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Summary

Objective: Diabetic nephropathy is damage to the kidney caused by diabetes mellitus.
It is a common complication and a leading cause of death in people with diabetes.
However, the decline in kidney function varies considerably between patients and the
determinants of diabetic nephropathy have not been clearly identified. Therefore, it is
very difficult to predict the onset of diabetic nephropathy accurately with simple
statistical approaches such as t-test or x2-test. To accurately predict the onset of
diabetic nephropathy, we applied various machine learning techniques to irregular and
unbalanced diabetes dataset, such as support vector machine (SVM) classification and
feature selection methods. Visualization of the risk factors was another important
objective to give physicians intuitive information on each patient’s clinical pattern.
Methods and materials: We collected medical data from 292 patients with diabetes
and performed preprocessing to extract 184 features from the irregular data. To
predict the onset of diabetic nephropathy, we compared several classification methods
such as logistic regression, SVM, and SVMwith a cost sensitive learningmethod.We also
applied several feature selection methods to remove redundant features and improve
the classification performance. For risk factor analysis with SVM classifiers, we have
developed a new visualization system which uses a nomogram approach.
Results: Linear SVM classifiers combined with wrapper or embedded feature selection
methods showed the best results. Among the 184 features, the classifiers selected the
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same 39 features and gave 0.969 of the area under the curve by receiver operating
characteristics analysis. The visualization tool was able to present the effect of each
feature on the decision via graphical output.
Conclusions: Our proposed method can predict the onset of diabetic nephropathy
about 2—3 months before the actual diagnosis with high prediction performance from
an irregular and unbalanced dataset, which statistical methods such as t-test and
logistic regression could not achieve. Additionally, the visualization system provides
physicians with intuitive information for risk factor analysis. Therefore, physicians can
benefit from the automatic early warning of each patient and visualize risk factors,
which facilitate planning of effective and proper treatment strategies.
# 2007 Elsevier B.V. All rights reserved.
1. Introduction

Diabetes mellitus is a metabolic disorder character-
ized by chronic hyperglycemia (high blood sugar
level) resulting from defects in insulin secretion,
insulin action, or both [1]. A medical insurance
cohort study that included 1.2 million subjects indi-
cated that diabetes mellitus, in Korea, is the first
leading cause of burden of disease, and 8.4% of the
population suffers from this disease [2]. Diabetes
can cause devastating complications including car-
diovascular diseases, kidney failure, leg and foot
amputations, and blindness, which often result in
disability and death. Diabetic nephropathy is
damage to the kidney because of diabetes; it is a
common diabetic complication and a leading cause
of death in people with diabetes [3].

Many researchers have been trying to determine
risk factors of mortality in patients with diabetes via
statistical approaches. There are also many studies
on predictors of diabetic nephropathy. The long-term
occurrence over the years of high blood glucose level
and high blood pressure is highly indicative of the
development of renal disease, other microvascular
lesions, and macrovascular disease [4,5]. Clinical
trials have demonstrated consistently that suppres-
sion of the glycosylated hemoglobin (HbA1C) level is
associated with decreased risk for clinical and struc-
tural manifestations of diabetic nephropathy in
patients with types 1 and 2 diabetes [6,7]. Torffvit
and Agardh showed that poor metabolic control and
high blood pressure is associated with development
of diabetic nephropathy in patients with type 2 dia-
betes [8]. A logistic regression analysis was adopted
to generate prediction rules for identifying patients
with diabetes at high risk of complications and for
analyzing risk factors [9]. However, most of those
prognostic studies compared mean values of inde-
pendent predictors between patients with diabetic
nephropathy and control groups, using simple statis-
tical methods such as Student’s t-test and the non-
parametric Mann—Whitney U-test. The decline
in kidney function varies considerably between
patients, and determinants of the diabetic nephro-
pathy have not been identified clearly. Therefore, it
is difficult to predict diabetic nephropathy accu-
rately using simple statistical approaches.

A number of studies have taken advantage of data
mining techniques in the diabetes domain. A 1998
review provided evidence of the use of decision
support systems to guide physicians through the clin-
ical consultation [10]. The paper used time series
methods and a causal probabilistic network, and
proposed telemedicineand telecare for patientswith
diabetes.Others introduced various types of artificial
neural networks (ANNs) or decision trees to predict
the onset of diabetes and to identify risk factors
among the data [11—14]. However, most of those
papers attempted to predict the onset of diabetes
itself, even though its complications are much more
important for the quality of life and mortality.

Although many have tried to approach health
problems through data mining techniques, there
are many constraints and difficulties in this [15].
The main difficulty arises in data collection.
Because hospitals have not used electronic medical
record systems for long, it is very hard to collect a
dataset large enough for such research. Moreover,
in the university hospital setting, physicians and
medical practitioners have occasionally trans-
ferred to other medical institutions, which might
cause different patient care protocols, including
physical examinations and interviews formats.
Furthermore, because of over confidence in their
health condition or for other personal reasons,
some outpatients visit the hospital irregularly.
These circumstances may lead to very irregular,
incomplete, or missing data in the clinical setting,
and thus make it difficult to extract meaningful
information from the data.

Other difficult problems in medical data mining
lie in the artificial intelligence algorithm itself. To
diagnose whether patients have a disease, or to
predict if they would have a disease in the future,
several studies have attempted to apply learning
algorithms such as decision trees, ANNs, and support
vector machines (SVMs). Although they give high
generalization performances, the users can barely
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understand the results by means of input variables,
especially with ANNs and SVMs; that is why they are
termed ‘‘black box’’ algorithms. Consequently,
despite its relatively poor generalization perfor-
mance, physicians and medical practitioners still
make use of the logistic regression (LR) as a gold
standard because it gives more information about
the results: it provides not only the percentage of
variance in the output variable (i.e., probabilistic
output), but also the odds ratio of each input vari-
able.

In information retrieval, there are various fea-
ture (i.e., variable) selection methods to rank the
importance of input features and thereby enhance
generalization performance by eliminating the dis-
turbing features. Most of those methods are mainly
concerned with the ranking of input features, rather
than about the insights of each feature. However, in
a practical clinical situation, physicians may wish to
understand the actual effect of each feature on the
results: an interpretation about how the prediction
result would change if a feature’s value were to
change. Jakulin et al. introduced a nomogram
approach for visualizing SVMs that can graphically
expose its internal structure and visualize the effect
of each feature by means of the log odds ratio, as
with LR [16].

