was to question whether the loss of
performance incurred by classifiers faced with a class imbalance
problem stems from the class imbalance per se or from a
particular condition often caused by the class imbalance problem:
the small disjunct problem. After showing that it is the small
disjunct problem more than the class imbalance problem that is
responsible for this decrease in accuracy, the paper questions
whether it is more effective to use solutions that address both the
class imbalance and the small disjunct problem simultaneously
than it is to use solutions that address the class imbalance problem
or the small disjunct problem, alone. The method we propose to
deal with class imbalances and small disjuncts simultaneously,
cluster-based oversampling, is shown to outperform all the class
imbalance geared methods used in this study in the real-world
domains. In the artificial domains, it was comparable to simple
random oversampling. This preliminary result shows that, indeed,
taking both problems into consideration is a worthy pursuit.
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