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a b s t r a c t

This paper performs systematic comparative studies on rough set based class imbalance learning. We
compare the strategies of weighting, re-sampling and filtering used in the rough set based methods for
class imbalance learning. Weighting is better than re-sampling, and re-sampling is better than filtering.
The weighted rough set based method achieves the best performance in class imbalance learning. Fur-
thermore, we compare various configurations of the weighted rough set based method. The weighted rule
extraction and weighted decision have greater influence on the performance of the weighted rough set
based method than the weighted attribute reduction. The weighted attribute reduction based on the
weighted degree of dependency, the rule extraction for the exhaustive set of rules and the weighted deci-
sion based on the majority voting of the factor of weighted strength are the optimal configurations for
class imbalance learning. Finally, we compare the weighted rough set based method with the decision
tree and SVM based methods. The experimental results show that the weighted rough set based method
outperforms the decision tree and SVM based methods. It can be concluded from the comparisons that
the weighted rough set based method is effective for class imbalance learning.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The class imbalance problem is recognized as a crucial problem
in machine learning and data mining because such a problem is
encountered in a large number of domains, such as fraud detection
[11], medical diagnosis [23] and text classification [43]. It usually
causes serious negative effects on the performance of a learning
method that assumes a balanced class distribution [56–58]. Much
work has been done to deal with the class imbalance problem
[21,23,29,40]. A recognized solution to the class imbalance prob-
lem is to take into account the a priori knowledge of class distribu-
tion at the data or algorithmic level [6,22]. At the data level, re-
sampling training data is a popular solution to the class imbalance
problem, and it over-samples the minority class or under-samples
the majority class to balance the class distribution of a data set. A
traditional learning method can be directly employed to deal with
the class imbalance problem by learning from the re-sampled data
set [1,9,59]. At the algorithmic level, weighting training data is a
popular solution to the class imbalance problem, and it assigns a
larger weight to the minority class than to the majority class to bal-
ance the class distribution of a data set. A traditional learning
method must be modified to make use of the weights when this
strategy is used. Compared to re-sampling, weighting can usually
be used to achieve better performance [21,23]. Many researchers
ll rights reserved.

2.
have employed this strategy to improve the performance of
decision tree [9,51] and SVM [5,8,50] in class imbalance learning.

Rough set theory is a powerful mathematical tool proposed by
Pawlak [33,34] for dealing with inexact, uncertain or vague infor-
mation, and a large number of studies have been directed to its
development and applications [2,3,14,25,26,30,45,60]. The main
advantage of rough set theory in data analysis is that it does not
need any preliminary or additional information about data like
probability distributions in statistics, basic probability assignments
in Dempster–Shafer theory, or a grade of membership in fuzzy set
theory [36–39]. In the traditional rough set based method, all sam-
ples are considered equally important, and the same probability 1/
n, where n is the size of a training data set, is assigned to each sam-
ple for computing the accuracy of approximation, reducing attri-
butes and extracting decision rules. When the class distribution
of a data set is skewed, the traditional rough set based method is
biased towards the majority class and usually has a poor prediction
for the minority class because the a priori knowledge of class dis-
tribution is not taken into account.

Re-sampling training data can be used in the traditional rough
set based method to perform class imbalance learning at the data
level. At the algorithmic level, Stefanowski and Wilk [49] intro-
duced removing and filtering techniques to process inconsistent
samples from the majority class in boundary regions. Their exper-
imental results indicated that the removing and filtering tech-
niques could be used to improve the performance of a rough set
based method in class imbalance learning, and the filtering tech-
nique performed better than the removing technique. Liu et al.
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[28] introduced weights to represent the a priori knowledge of
class distribution and proposed a weighted rough set based meth-
od to perform class imbalance learning. Their experimental results
showed that the weighted rough set based method achieved better
performance than the traditional rough set based method in class
imbalance learning.

To the best of our knowledge, there are no systematic compar-
ative researches on rough set based class imbalance learning so far.
In this study, we first compare the strategies of weighting, re-sam-
pling and filtering used in the rough set based methods for class
imbalance learning. We find that the weighted rough set based
method outperforms the methods based on re-sampling and filter-
ing. Secondly, we compare various configurations of the weighted
rough set based method, and optimize the configurations for class
imbalance learning. Finally, we compare the weighted rough set
based method with the decision tree and SVM based methods used
for class imbalance learning, and find that the weighted rough set
based method outperforms the comparative methods.

The remainder of this paper is organized as follows. Section 2
describes preliminary notions related to rough sets. Section 3 re-
views various configurations of learning and classification based
on rough sets. Section 4 discusses rough set based methods for
class imbalance learning. Section 5 discusses other methods for
class imbalance learning. Section 6 presents systematic compara-
tive studies on rough set based class imbalance learning. Finally,
Section 7 concludes this work.
2. Preliminary notions related to rough sets

IS = hU,A,V, fi is called an information system, where
U = {x1, . . . ,xi, . . . ,xn} is a set of samples, A = {a1, . . . ,aj, . . . ,am} is a
set of attributes, V is the value domain of A, and f: U � A ? V is
an information function.