In this study, we aimed to predict the onset of
diabetic nephropathy by learning SVM predictive
model from an irregular and unbalanced diabetic
dataset. We also attempted to identify some risk
factors from clinical parameters using feature selec-
tion and nomogram visualization.
2. Classification methods

2.1. Logistic regression and the ridge
estimator

LR is a popular method to generate a predictive
model for dichotomous target variable. The rela-
tionship between the input variables and the
response is not a linear function, but the logistic
regression function:

PðxÞ ¼ 1

1þ e�ðaþb1x1þb2x2þ ��� þbdxdÞ
(1)

where P is the probability that an event happens, a

is the coefficient of the equation and bi is the
coefficient of the input variable. The log-likelihood
function of the data is

LðbÞ ¼
X
i

ðyi log PðxiÞ þ ð1� yiÞ logð1� PðxiÞÞÞ (2)

The conventional LR optimizer finds the LR coeffi-
cients by maximizing L(b) using the maximum like-
lihood estimate method. However, unstable
parameter estimates may arise when the number
of input variables is large or the input variables are
highly correlated. Cessie and Houwelingen intro-
duced ridge estimators to resolve this case [17].
They included a restriction term in the log-likeli-
hood function thus

LlðbÞ ¼ LðbÞ � ljjbjj2 (3)

where L(b) is the unrestricted log-likelihood func-
tion and jjbjj is the norm of the parameter vector b.
The ridge parameter l shrinks the norm of b, and the
restriction term stabilizes the system to provide
estimates with smaller variance.

2.2. Cost sensitive learning in SVMs

SVMs, an emerging classification technique, have
been intensively benchmarked against a variety of
techniques; it is one of the best-known classifica-
tion techniques with computational advantages
and good generalization performance. The main
idea of SVMs is to maximize the margin, which is
defined as the distance from the separating hyper-
plane to the closest training samples (support vec-
tors) [18].

However, for an unbalanced dataset that has far
more positives than negatives or vice versa, the
general classifiers may produce poor generalization
performance as the hyperplane may be moved far
away to the minority training samples. For this
reason, Veropoulos et al. used a cost-sensitive learn-
ing approach for SVM; their key point is to give
different cost (penalty) to the errors of each class
[19]. Accordingly, the optimization strategy of SVM
is as follows:

minimize
1

2
jjwjj2 þ Cþ

Xn
fijyi¼þ1g

ji þ C�
Xn

fijyi¼�1g
ji (4)

subject to yiðw � xi þ bÞ� 1� ji; i ¼ 1; . . . ; n

ji� 0; i ¼ 1; . . . ; n

(5)
where w is a weight vector of the separating
hyperplane, ji is a slack variable that allow the
margin constraints to be violated and C is a user
parameter to be tuned. The first term of the
objective function is about the margin maximiza-
tion, and the second and third part is for control-
ling the penalties for positive and negative
training samples. Geometrically, when positive
data are in the minority, it gives more weight to
the positive support vectors (C+ is larger than C�),
and pushes the hyperplane towards where the
negative (majority) data exist.
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Table 1 Algorithm of the ReliefF method
3. Feature selection methods

Feature selection is a machine learning process that
selects a feature subset from the whole feature set
and removes redundant features that do not con-
tribute to the performance. Feature selection
methods have been introduced to avoid the ‘‘curse
of dimensionality’’, which means the required num-
ber of calculations becomes huge as the number of
dimensions increases, while retaining or even
enhancing the performance.

There are three main approaches in feature
selection: filter, wrapper, and embedded methods
[20]. Filter methods select high ranked features
based on a statistical score as a preprocessing step;
ReliefF is a popular filter algorithm in microarray
classification problems because of its simplicity.
Wrapper performs selection taking into account
the classifier as a black box and ranking the subset
of features by their predictive power. Because a full
search requires 2n different evaluations, forward
selection or backward elimination methods are
used. Sensitivity analysis could be adopted to cal-
culate the importance of each feature with any
classifier. Embedded methods, in contrast to wrap-
per approaches, select features considering the
classifier design at the same time.

3.1. ReliefF algorithm

A key idea in ReliefF is to evaluate the contribution
of each feature to inter-class difference and intra-
class similarity [21]. With a randomly selected data,
the algorithm looks for the k nearest hits (those with
the same class label) and misses (those with a
different class label). After that, it updates the
quality of the contribution of features with respect
to the difference between the feature values of the
selected data and nearest ones. The pseudocode is
shown in Table 1. Function diff( f, Ii, Ij) calculates
the difference between the feature values of two
instances. Thus, the weight vector W[f] increases
when the feature value of the selected instance is
different from that of the nearest missMj(C). On the
other hand, it decreases when there is a difference
between the feature values of the selected instance
and the nearest hit Hj. Finally, according to the
weight values of W[f], one can identify the ranking
of each feature and perform feature selection by
eliminating features with smallest weight values.

3.2. Sensitivity analysis with SVM

Sensitivity analysis is another method that has been
widely used to rank input features in terms of their
contribution to the deviation of the outputs [22]. It
involves varying every input feature over a reason-
able range with the others fixed, and observing the
relative changes in the outputs. As a result, features
that produce larger deviation in the output are con-
sidered more important and one can select features
by the same method that is adopted in the ReliefF
method above. Table 2 shows the pseudocode of the
sensitivity analysis method. The algorithm calculates
the difference betweenmaximum andminimum out-
put of the predictive model when a feature value
varies from its possible minimum to maximum with
the other features fixed to their mean values.
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Table 2 Algorithm of the sensitivity analysis method
3.3. Recursive feature elimination with
SVM (SVM—RFE)

SVM—RFE is an example of the embedded method
and a similar approach that removes less important
features recursively, except for using the weight
magnitude as a ranking criterion [23]. The outline
of the algorithm is presented in Table 3. In the
iterative training process in SVM—RFE, one can find
the best subset of features that provides the highest
performance. However, this algorithm is limited
theoretically to the linear kernel in SVM, because
it is difficult to calculate the weight vector for a
non-linear kernel because of the kernel character-
istics of the implicit mapping. The authors of the
paper [23] mentioned the non-linear kernel
version of SVM—RFE that is computationally more
expensive.
Table 3 Algorithm of the SVM—RFE method
4. Risk factor analysis with nomogram
visualization of SVM

4.1. General concept of the nomogram in
predictive models

The nomogram gives the insight of a model by
visualizing the effect of each feature on the pre-
diction. Fig. 1 shows an imaginary example of the
nomogram visualizing a predictive model. Suppose
that one is trying to predict whether a patient will
have diabetic nephropathy by considering two fea-
tures. One is whether the patient smokes or not; the
other is systolic blood pressure level. In the figure,
log odds ratio (Log OR) scores of the individual
features are summed up using the topmost axis of
the nomogram and used to estimate the probability
of having diabetic nephropathy (the bottommost
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Figure 1 An imaginary nomogram example of a support
vector machine (SVM) model that predicts the probability
of having diabetic nephropathy within 1 year. The nomo-
gram gives the insight of a model by presenting the Log OR
score for each feature, which denotes the effect of the
individual feature on the prediction (the higher the Log OR
score, the higher the risk).
axis of the nomogram). In this example, the
Log OR score of smoking is 0.46 and that of systolic
blood pressure level of 170 is 0.63. Thus, the sum
of the Log OR scores becomes 0.46 + 0.63 = 1.09,
which corresponds to the probability of 0.86
that the patient will have diabetic nephropathy
within a year.

Using the Log OR line, one can easily see how
much each feature influences the target probability.
When the Log OR score of a feature is high, it gives
more positive effect on the probability (the higher
the Log OR score, the higher the risk that the patient
will have diabetic nephropathy). Moreover, longer
features on the nomogramwill have a wider range of
Log OR score and thus have stronger effects on the
target prediction probability. For example, the sys-
tolic blood pressure line is longer than the smoking
line, which implies that the probability of diabetic
nephropathy is more strongly associated with sys-
tolic blood pressure.

4.2. How to draw a nomogram with SVM

Jakulin et al. [16] introduced a nomogram method
for SVM predictive models, in which the distance
from a data sample (x, y) to the separating hyper-
plane of SVM is considered an independent variable
and denoted as d(x). Given a kernel function K(x, z),
the distance can be replaced by the decision func-
tion in SVM as follows:

dðxÞffi bþ
XN
j¼1

y ja jKðx; z jÞ (6)

where b is the bias, a expresses the coefficients
of support vectors z in SVM and N is the number
of support vectors. When the kernel is linearly
decomposable with respect to each feature, the
distance becomes:

dðxÞffi bþ
XM
k¼1
½w�k (7)

and

½w�k ¼
XN
j¼1

y ja jKðxk; z j;kÞ (8)

where M is the number of features, xk is the kth
feature of data vector x and zj,k is the kth feature of
the jth support vector.

Considering the class label y as a dependent
variable, the probability that the sample belongs
to the positive group (in binary classification pro-
blem) is denoted as

Pðy ¼ 1jxÞ ¼ 1

1þ e�ðAþB�dðxÞÞ (9)

The parameters A and B can be calculated by opti-
mizing the log-likelihood function, as is done in LR. A
cross-validation is performed internally to prevent
overfitting [26]. After optimizing the parameters A
and B, one can revise (9) as

Pðy ¼ 1jxÞ ¼ 1

1þ e� b0þ
PM

k¼1 ½b�k
� � (10)

where b0 = A + B � b and [b]k = B � [w]k. b0 is an
intercept, a constant delineating the prior probabil-
ity in the absence of any features, and [b]k is the
effect vector that maps the value of the kth feature
into a point score, which finally becomes a line of
the Log OR for the feature in the nomogram as seen
in Fig. 1. Henceforth, when the summation of the
Log OR scores of each feature becomes high, the
probability that y is equal to one (the probability
that the sample belongs to the positive class)
becomes also high. Note that linear kernel is fea-
sible for decomposing itself by each feature,
whereas neither polynomial kernel nor radial basis
function (RBF) kernel is decomposable linearly.

4.3. Nomogram-based recursive feature
elimination (nomogram-RFE)

Because the prediction output is mainly associated
with the effect vector (i.e., Log OR), one can
deduce that a feature is more important when
the length of the line in the nomogram is longer,
as described above. Consequently, a feature selec-
tion method based on the nomogram determines
more important features according to the lengths of
the lines.

From an SVM model trained at each iterative
round, the nomogram-RFE method calculates the
lengths of lines that correspond to their features in
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nomograms. As with SVM—RFE, nomogram-RFE can
remove features recursively that have low effects
on prediction output (i.e., short length of the line).
During the iterative training process, one can find a
subset of features that provides the best predictive
performance.
Figure 2 A virtual example of irregular and incomplete
data in the clinical setting. This patient was diagnosed
with diabetic nephropathy on 10 November 2004 by mea-
suring microalbumin secretion.
5. Experimental set-up

5.1. Data preparation

Data of all patients with diabetes who attended the
outpatient clinic in Samsung Medical Center, Seoul,
Korea, have been collected consecutively for up to
10 years (1996—2005). A total of 4321 adult patients
with type 2 diabetes mellitus have taken several
physical examinations out of the following 20 items
at a visit: glycosylated hemoglobin (HbA1C, %), cho-
lesterol (mg/dL), alkaline phosphatase (ALP, U/L),
alanine aminotransferase (ALT, U/L), aspartate ami-
notransferase (AST, U/L), creatinine (mg/dL), blood
urea nitrogen (BUN, mg/dL), triglyceride (mg/dL),
white blood cell count (WBC, �103 mL�1), hemoglo-
bin (g/dL), platelet count (�103 mL�1), high-density
lipoprotein cholesterol (HDL-C,mg/dL), low-density
lipoprotein cholesterol (LDL-C, mg/dL), Na+ (mmol/
L), K+ (mmol/L), uric acid (mg/dL), microalbumin
(mg/min), systolic blood pressure (sBP, mmHg), dia-
stolic blood pressure (dBP, mmHg) and body mass
index (BMI, kg/m2). For the differential diagnosis of
diabetic nephropathy, we selected the positive
patients from the whole dataset when the following
criteria were fulfilled: (1) 20—200 mg/min in urinary
albumin (microalbumin), (2) no evidence of micro-
albumin or renal failure at the time of diabetes
diagnosis, and (3) prior evidence of diabetic retino-
pathy, as the development of renal disease is
strongly associated with the occurrence of retino-
pathy [24,25].