Let B # A. B induces an equivalence (indiscernibility) relation
on U as shown below

INDðBÞ ¼ fðx; yÞ 2 U � U j f ðx; aÞ ¼ f ðy; aÞ; 8a 2 Bg: ð1Þ

The family of all equivalence classes of IND(B), i.e., the partition
induced by B, is denoted as

PB ¼ U=B ¼ f½xi�B : xi 2 Ug; ð2Þ

where [xi]B is the equivalence class containing xi. All the elements in
[xi]B are equivalent (indiscernible) with respect to B. Equivalence
classes are elementary sets in rough set theory.

Let B # A and X # U. The lower and upper approximations of X
with respect to B, denoted by BXand BX, respectively, are defined as

BX ¼ [f½xi�B j ½xi�B # Xg
BX ¼ [f½xi�B j ½xi�B \ X–£g

(
: ð3Þ

Lower approximation BX is the greatest union of equivalence
classes contained in X, and it is the set of all samples that can be
certainly classified as belonging to X using B. Upper approximation
BX is the least union of equivalence classes containing X and it is
the set of all samples that can be possibly classified as belonging
toX using B. BNBðXÞ ¼ BX � BX is called the boundary region of X
with respect to B. X is definable with respect to B if BNB(X) = £,
otherwise X is rough with respect to B. In contrast to a definable
set, any rough set has a non-empty boundary region.

A rough set can be characterized using the accuracy of approx-
imation as defined below

aBðXÞ ¼j BX j = j BX j; ð4Þ

where j�j denotes the cardinality of a set. X is definable with respect
to B if aB(X) = 1, otherwise X is rough with respect to B.
Let B # A and a 2 B. a is redundant in B if U/B = U/(B � a), other-
wise a is indispensable in B. B is independent if every a 2 Bis indis-
pensable in B. B is a reduct of A if B is independent and U/B = U/A.

A reduct is a minimal subset of attributes that preserves the
indiscernibility relation determined by full attributes. There is usu-
ally more than one reduct for a given information system, and the
intersection of all the reducts is called the core. The core is the
most important subset of attributes, since none of its elements
can be removed without changing the indiscernibility relation.

IS = hU,A,V, fi is called a decision table if A = C [ D, where C is the
condition attribute set and D is the decision attribute set. The de-
gree of dependency of D on C can be defined as

cCðDÞ ¼j POSCðDÞ j = j U j; ð5Þ

where POSC(D) = [ X2U/DCX is called the positive region of the parti-
tion U/D with respect to C, and it is the set of all samples that can be
certainly classified as belonging to blocks of U/D using C.

D depends totally on C if cC(D) = 1, otherwise D depends par-
tially on C. cC(D) can be used as a significance measure of C with
respect to D.

Let IS=hU,A = C [ D,V, fi be a given decision table, B # C and
a 2 B. a is redundant in B with respect to D if cB�a(D) = cB(D), other-
wise a is indispensable in B with respect to D. B is independent
with respect to D if every a 2 B is indispensable in B with respect
to D. B is a D-relative reduct of C if B is independent with respect
to D and cB(D) = cC(D).

3. Various configurations of learning and classification based on
rough sets

3.1. Two popular significance measures of attributes

Attribute reduction is an important problem which can be
solved using rough sets. A number of algorithms have been pro-
posed to perform attribute reduction [3,25,26,30,45]. Finding all
reducts is a NP-hard problem. However, it is usually adequate en-
ough for most real-world applications to find one of the reducts.
Based on the significance of an attribute, a heuristic attribute
reduction algorithm can be designed to find a reduct.

A straightforward way to measure the significance of an attri-
bute is based on the degree of dependency. When an attribute is
added to the condition attribute set, the degree of dependency of
decision attributes on condition attributes usually changes, and
the change can be defined as the significance of an attribute.

Let IS = hU,A = C [ D,V, fi be a given decision table and B # C.
Based on the degree of dependency, the significance of a 2 C � B
on the basis of B with respect to D is defined as

SIGcða;B;DÞ ¼ cB[fagðDÞ � cBðDÞ: ð6Þ

Another popular way to measure the significance of an attribute
is based on Shannon’s entropy. In the framework of rough set
methodology, attributes are considered knowledge describing
samples. Shannon’s entropy is a powerful tool for measuring the
uncertainty of knowledge [10,46,55].

Based on Shannon’s entropy, the significance of a 2 C � B on the
basis of B with respect to D is defined as

SIGHða;B;DÞ ¼ HðD j BÞ � HðD j B [ fagÞ ð7Þ

where H(DjB) denotes the conditional entropy of D given B. Suppose
that PB = {X1, . . . ,Xi, . . . ,Xn} are the partition induced by B, and
PD = {Y1, . . . ,Yj, . . . ,Ym} are the partition induced by D.
HðD j BÞ ¼ �

Pn
i¼1

Pm
j¼1pðXi;YjÞ log pðYj j XiÞ.