As mentioned above, there was some difficulty in
data collection: the patients have not always taken
all the tests at the visit, and their visits were very
irregular. Some patients visited the hospital less
than once a year. Fig. 2 illustrates an imaginary
example for a patient that could exist in the data-
set. This patient’s first visit to this hospital was in
the early part of 2000 and only two parameters were
measured (HbA1C and cholesterol) at that time. The
patient took five tests 8months later; took four tests
another 7 months later, and so on. As shown, this
sequential dataset does not always have the same
items at every visit and the time gaps are irregular.
Thus, one cannot directly use such irregular and
incomplete data in SVM classification, which led
us to preprocess this data.
5.2. Feature extraction using the
quantitative temporal abstraction

Over the past decade, much work has been done to
extract relevant features from the time-stamped
longitudinal data and the temporal abstraction (TA)
is one of the most interesting approaches for that
purpose [26—28]. In the clinical domains, the goal of
TA task is to evaluate and summarize the state of the
patient over a period. Several researches in the
diabetes mellitus domain have also incorporated
the TA framework [29,30]. Those researches are
dealing with high-frequency domains where the
clinical parameters have been measured at least a
few times a day such as monitoring in the intensive
care unit, and focusing mainly on the knowledge-
based TA approach which requires the clinician’s
domain knowledge and derives meta features that
form symbolic descriptions of the data. Verduijn
et al. compared the qualitative (knowledge-based)
TA procedure with the quantitative (data-driven) TA
that extracts meta features from the data using
statistical summaries (such as mean, variance, the
slope coefficient) with minimum use of domain
knowledge [31]. They concluded that the qualita-
tive TA procedure is preferable to the quantitative
TA in the case study about the prediction from
intensive care monitoring data. Thus, we tried to
extract the features from the sparse time-stamped
data (each variable has been measured a few times
per year) by simple data-driven abstraction rather
than the knowledge-based TA method.

Using the quantitative TA, we derived the follow-
ing nine meta features from each laboratory exam-
ination dataset to represent the trend of the
sequential data over the period between the first
visit and the latest visit before the diagnosis. These
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were the minimum, maximum, mean, variance,
slope, estimated value on the date of prediction
(EST), initial value, the latest value before the
prediction, and K value (see below).

We calculated the slope using linear regression
analysis with consecutive values of the laboratory
examination data over a given period. We could also
estimate the EST, applying the date of prediction to
the generated regression model. K value is similar
to the stochastic oscillator in the financial domain,
which computes the location of the latest feature
value relative to its range over a given period, as
follows:

K ¼ L� Min

Max� Min
(11)

where L is the latest value, Min is the minimum and
Max is the maximum.

After preprocessing, we had 292 records (33
positives and 259 negatives) comprising 184 features
for each instance, including the demographic fea-
tures of the patients: age on the date of prediction,
age of onset of diabetes, diabetes duration, and sex.
Table 4 The extracted features after the preproces-
sing

Feature index Featurea

1—4 Onset age, diabetes duration,
age, sex

5—13 White blood cell count (WBC)
14—22 Hemoglobin
23—31 Platelet count
32—40 Serum cholesterol level
41—49 Serum aspartate aminotransferase

(AST) level
50—58 Serum alanine aminotransferase

(ALT) level
59—67 Serum alkaline phosphatase

(ALP) level
68—76 Blood urea nitrogen (BUN)
77—85 Creatinine
86—94 Uric acid
95—103 Na+

104—112 K+

113—121 Serum triglycerides level
122—130 High density lipoprotein cholesterol

(HDL-C) level
131—139 Low density lipoprotein cholesterol

(LDL-C) level
140—148 Glycosylated hemoglobin (HbA1C)
149—157 Microalbumin
158—166 Systolic blood pressure (sBP)
167—175 Diastolic blood pressure (dBP)
176—184 Body mass index (BMI)
a Each feature set except for 1—4 has 11 features: slope,

mean, variance, maximum, minimum, K, EST (estimated
value on the date of prediction), initial value and latest value.
Table 4 summarizes the features extracted with the
preprocessing step.

5.3. Performance evaluation

Several classification algorithms were compared
with each other. Especially for SVMs, the effect of
cost-sensitive learning was examined, compared
with equal cost learning. More importantly, we
evaluated the effects of the various feature selec-
tion methods: statistical feature selection, ReliefF,
sensitivity analysis, SVM—RFE, and nomogram-RFE.

Throughout the experimental process, we took
advantage of leave-one-out cross-validation (LOOCV)
to evaluate the performance of each prediction
method. The LOOCV is equivalent to k-fold cross
validation, where k is the number of data objects.
Because the sigmoid parameters should be obtained
to use the nomogram approach, we used the prob-
abilisticoutputs of SVMclassification in all theexperi-
ments [32]. Assuming equal loss for misclassified
negative and misclassified positive, the optimal
threshold for the probabilistic output is P(y =
1jf) = 0.5. Instead, an alternative threshold was
also applied in the test phase. We used Weka [33]
and LIBSVM [34] for implementations of ReliefF
and SVM.

Because the dataset in this study had an unba-
lanced distribution of positives and negatives, the
classification accuracy (the rate of correctly classi-
fied test samples) was not sufficient as a perfor-
mance measurement of the predictive models.
Suppose that one has a dataset including 10 positives
and 90 negatives. A simple decision rule that clas-
sifies all the instances as negative would represent
90% accuracy, whereas it could not correctly predict
any positive instance. From a medical point of view,
a misclassified negative is the most critical decision,
because the patient could not have appropriate
medical care in that case. However, one also needs
to reduce the number of misclassified positives,
which leads to unnecessary additional physical
examination or treatment.

Accordingly, sensitivity and specificity analysis is
common in medicine. Sensitivity stands for the per-
centage of patients correctly recognized by the clas-
sification whereas specificity means the percentage
of healthy subjects recognized by the classification.
However, there is a trade-off between sensitivity and
specificity, meaning it is necessary to calculate other
stable evaluation metrics. Therefore, we used the
area under the curve (AUC) of a receiver operating
characteristic (ROC) curve as a target performance
metric. The ROC curve typically plots false positive
rate (1 � specificity) versus true positive rate (sensi-
tivity) while a decision threshold is being varied. The
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AUC is a convenient way of comparing classifiers
where a random classifier has an area of 0.5, and
an ideal classifier has an area of 1.0.

We also calculated other judging criteria to eval-
uate a classifier, such as the balanced error rate
(BER) and the harmonic mean of sensitivity and
specificity (HMSS). The definition of BER is

BER ¼ 1

2

false negative

pos
þ false positive

neg

� �
(12)

In an example mentioned above, the BER would be
50% because the first term of (12) is 10/10 but the
second would be 0/90. The HMSS is analogous to
the F measure in information retrieval. The general
definition of F measure for a non-negative real value
a is

Fa ¼
ð1þ aÞ � precision� recall

a� precisionþ recall
(13)

where the precision is the fraction of predicted
positives that are the actual positives while the
recall is the fraction of the actual positives that
are predicted by a classifier, which is identical to
sensitivity. The F1 measure, where a is one, is the
traditional F measure that is indeed the harmonic
mean of precision and recall, i.e.,

F1 ¼
2� precision� recall

precisionþ recall
(14)

However, the F measure does not take into account
performance on the negative class because it is hard
to estimate the true negative in information retrie-
val. To overcome the drawback of the F measure, we
used HMSS, defined as

HMSS ¼ 2� sensitivity� specificity

sensitivityþ specificity
(15)
Table 5 Comparison of the logistic regression and SVM ke
selection methoda

Parameter Ridge LRb SVM

# Features 184 184
C+c n/ad 1
AUC 0.571 0.6
Accuracy 0.774 0.8
HMSS 0.559 0
BER 0.379 0.5
Sensitivity 0.424 0
Specificity 0.819 1
a Note that accuracy, HMSS, BER, sensitivity and specificity are m
b Ridge LR: logistic regression with a ridge estimator.
c C+: cost weight for positive instances.
d n/a: not available.
This gives equal weight to both sensitivity and spe-
cificity, as the F1 measure does for precision and
recall.
6. Results

6.1. Baseline performances with all the
features

First, we performed conventional LR without any
feature selection method, and it failed to optimize
the solution. Therefore, we used ridge LR as a
replacement for the conventional method. Table 5
compares the ridge LR, SVM with linear kernel, and
SVM with RBF kernel using all 184 features. We
applied the equal weights to both positives and
negatives for the baseline SVM experiments. For
the SVM methods, the prediction accuracies were
as high as 0.887 for both kernels when the decision
threshold was 0.5. However, the HMSSs gave zeros
and the BERs were about 0.5, which were clearly
because of the imbalanced dataset and the low
sensitivity of the classifiers. Although the SVM with
linear kernel showed the best performance in terms
of AUC, all three methods showed poor performance
(all were lower than 0.7), suggesting the need for a
search for feature selection method.

6.2. Statistical feature selection method

We applied the x2-test for the feature sex and
Student’s t-test for the remaining 183 features.
Among the 184 features, Table 6 summarizes sig-
nificantly different features between the two
groups: those who developed (positive) and those
who did not develop diabetic nephropathy (nega-
tive). For the positive patients, the initial value of
rnel methods without cost-sensitive learning or feature

with linear kernel SVM with RBF kernel

184
1

75 0.644
87 0.887

0
0.5
0
1

easures using a threshold of 0.5 in probabilistic output.
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Table 6 Results of statistical analysis for each feature between the two groups (only these 17 features showed
significant differences from the 184 features tested)

Feature index Feature name Positive (n = 33) Negative (n = 259) Significance

Mean � S.D. Mean � S.D.

12 WBC (initial) 7.26 � 1.70 6.63 � 1.61 *

63 ALP (min) 72.76 � 25.83 63.07 � 18.22 *

117 Triglyceride (min) 100.82 � 44.91 82.56 � 34.59 **

123 HDL-C (mean) 44.76 � 10.20 49.50 � 11.31 *

125 HDL-C (max) 53.15 � 12.59 60.08 � 14.33 **

130 HDL-C (latest) 41.54 � 9.93 46.81 � 13.60 *

141 HbA1C (mean) 8.10 � 1.12 7.58 � 1.17 *

143 HbA1C (max) 10.42 � 1.61 9.75 � 1.86 *

144 HbA1C (min) 6.46 � 0.95 6.05 � 0.94 *

148 HbA1C (latest) 8.10 � 1.31 7.53 � 1.57 **

150 Microalbumin (mean) 10.16 � 4.08 6.68 � 3.08 ***

151 Microalbumin (variance) 2.86 � 1.87 1.72 � 1.39 **

152 Microalbumin (max) 13.31 � 4.31 8.65 � 4.03 ***

153 Microalbumin (min) 7.24 � 4.75 4.85 � 2.77 **

156 Microalbumin (initial) 10.23 � 5.30 6.72 � 3.70 ***

157 Microalbumin (latest) 9.92 � 5.50 6.79 � 3.96 **

172 dBP (K) 0.45 � 0.21 0.53 � 0.27 *

* P < 0.05.
** P < 0.01.
*** P < 0.001.
WBC count (P < 0.05), minimum value of ALP
(P < 0.05), and minimum value of triglyceride
(P < 0.01) were significantly higher than those of
negative patients. For HDL-C mean (P < 0.05), max-
imum (P < 0.01), and the latest value (P < 0.05) of
the positive patients were significantly lower than
those of negatives. The positive patients had sig-
nificantly higher values in mean (P < 0.05), max-
imum (P < 0.05), minimum (P < 0.05), and the
latest value (P < 0.01) of HbA1C than negatives.
Lastly, for the microalbumin of the positive
patients, mean (P < 0.001), variance (P < 0.01),
maximum (P < 0.001), minimum (P < 0.01), the
Table 7 Comparison of logistic regression and SVM kernel
HMSS, BER, sensitivity, and specificity were measured using

Parameter Ridge LRa SVM linear

# Features 17 17
C+c n/ad 1
AUC 0.776 0.276
Accuracy 0.880 0.887
HMSS 0.348 0
BER 0.411 0.5
Sensitivity 0.212 0
Specificity 0.965 1
a Ridge LR: logistic regression with a ridge estimator.
b (*) SVM with cost sensitive learning including equal cost learnin
c C+: cost weight for positive instances.
d n/a: not available.
initial value (P < 0.01), and the latest value
(P < 0.01) were much higher.