Based on the significance of an attribute, a heuristic attribute
reduction algorithm can be designed to find a reduct by iteratively
selecting an attribute with the maximum significance.
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3.2. Two popular rule extraction algorithms

Nowadays, there are many known rule extraction algorithms
inspired by rough set theory [17,20,24,31,44,47,52,53], and LEM2
algorithm proposed by Grzymala [17] is one of the most widely
used algorithms for real-world applications.

Some preliminary descriptions about LEM2 algorithm can be gi-
ven as shown below.

A family of generalized decisions, denoted by eD, is first defined
on a given decision table. Each element of eD is a single or joint
decision. According to eD, all the samples in the decision table is
then partitioned into a family of disjoint subsets, denoted by eY .
Each element of eY is the lower approximation of a decision class
which corresponds to a single decision of eD, or one of the disjoint
subsets of the boundary region of a decision class which corre-
sponds to a joint decision of eD. Suppose that there are three deci-
sion classes Y1,Y2 and Y3. The boundary region of Y1 consists of
three disjoint subsets: BNDðY1Þ ¼ ðBY1 \ BY2 � BY3Þ [ ðBY1\
BY3 � BY2Þ [ ðBY1 \ BY2 \ BY3Þ. It is clear that eY is consistent witheD. Finally, for each K 2 eY , LEM2 employs a heuristic strategy to ex-
tract a minimal set of rules.

Let IS = hU,A = C [ D,V, fi be a given decision table, eDK be a gen-
eralized decision, K be the subset of samples corresponding to eDK , c
be an elementary condition that has an expression (a,v), where
a 2 C and v 2 Va, U = c1 ^ � � � ^ cj ^ � � � ^ cq be the conjunction of q
elementary conditions, [U] be the cover of U, i.e., the subset of sam-
ples that satisfy all the elementary conditions of U, ½U�þK ¼ ½U� \ K
be the positive cover of U on K, and ½U��K ¼ ½U� \ ðU � KÞ be the neg-
ative cover of U on K. Then a rule, denoted by r, is described as

if U then eDK ; ð8Þ

where U is called the condition part of r, satisfying ½U�þK –£, and eDK

is called the decision part of r. If eDK is a single decision, r is called a
certain rule. Otherwise, if eDK is a joint decision, r is called a possible
rule.

Based on the preliminary descriptions above, LEM2 algorithm
can be described as Algorithm 1. Extracting a rule is essentially
finding the elementary conditions of the rule. From Algorithm 1,
we find that LEM2 employs j[c] \ Gj as the heuristic search strategy
to iteratively find the elementary conditions of a rule. LEM2 ex-
tracts a minimal set of rules to cover samples, and the minimal
set of rules contains the smallest number of strong rules.

Algorithm 1. [LEM2 algorithm]

Input: A subset of samples K 2 ~Y .
Output: A minimum set of rulesR.
1. begin
2. G K,R £;
3. while G – £ do
4. begin
5. U £;
6. UG {c:[c] \ G–£};
7. while (U = £) or (not([U ] # K)) do
8. begin
9. select c 2 UG such that j[c] \ Gj is maximum. If ties

occur then select c with the smallest j[c]j. If further
ties occur then select the first c from the list;

U U [ {c};
G [c] \ G;
UG {c:[c] \ G–£};
UG UG � U;

10. end
11. for each c 2 U do
12. if [U � {c}] # K then
13. U U � {c};
14. create a rule r based on U;
15. R R [ {r};
16. G K � [ r2R[r];
17. end
18. for each r 2 R do
19. if [s2R�{r}[S] = K then
20. R R � {r};
21. end

Another rule extraction strategy is extracting the exhaustive set
of rules. Compared to the minimum set of rules, the exhaustive set
of rules provide the richest information about patterns existing in a
given decision table. Researches show that it is useful for some
classification and discovery applications [16]. However, it is the
most demanding from the viewpoint of time and memory com-
plexity. It has a larger number of rules than the minimum set of
rules, and besides strong rules, it has weak and very specific rules.
A detailed rule extraction algorithm for the exhaustive set of rules
can be found in [48].

3.3. Two popular decision algorithms

Pawlak introduced three factors to evaluate extracted rules, and
they are strength, certainty and cover [35].