Using only these 17 statistically different fea-
tures, we performed five different combinational
approaches. Table 7 shows the results, where an SVM
classifier using the RBF kernel and cost-sensitive
learning was found to give the best AUC (0.807)
and SVM classifiers with equal cost learning
gave the worst AUC. The HMSSs and BERs of all
the combinational methods were poor because of
the low sensitivity of the classifiers, which means
that the classifiers predicted–—most of the test data
as negatives with the threshold of 0.5.
methods with statistically selected features (accuracy,
a threshold of 0.5 in the probabilistic output)

SVM RBF SVM linear* b SVM RBF*b

17 17 17
1 16 13
0.679 0.793 0.807
0.890 0.894 0.890
0.059 0.167 0.167
0.485 0.456 0.458
0.030 0.091 0.091
1 0.996 0.992

g.



Prediction of diabetic nephropathy 47

Figure 3 Performance variation of each classifier using
the ReliefF method. Ridge LR stands for logistic regression
with a ridge estimator and the SVM classifiers that include
an asterisk shows the best area under the curve (AUC)
values of the receiver operating characteristic curve
for cost-sensitive learning and the equal cost learning
methods.

Figure 4 Performance variation of each classifier using
the sensitivity analysis method. Ridge LR stands for logistic
regression with a ridge estimator and the SVM classifiers
with asterisks shows thebest AUCsamong the cost-sensitive
learning and the equal cost learning method.
6.3. ReliefF method

To evaluate the ranking of the features in terms of
their effects on the discriminating ability, we
applied the ReliefF method to the whole dataset
as a preprocessing step. Based on this feature rank-
ing, we eliminated low-ranked features one by one
and trained the classifiers again with the remaining
features. Fig. 3 plots the performance variation
based on the number of features selected by ReliefF.
Note that it is easier to understand the graph by
examining it from the right to the left, because we
used the backward elimination. Even after the clas-
sifiers were trained based on the feature ranking
by ReliefF, no classifier showed any significant
enhancement of performance compared with the
classifier with statistical feature selection method.
In Table 8, which shows the performance of the
classifiers in the best cases, the results are poorer
than those from the statistical feature selection
Table 8 Comparison of logistic regression and SVM kerne
(accuracy, HMSS, BER, sensitivity and specificity were measu

Parameter Ridge LRa SVM linear

# Features 2 159
C+c n/ad 1
AUC 0.758 0.714
Accuracy 0.877 0.887
HMSS 0 0
BER 0.506 0.5
Sensitivity 0 0
Specificity 0.988 1
a Ridge LR: logistic regression with a ridge estimator.
b (*) The best SVM classifier that includes the cost sensitive learn
c C+: cost weight for positive instances.
d n/a: not available.
method. The HMSSs and BERs were 0 and around
0.5, respectively.

6.4. Sensitivity analysis method

Unlike with the ReliefF method, we trained a clas-
sifier first and then eliminated the lowest-ranked
feature by estimating the feature ranking based on
sensitivity analysis. Fig. 4 illustrates the perfor-
mance variation versus the number of selected
features by sensitivity analysis. Unlike the results
with the ReliefF method, the performance variation
had a common tendency in that it increased until the
number of the features decreased to some point,
and then it started to degrade as the number
reached one. In most cases, the linear kernel-based
SVM classifier trained by the cost-sensitive learning
method (SVM linear*) represented the best perfor-
mance, and LR was the worst with respect to AUC.

Table 9 compares the five classifiers in the best
cases with each classificationmethod. Among these,
the linear kernel based SVM classifier with 39
l methods with the ReliefF method in the best cases
red using a threshold of 0.5 in the probabilistic output)

SVM RBF SVM linear* b SVM RBF*b

44 8 8
1 7 7
0.742 0.784 0.796
0.886 0.884 0.886
0 0 0
0.5 0.502 0.5
0 0 0
1 0.996 1

ing method.
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Table 9 Comparison of logistic regression and SVM kernel methods with sensitivity analysis method in the best cases
(accuracy, HMSS, BER, sensitivity and specificity were measured using a threshold of 0.5 in the probabilistic output)

Parameter Ridge LRa SVM linear SVM RBF SVM linear* b SVM RBF*b

# Features 76 39 75 39 63
C+c n/ad 1 1 1 7
AUC 0.879 0.969 0.918 0.969 0.943
Accuracy 0.911 0.921 0.894 0.921 0.897
HMSS 0.867 0.532 0.263 0.532 0.264
BER 0.130 0.322 0.430 0.322 0.428
Sensitivity 0.818 0.364 0.152 0.364 0.152
Specificity 0.848 0.992 0.988 0.992 0.992
a Ridge LR: logistic regression with a ridge estimator.
b (*) The best SVM classifier that includes the cost sensitive learning method.
c C+: cost weight for positive instances.
d n/a: not available.
selected features showed the highest AUC (0.969).
Although the HMSS and the BER outcomes of LR were
better than those of SVM classifiers, SVM classifiers
had higher AUCs. Notably, the best classifier (SVM
linear) used equal cost learning, rather than cost-
sensitive learning.

6.5. SVM—RFE and nomogram-RFE

Fig. 5 shows that the embedded feature selection
methods (SVM—RFE and nomogram-RFE) had exactly
the same pattern in performance variation as the
number of selected features decreased to some
point (approximately 10), meaning that they elimi-
nated the least-ranked features with the same
order. Classifiers with cost-sensitive learning
seemed superior to those with equal cost learning
for most cases. However, both had the same peak
points of performance with the same number of
features. The results of SVM—RFE and nomogram-
RFE (both using linear kernel) had exactly the same
pattern as the SVM classifier using linear kernel and
sensitivity analysis discussed in Section 6.4.
Figure 5 Performance variation of each classifier using
the SVM—RFE and nomogram-RFE methods. Ridge LR
stands for logistic regression with a ridge estimator, and
the SVM classifier that includes an asterisk shows the best
AUCs among the cost-sensitive learning and the equal cost
learning methods.
For the best cases, all four approaches gave the
identical highest AUC (0.969), and they took advan-
tages of 39 features. Although the accuracies of the
classifiers were greater than 0.9, the HMSSs and the
BERs were still poor, with a threshold of 0.5.