Let r be a given rule, eDK ¼ fd1; . . . ; dj; . . . ; dng be the decision
part of r, [r] be the cover of r, ½eDK � be the cover of eDK and
½r�þd ¼ ½r� \ ½d� be the positive cover of r on d, where d 2 eDK . The fac-
tor of strength of r is defined as

lstrðrÞ ¼j ½r� j = j U j; ð9Þ

the factor of cover of r is defined as

lcovðrÞ ¼j ½r� j = j ½eDK � j; ð10Þ

and the factor of certainty of r to d is defined as

lcerðr; dÞ ¼j ½r�
þ
d j = j ½r� j : ð11Þ

Extracted rules can be used to predict an unseen sample by
matching the description of the sample to the condition part of
every rule. This may lead to three possible cases:

(1) the sample matches exactly one rule;
(2) the sample matches more than one rule;
(3) the sample does not match any of the rules.

In case (1), if the matched rule is a certain one, it is clear that the
sample can be predicted by using the decision of the matched rule.
However, if the matched rule is a possible one, the prediction is
ambiguous. Similar difficulties occur in case (2). Case (3) must be
also handled.

We can predict the sample by using the most frequent decision
if the sample does not match any of the rules. There are usually
two popular decision algorithms for dealing with the remaining
cases.

One of them is based on the maximum factor of certainty. Sup-
pose that the sample matches rules r1, . . . ,ri, . . . ,rn, and decisions
d1, . . . ,dj, . . . ,dm are suggested. Let lcer(ri,dj) be the factor of cer-
tainty of ri to dj, and lstr(ri) be the factor of strength of ri. The sam-
ple can be predicted by using decision dj that maximizes lðcerri; djÞ.
If ties occur, then select ri that maximizes lstrðriÞ.

Another of them is based on the majority voting of the factor of
strength. Suppose that the sample matches rules r1, . . . ,ri, . . . ,rn,
and decisions d1, . . . ,dj, . . . ,dm are suggested. The factor of strength
of ri to dj is defined as
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lstrðri; djÞ ¼ lcerðri; djÞlstrðriÞ: ð12Þ

The voting of the factor of strength of all matched rules to dj is
computed as

MstrðdjÞ ¼
X

ri

lstrðri; djÞ: ð13Þ

The sample can be predicted by using decision dj that maxi-
mizes Mstr(dj).

4. Rough set based methods for class imbalance learning

4.1. Re-sampling training data

4.1.1. Over-sampling
This method over-samples the minority class to balance the

class distribution of a training data set. Concretely, the ith class
is over-sampled until the size of the ith class is equal to the size
of the maximum class. Over-sampling is a popular method for
addressing the class imbalance problem, and studies have shown
that over-sampling is effective for class imbalance learning
[21,23]. However, it should be noted that over-sampling usually in-
creases training time and may lead to over-fitting since it intro-
duces some exact copies of samples into a training data set [9].

4.1.2. Under-sampling
This method under-samples the majority class to balance the

class distribution of a training data set. Concretely, the ith class
is under-sampled until the size of the ith class is equal to the size
of the minimum class. Some studies showed that under-sampling
was better than over-sampling in class imbalance learning [9]. It
should also be noted that under-sampling usually discards some
potentially useful training samples and may degrade the perfor-
mance of a resulting classifier [1].

4.1.3. Middle-sampling
This method balances the class distribution of a training data

set by integrating the over-sampling and under-sampling methods.
Concretely, the ith class is over-sampled or under-sampled until
the size of the ith class is equal to the mean size of the maximum
and minimum classes.

4.2. Filtering inconsistent samples in boundary regions

In order to deal with the class imbalance problem using a rough
set based method, Stefanowski and Wilk [49] introduced removing
and filtering techniques to process inconsistent samples in bound-
ary regions. In their works, the inconsistent samples from the
majority class in boundary regions are removed or relabeled as
belonging to the minority class. Their experimental results indi-
cated that the removing and filtering techniques improved the per-
formance of a rough set based method in class imbalance learning,
and the filtering technique performed better than the removing
technique. However, no matter which of them is used, the a priori
knowledge of class distribution is introduced into boundary re-
gions rather than the whole set of samples. Consequently, their
techniques can be used to improve the learning from boundary re-
gions only.

4.3. Weighted rough sets

Liu et al. [28] introduced weights to represent the a priori
knowledge of class distribution and proposed a weighted rough
set based method to perform class imbalance learning. The
weighted rough set based method can be described as detailed
below.
WIS = hU,A,W,V, fi is called a weighted information system,
where U = {x1, . . . ,xi, . . . ,xn} is a set of samples, A = {a1, . . . ,
aj, . . . ,am} is a set of attributes, W = {w(x1), . . . ,w(xi), . . . ,w(xn)} is
a weight distribution on U, V is the value domain of A, and f:
U � A ? V is an information function.

For a given weighted information system WIS = hU,A,W,V, fi,
weight distribution W is used to represent a priori knowledge
about data. The introduction of weights does not change equiva-
lence relations on U, and so it does not change the upper and lower
approximations of arbitrary subset X # U. However, the introduc-
tion of weights changes the accuracy of approximation of X.