6.6. The best classifier

From the results of the various methods above, SVM
classifier with a linear kernel and the 39 selected
features showed the best performance in terms of
AUC. However, it needed an alternative threshold to
enhance the HMSS and the BER. We thus tried to use
as an alternative threshold the rate of positives over
the total records in the training dataset (the prob-
ability threshold varied between 0.12 and 0.13 with
respect to the training dataset). When the alter-
native threshold was applied (Table 10), the HMSS
increased and the BER decreased, although accu-
racy became lower. These changes imply that SVM
approaches may need an alternative probability
decision threshold instead of 0.5 for imbalanced
datasets.
Table 10 Comparison of the threshold variations in
the best prediction

Parameter SVM Linear with 39 features
SVM RBF*a

Threshold 0.5 Ratiob

# features 39
C+a 1
AUC 0.969
Accuracy 0.921 0.839
HMSS 0.532 0.890
BER 0.322 0.104
Sensitivity 0.364 0.970
Specificity 0.992 0.822
a C+: cost weight for positive instances.
b Ratio: The rate of positives over the total data records.
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Figure 6 Receiver operating characteristic (ROC) curve
of the best classifier. The AUC of the classifier is 0.969. The
solid arrow indicates an optimum threshold point (prob-
ability of 0.13) for the classifier, which gives a sensitivity
of 97% and a specificity of 85%. The dashed arrow indicates
another threshold point (probability of 0.25) for the clas-
sifier, which gives 94% sensitivity and 95% specificity.

Figure 7 The VRIFA system applied by the linear-kernel-
based SVM classifier with 39 selected features, as
described in Section 6.6.
Fig. 6 shows the ROC curve of the best classifier.
The solid arrow indicates the optimum point of the
classifier, giving a sensitivity of 0.97 and a specificity
of 0.85as a threshold is 0.13. The dashed arrow
indicates another optimum option that gives a sen-
sitivity of 0.94 and a specificity of 0.95 at a threshold
of 0.25.

6.7. Prediction time gap

We applied another statistical test related to the
time gap, that is, the interval between the date of
the latest examination and the date that we were
trying to predict. As shown in Table 11, there was no
significant difference of prediction gap between
positives and negatives: both groups had about
0.2 years (2.5 months) of prediction gap. For the
microalbumin measurements, there was also no
significant difference. All patients had around 2
years to take another examination of microalbumin
Table 11 The results of Student’s t-test applied to the mea
the two groups (all tests were non-significant)

Time Mean �
Positiv

Prediction gap (year) 0.21 �
Microalbumin gap (year) 2.05 �
Follow-up period (year) 5.37 �
for the final diagnosis of diabetic nephropathy. The
total follow-up period was also not significantly
different: approximately 5—6 years for both groups.

6.8. Interpretation of the results using
the VRIFA system

Based on the best classifier (nomogram-RFE with the
39 features) in Section 6.6, we have plotted the
effects of the selected features using the nomogram
visualization tool for risk factor analysis (VRIFA) in
Fig. 7. The upper left part of the figure shows the
ranges of effect values of the 39 features. In that
part, features 124 (HDL-C variance) and 170 (dBP
maximum) seem to have had high effects on the
prediction because they show wider ranges than
others do. The detailed Log OR (effect value) of
each feature at a specific input value can be seen
in the right part of VRIFA. By applying all the weight
values and the intercept to the expression in
Eq. (10), we show an estimate of the probability
of having diabetic nephropathy at the bottom of the
figure.
ns of the prediction gap and time of follow-up between

S.D.

e (n = 33) Negative (n = 259)

0.24 0.19 � 0.12
0.99 1.87 � 0.91
1.98 5.86 � 1.99
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Fig. 8 shows the detailed Log OR for all the
selected features. When the Log OR increases to
the upper right end as the feature value increases
as for the initial WBC, it shows that the higher the
feature value, the higher is the probability that the
patients would develop diabetic nephropathy. By
contrast, when the line goes down as the feature
value increases (as for minimum Hemoglobin value),
the higher the value of the lower is the probability
that a patient might develop diabetic nephropathy.

Examining each feature closely, some of the fea-
tures selected statistically in Section 6.2 have also
been included in this selected feature set (initial
Figure 8 The detailed effect values (log odds ratios) of th
WBC; minimum ALP; mean, maximum and minimum
microalbumin, and variance in microalbumin), and
they show similar tendencies: thus a higher value for
each feature indicates positive (bad) effects of
having diabetic nephropathy. However, some other
features have inconsistent effects compared with
the commonly believed facts. For example, the
effect values decrease as the mean, EST and initial
values of systolic blood pressure increase. In addi-
tion, the effect values decrease as the mean and
minimum values of BMI increase. However, these
features showed no statistically significant differ-
ence between groups.
e selected features. *P < 0.05; **P < 0.01; ***P < 0.001.
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7. Discussion

7.1. Data preparation and feature
extraction

It was difficult to acquire such a large electronic
medical dataset, with 4321 patient follow-up
records aged up to 10 years. Moreover, the original
data were irregular and incomplete sequences,
which made this study challenging. Therefore, we
extracted 184 meta features for preprocessing,
shrinking the number of records to 292; this step
was essential for the machine learning application.
To represent a record for each physical and labora-
tory examination (20 items), we employed the qua-
litative TA approach that calculates several
fundamental statistical features such as minimum,
maximum, mean and variance; we also estimated
the trend of each item. These extracted features
sufficed to describe the data and to distinguish the
two groups of patients who did or did not develop
diabetic nephropathy, because the classification
performance with several feature selection meth-
ods showed promising results. However, our future
work will compare the simple statistical abstraction
with more complex abstraction with the knowledge-
based TA procedure.

Despite this reduction in data, there was unlikely
to be any bias in sampling. In the preprocessing step,
we selected all data records under the same con-
ditions. Thus, they all needed the full 184 features,
which means that the patients should have had at
least two examinations for all 20 items before the
final diagnosis. Moreover, there were no significant
differences in age, sex, age at the onset of diabetes,
or the duration of diabetes between the two groups.

7.2. Feature selection methods

There were too many features to be trained com-
pared with the number of records; this raises the
issue of ‘‘curse of dimensionality’’, which refers to
the exponential growth of hypervolume as a func-
tion of dimensionality. To deal with this, we adopted
several feature selection methods; some of which
showed better results than the classifier using all
184 features. This fulfils the dictum of Occam’s
razor in that the fewer assumptions are made to
explain a phenomenon, the better it is.

Using statistical analysis, we clarified that some
features differed significantly different between
the two groups. However, those features were not
sufficient to distinguish the two groups because the
classification performance using those features was
poor compared with those with other feature selec-
tion methods. Statistical methods, such as Student’s
t-test, compare the means of groups and indicate if
there is any probable difference between them.
However, such statistical differences could not
always guarantee linear or non-linear separable
values for each group of patients, so it was hard
to predict diabetic nephropathy using a statistical
feature selection.

Filter methods such ReliefF have advantages in
computation because they do not interact with
classifiers, which is why they have been used for
simple approaches. By contrast, the wrapper and
embedded methods consider classifier design and
are thus computationally expensive. However, these
tactics — sensitivity analysis, SVM—RFE and nomo-
gram-RFE — showed better performances than
ReliefF.

7.3. Classification methods

The failure of conventional LR here could have
arisen from the large number of features. The pre-
processing step might be another source of this
failure, as we extracted these features from irre-
gular sequential datasets and they must have had
high correlations with each other (i.e., multicoli-
nearity). With every feature selection method used
in this study, SVM classification was superior to ridge
LR in terms of the AUC. However, SVM classification
using cost-sensitive learning gave almost the same
results as the equal cost learning method. Cost-
sensitive learning moves the separating hyperplane
away to the minority class data; this is very similar
to the bias variation scheme, in which the user can
alter the decision threshold using bias. Moreover,
threshold variation does not related with the AUC of
the ROC curve. Therefore, the AUC may depend
mostly on the tuning of other parameters, rather
than the penalty to the error of the minority class
data.

7.4. Considerations of the VRIFA system

LR is used widely in medicine because it is able to
describe feature ranking by an odds ratio and it can
give intuitive information to medical practitioners.
However, it is very difficult to interpret the results
using odds ratio when independent variables (input
features) have continuous values. Therefore, ridge
LR made little use of this advantage, because the
features used in this study all had continuous values
except for one feature: sex.

VRIFA, a visualization system using a nomogram in
SVM, has been developed as a prototype. It gives
intuitive visualization of the effect of each feature
and a probabilistic output. Physicians can benefit
from it for predicting diabetic nephropathy and can
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analyze the effects of the features. Therefore, it
may be very useful to help develop effective treat-
ment strategies and guide patients in choosing a life
style. In addition to its graphical output, we took
advantage of VRIFA for a feature selection method
(nomogram-RFE) using the dynamic ranges of fea-
tures. In this application, nomogram-RFE produced
a value of 0.969 of the AUC using 39 features, as did
the other wrapper and embedded methods.

7.5. Clinical considerations

The features selected by our feature selection
methods were not always concordant with statisti-
cally significant features. Some of the selected
features in the VRIFA showed unexpected tenden-
cies that are contrary to common medical thoughts:
for example, that high blood pressure and a high BMI
might be associated with diabetic nephropathy.
However, these features were not significantly dif-
ferent between the two groups of patients. A pos-
sible explanation of the phenomenon is that the best
classifiers used linear functions and thus there exist
linear relationships among the features. For exam-
ple, feature A could be important only if it is used
with feature B in a linear SVM classifier. These
relationships cannot be identified by t-test, as it
does not take into account of the linear relationship.

On the other hand, the statistically significant
features showed the same tendencies as the visua-
lization output. The patients with diabetic nephro-
pathy already had higher values than the unaffected
patients in WBC counts and microalbumin values,
which is consistent with previous researches that
are described in Section 1. In particular, frequent
high microalbumin values before the outbreak of
diabetic nephropathy suggests a possible demand
for lowering of the diagnostic threshold for micro-
albumin for such patients.

The start of diabetic nephropathy does not
depend on some particular features, but on a com-
plex interrelationship involving many. However,
physicians could use this VRIFA system to estimate
a patient’s overall probability of having diabetic
nephropathy and easily find the most important risk
factors. Early stage of diabetic nephropathy is
reversible, meaning that a patient who does not
develop overt albuminuria (over 200 mg/min) could
revert to normal kidney function if treated appro-
priately. Therefore, early diagnosis of this disease is
very important and this study could be an immediate
option for this purpose. When analyzing the time
interval of prediction, our proposed method used
average 5-year follow-up data and predicted dia-
betic nephropathy about 2—3 months before the
actual diagnosis.
The limitation of this study is that it did not deal
with medication information, for example the use of
insulin, oral agents, or antihypertensive drugs. There
are still difficulties in including such information.
Therefore, the concept of prediction is becoming
increasingly difficult to pursue because many patie-
nts are treated with anti-hypertensive drugs and
other types of interventions when microalbuminuria
is diagnosed; such measures often return the patie-
nt’s albumin excretion to normal [35,36]. This pro-
blem may require another challenging data mining
task, for example ontology and text mining. Future
work will include the medication information and
more data records to support the existing models.

8. Conclusions

The goal of any prognostic study with machine
learning methods is to support rather than replace
clinical judgment. Our model scores are not suffi-
ciently accurate or complete to supplant decision-
making by physicians. In this aspect, themain objec-
tive of this study has suggested a new way to give
information to physicians to plan efficient and
proper treatment strategies.

In this study, we tried to predict diabetic nephro-
pathy and determine its risk factors. We performed a
preprocessing step to deal with the incomplete and
unbalanced practical dataset, and assessed various
machine-learning techniques, such as SVMs, cost-
sensitive learning and feature selection methods.
The proposedmethodpredicted the onset of diabetic
nephropathy with promising performance and pro-
vided a graphical tool for risk factor analysis, which
may generate new hypothesis that motivates further
investigation and research. In addition,wewere able
to detect high microalbumin values for the patients
before they developed diabetic nephropathy.

The most significant aspect of this study is that,
to our knowledge, it is the first trial to apply data
mining technology for predicting a diabetic compli-
cation. The number of hospitals that adopted an
electronic medical record system has increased
geometrically during the past decade. This will
probably lead to the more efficient collection of
data and make it easier to study diseases such as
diabetes and hypertension via machine learning or
artificial intelligence technology. Thus we believe
that this study will have wide application.
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