Let B # A, X # U, and BX and BX be the lower and upper
approximations of X with respect to B, respectively. The weighted
accuracy of approximation of X with respect to B is defined as

aW
B ðXÞ ¼j BXjW= j BXjW ; ð14Þ

where j BXjW ¼
P

xi2BXwðxiÞ is the weighted cardinality of BX and
j BXjW ¼

P
xi2BXwðxiÞ is the weighted cardinality of BX.

The weighted accuracy of approximation is computed based on
the weighted cardinality of a set. Similarly, the weighted degree of
dependency of decision attributes on condition attributes can also
be defined.

WIS = hU,A,W,V, fi is called a weighted decision table if attribute
set A = C [ D, where C is the condition attribute set and D is the
decision attribute set. The weighted degree of dependency of D
on C is defined as

cW
C ðDÞ ¼j POSCðDÞjW= j UjW ; ð15Þ

where POSC(D) = [X2U/DCX is the positive region of the partition U/D
with respect to C.

Based on weighted rough sets, the traditional learning and clas-
sification algorithms can be improved as detailed below.

For attribute reduction, the introduction of weights changes the
significance of an attribute.

Based on the weighted degree of dependency, the weighted sig-
nificance of a 2 C � B on the basis of B with respect to D is defined
as

SIGW
c ða; B;DÞ ¼ cW

B[fagðDÞ � cW
B ðDÞ: ð16Þ

Shannon’s entropy is a popular tool for measuring the uncer-
tainty of knowledge in the traditional rough set theory, but any a
priori knowledge about data is not taken into account in Shannon’s
entropy. Guiasu proposed weighted entropy to address this prob-
lem [15]. Suppose that PC = {X1, . . . ,Xi, . . . ,Xn} and
PD = {Y1, . . . ,Yj, . . . ,Ym} are the partitions induced by C and D,
respectively. The conditional weighted entropy of D given C is de-
fined as

HWðD j CÞ ¼ �
Xn

i¼1

Xm

j¼1

ðwðXi \ YjÞ:pðXi \ YjÞ log pðYj j XiÞÞ ð17Þ

where w(Xi \ Yj) = jXi \ YjjW/jXi \ Yjj is the weight of Xi \ Yj.
Based on the conditional weighted entropy, the weighted signif-

icance of a 2 C � B on the basis of B with respect to D is defined as

SIGW
H ða; B;DÞ ¼ HWðD j BÞ � HW ðD j B [ fagÞ: ð18Þ

Weighted attribute reduction can be performed based on the
weighted significance of an attribute.

For rule extraction, the a priori knowledge of class distribution
can be introduced into LEM2 algorithm by employing j[c] \ GjW as
the heuristic search strategy. The introduction of weights does not
change the rule extraction for the exhaustive set of rules.

For rule evaluation and decision, in order to take into account
the a priori knowledge of class distribution, extracted rules are
evaluated using several weighted factors.

The factor of weighted strength of r is defined as
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lW
strðrÞ ¼j ½r�jW= j UjW ; ð19Þ

the factor of cover of r is defined as

lW
covðrÞ ¼j ½r�jW= j ½eDK �jW ; ð20Þ

and the factor of certainty of r to d is defined as

lW
cerðr; dÞ ¼j ½r�

þ
d jW= j ½r�jW : ð21Þ

Based on the weighted facts, weighted decision algorithms sim-
ilar to the traditional ones can be designed to predict an unseen
sample.

It should be noted that the weighted rough set based method
degenerates to the traditional rough set based method when an
equal weight is assign to each sample.
5. Other methods for class imbalance learning

5.1. C4.5_CS

C4.5 is a widely used decision tree algorithm introduced by
Quinlan [42]. In order to perform cost-sensitive learning, Ting
[51] extended the standard C4.5 algorithm, and proposed a
cost-sensitive (weighted) C4.5 decision tree, denoted by
C4.5_CS. In C4.5_CS, Ting changes the class distribution of a data
set by sample weighting such that the induced decision tree is
in favor of the class with high cost (weight). C4.5_CS can be
used to perform class imbalance learning, and it is described
as detailed below.

Let n be the size of a training data set, nj be the number of sam-
ples from the jth class, and nj(t) be the number of samples from the
jth class in node t of a decision tree. The probability that a sample
from the jth class falls into node t is computed using the ratio of the
number of samples from the jth class to the total number of sam-
ples in this node, i.e.

pðj j tÞ ¼ njðtÞ=
X

i

niðtÞ: ð22Þ

When weights are introduced into C4.5 decision tree and let
w(j) be the weight of the jth class, the weighted number of samples
from the jth class in node t of a decision tree is defined as

nW
j ðtÞ ¼ wðjÞnjðtÞ: ð23Þ

Similar to p(jjt), pW(jjt) can be computed using the ratio of the
weighted number of samples from the jth class to the total
weighted number of samples in node t, i.e.

pWðj j tÞ ¼ nW
j ðtÞ=

X
i

nW
i ðtÞ: ð24Þ

C4.5_CS is the same as C4.5 except that nW
j ðtÞ is used instead of

nj(t) for computing the test selection criterion in the tree growing
process and estimating errors in the pruning process.

5.2. Weighted SVM

Support vector machines (SVM) developed by Vapnik employs
the structural risk minimization principle, and has been shown
to be superior to traditional methods based on the empirical risk
minimization principle [7,54].

SVM minimizes an upper bound on the expected risk rather
than minimizes the errors on a training data set. Given training
vectors xi 2 Rm, i = 1, . . . ,n belonging to two separate classes and
a vector y 2 Rn such that yi 2 {1, � 1} represents the class label of
training vector xi, SVM solves the following quadratic program-
ming problem such that it yields the largest margin (2/jjwjj) be-
tween classes
min
w;b;n

1
2
kwk þ C

Xn

i¼1

ni

( )
;

s:t: yiðw � UðxiÞ þ bÞP 1� ni;

ni P 0; i ¼ 1; . . . ;n

ð25Þ

where ni is a non-negative slack variable for a non-separable case
which is a measure of the misclassification error, C > 0 is a penalty
term which is applied to the misclassified samples, and U is a map-
ping function for a non-linear case that projects samples from the
input space into a feature space.

In order to introduce a priori knowledge about data in SVM,
some researchers [5,32] assigned different misclassification costs
to different class errors in the objective function, which is naturally
allowed in SVM, and developed weighted SVM. Weighted SVM can
be used to perform class imbalance learning by assigning to the
minority class a larger weight which assures that the minority
class is not neglected.

The objective function of weighted SVM can be described as
shown below

min
w;b;n

1
2
kwk þ C wð1Þ

X
yi¼1

ni þwð�1Þ
X

yj¼�1

nj

0@ 1A8<:
9=;; ð26Þ

where w(1) is the weight of class 1 and w(�1) is the weight of class
�1.

6. Systematic comparative experiments on rough set based class
imbalance learning

6.1. Data sets

Twenty UCI data sets [4], which consist of ten two-class data
sets and ten multi-class data sets, are used in our experiments,
and they are described in Table 1. It can be seen from Table 1 that
the class distribution of each data set is skewed. Concretely, the ra-
tio of the majority class to the minority class in size ranges from
1.25 to 3.84 for the two-class data sets, and the ratio of the maxi-
mum class to the minimum class in size ranges from 1.48 to 85.5
for the multi-class data sets. Moreover, the size of the minimum
class is below 10 for most multi-class data sets.

The missing values in each data set are filled with mean values
for continuous attributes and majority values for nominal attri-
butes. Moreover, when a rough set based method is used, all con-
tinuous attributes are discretized using the recursive minimal
entropy partition (RMEP) proposed by Fayyad and Irani [13,27].

6.2. Performance indexes

The most straightforward way to evaluate the performance of a
classifier is based on the confusion matrix analysis. Table 2 shows a
confusion matrix for a two-class problem with positive and nega-
tive class values. In our study, the minority class is defined as the
positive class and the majority class is defined as the negative
class. From such a matrix it is possible to extract a number of
widely used metrics for measuring the performance of a learning
system, such as error rate, defined as Err ¼ FPþFN

TPþFNþTNþFP, and overall
accuracy, defined as Acc ¼ TPþTN

TPþFNþTNþFP ¼ 1� Err.
However, when the class distribution of a data set is skewed,

the use of such measures might lead to misleading conclusions be-
cause they are strongly biased towards the majority class. For in-
stance, it is straightforward to create a classifier with the overall
accuracy of 99% or the error rate of 1% in a domain where the pro-
portion of the majority class corresponds to 99% of the samples, by
simply forecasting every new sample as belonging to the majority
class. Furthermore, these measures change as the class distribution



Table 1
Description of data sets (C, continuous; N, nominal)

Data set Size Attribute Class Class distribution

1 Echocardiogram 131 6C 1N 2 43/88
2 Hepatitis 155 6C 13N 2 32/123
3 Heart_s 270 6C 7N 2 120/150
4 Breast 286 9N 2 85/201
5 Horse 368 7C 15N 2 136/232
6 Votes 435 16N 2 168/267
7 Credit 690 6C 9N 2 307/383
8 Breast_w 699 9C 2 241/458
9 Tic 958 9N 2 332/626

10 German 1000 24C 2 300/700
11 Zoo 101 16N 7 4/5/8/10/13/20/41
12 Lymphography 148 18N 4 2/4/61/81
13 Wine 178 13C 3 48/59/71
14 Machine 209 7C 8 2/4*2/7/13/27/31/121
15 Glass 214 9C 6 9/13/17/29/70/76
16 Audiology 226 69N 24 1*5/2*7/3/4*3/6/8/9/20/22*2/48/57
17 Heart 303 6C 7N 5 13/35/36/55/164
18 Solar 323 10N 3 7/29/287
19 Soybean 683 35N 19 8/14/15/16/20*9/44*2/88/91*2/92
20 Anneal 898 6C 32N 5 8/40/67/99/684

Table 2
Confusion matrix for a two-class problem

Positive prediction Negative prediction

Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)
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changes even if the fundamental performance of a classifier does
not change, because overall accuracy and error rate use values
from both lines of the confusion matrix.

It would be more interesting if we use a performance metric to
disassociate the errors or hits that occur in each class. It is possible
to derive four performance metrics from Table 2 to measure the
classification performance on the positive and negative classes
independently:

(1) True positive rate (accuracy of minority class): TPrate = TP/
(TP + FN) is the percentage of positive cases correctly classi-
fied as belonging to the positive class.

(2) True negative rate (accuracy of majority class): TNrate = TN/
(TN + FP) is the percentage of negative cases correctly classi-
fied as belonging to the negative class.

(3) False positive rate: FPrate = FP/(FP + TN) is the percentage of
negative cases misclassified as belonging to the positive
class.

(4) False negative rate:FNrate = FN/(FN + TP) is the percentage of
positive cases misclassified as belonging to the negative
class.

The four performance measures have the advantage of being
independent of class costs and a priori probabilities. The aim of a
classifier is to minimize the false positive and negative rates, or
similarly to maximize the true negative and positive rates. Unfor-
tunately, there is usually a tradeoff between FPrate and FNrate, or
similarly between TNrate and TPrate. ROC (receiver operating charac-
teristic) graphs can be used to analyze the relationship between
FPrate and FNrate, or similarly between TNrate and TPrate [12,41].
ROC graphs are consistent for a given problem even if the distribu-
tion of positive and negative samples is highly skewed. The area
under the ROC curve (AUC) represents the expected performance
as a single scalar. AUC has a known statistical meaning: it is equiv-
alent to the Wilconxon test of ranks, and is also equivalent to sev-
eral other statistical measures for evaluating classification and
ranking models [18].

In our study, we employ accuracy of minority class, accuracy of
majority class, overall accuracy and AUC as the performance in-
dexes to evaluate our experiments. For the multi-class problems,
the accuracy of the minimum class is defined as the accuracy of
minority class, the accuracy of the maximum class is defined as
the accuracy of majority class, and the AUC is computed using
the method proposed in [19].

6.3. Comparison among three strategies for class imbalance learning

In the rough set based methods, there are usually three strate-
gies used for class imbalance learning, and they are weighting, re-
sampling and filtering. In order to evaluate the performance of
each strategy, we compare the strategies in this section.

The methods employed for this comparison are described and
configured as detailed below. Among the methods, RS is the tradi-
tional method, and the others are the methods for class imbalance
learning.

(1) WRS. The weighted rough set based method with typical
configurations. The weighted significance of attributes based
on the weighted degree of dependency is employed to per-
form weighted attribute reduction, the weighted rule extrac-
tion algorithm for the minimum set of rules is employed to
perform weighted rule extraction, the weighted decision
algorithm based on the majority voting of the factor of
weighted strength is employed to predict an unseen sample.
Moreover, an inverse class probability weight is assigned to
each sample for class imbalance learning. Suppose that there
are n1, . . . ,ni, . . . , nl samples in decision classes
Y1, . . . ,Yi, . . . ,Yl, respectively. Then the inverse class proba-
bility weight of each sample from decision class Yi is 1/ni.

(2) RS. The traditional rough set based method. RS can be consid-
ered WRS with equal weighting. Instead of an inverse class
probabilityweight,anequalweight isassignedtoeachsample.

(3) OS. The random over-sampling method. The ith class is ran-
domly over-sampled until the size of the ith class is equal to
the size of the maximum class, and then RS is used to per-
form learning and classification. The random over-sampling
method is selected because it is simple and is competitive
with other complicated over-sampling methods [1].



J. Liu et al. / Knowledge-Based Systems 21 (2008) 753–763 759
(4) US. The random under-sampling method. The ith class is ran-
domly under-sampled until the size of the ith class is equal
to the size of the minimum class, and then RS is used to per-
form learning and classification.

(5) MS. The random middle-sampling method. The ith class is
randomly over-sampled or under-sampled until the size of
the ith class is equal to the mean size of the maximum and
minimum classes, and then RS is used to perform learning
and classification.

(6) FILTER. The filtering method proposed by Stefanowski and
Wilk [49]. The inconsistent samples from the majority class
in boundary regions are relabeled as belonging to the minor-
ity class, and then RS is used to perform learning and
classification.

The comparative experiments are performed using 10-fold
cross validation. The accuracy of minority class, the accuracy of
Table 3
Accuracy of minority and majority classes achieved by different strategies

Data set Accuracy of minority class

RS WRS FILTER OS US M

Echocardiogram 0.2450 0.7350 0.2900 0.6150 0.2850 0
Hepatitis 0.6917 0.7333 0.6917 0.7167 0.8750 0
Heart_s 0.7583 0.7583 0.7583 0.7250 0.7750 0
Breast 0.2431 0.3847 0.2889 0.3986 0.5319 0
Horse 0.9412 0.9412 0.9412 0.9555 0.9637 0
Votes 0.9585 0.9647 0.9585 0.9346 0.9643 0
Credit 0.8013 0.8472 0.7948 0.8403 0.8439 0
Breast_w 0.9208 0.9418 0.9250 0.9292 0.9333 0
Tic 0.7927 0.8137 0.8078 0.7957 0.8562 0
German 0.0267 0.9067 0.0333 0.6033 0.4500 0
Zoo 0.7000 0.8000 0.8000 0.8000 0.7000 0
Lymphography 0.3333 0.5857 0.3333 0.6167 0.3476 0
Wine 0.8850 0.9350 0.8850 0.9350 0.9350 0
Machine 0.6000 0.8000 0.6000 0.5000 0.3000 0
Glass 0.6000 0.7000 0.6000 0.2000 0.5000 0
Audiology 0.7000 0.7000 0.7000 0.7000 0.3000 0
Heart 0 0.3000 0 0.1000 0.3000 0
Solar 0.0333 0.1000 0.0333 0.1000 0.1000 0
Soybean 1.0000 1.0000 1.0000 1.0000 1.0000 1
Anneal 1.0000 1.0000 1.0000 0.9500 1.0000 0
Average 0.6115 0.7474 0.6221 0.6708 0.6481 0

Table 4
Overall accuracy and AUC achieved by different strategies

Data set Overall accuracy

RS WRS FILTER OS US M

Echocardiogram 0.6566 0.7038 0.6714 0.6484 0.5077 0
Hepatitis 0.8842 0.8838 0.8904 0.8433 0.8512 0
Heart_s 0.7815 0.7963 0.7889 0.7556 0.7852 0
Breast 0.6644 0.6676 0.6712 0.6852 0.5954 0
Horse 0.9618 0.9618 0.9618 0.9618 0.9590 0
Votes 0.9610 0.9702 0.9633 0.9564 0.9427 0
Credit 0.8145 0.8435 0.8072 0.8319 0.8333 0
Breast_w 0.9471 0.9585 0.9485 0.9513 0.9485 0
Tic 0.8863 0.8789 0.8998 0.8685 0.8768 0
German 0.6970 0.4850 0.6990 0.6360 0.3370 0
Zoo 0.9200 0.9500 0.9300 0.9500 0.8309 0
Lymphography 0.8176 0.7767 0.8176 0.7171 0.4824 0
Wine 0.9373 0.9382 0.9373 0.9324 0.9157 0
Machine 0.6552 0.6893 0.6695 0.7024 0.4264 0
Glass 0.6955 0.6346 0.6909 0.6130 0.3760 0
Audiology 0.7749 0.7708 0.7968 0.7664 0.1860 0
Heart 0.5216 0.5381 0.5578 0.5117 0.3797 0
Solar 0.8671 0.7438 0.8671 0.6878 0.3848 0
Soybean 0.8229 0.8916 0.8140 0.8843 0.7368 0
Anneal 1.0000 1.0000 1.0000 0.9922 0.9922 0
Average 0.8133 0.8041 0.8191 0.7948 0.6674 0
majority class, the overall accuracy and the AUC achieved by
every method are listed in Tables 3 and 4. It can be seen from
the experimental results that almost all the methods for class
imbalance learning improve the accuracy of minority class and
the AUC, and decrease the accuracy of majority class and the
overall accuracy compared to the traditional rough set based
method. Class imbalance learning aims at improving the accuracy
of minority class but not decreasing the accuracy of majority class
too much. The AUC can be used to analyze the relationship be-
tween the accuracy of minority class and the accuracy of majority
class. Therefore, we employ the AUC as the primary performance
index and the accuracy of minority class as the secondary perfor-
mance index to evaluate the performance of every method in
class imbalance learning.

Almost all the methods based on these strategies improve the
AUC and the accuracy of minority class compared to the traditional
rough set based method. This means that all the strategies are
Accuracy of majority class

S RS WRS FILTER OS US MS

.5900 0.8639 0.6833 0.8639 0.6569 0.6194 0.6125

.7583 0.9353 0.9256 0.9436 0.8763 0.8455 0.8923

.7417 0.8000 0.8267 0.8133 0.7800 0.7933 0.7933

.4708 0.8407 0.7860 0.8307 0.8060 0.6226 0.7167

.9341 0.9739 0.9739 0.9739 0.9652 0.9565 0.9739

.9522 0.9625 0.9738 0.9662 0.9701 0.9288 0.9662

.8243 0.8252 0.8409 0.8174 0.8252 0.8250 0.8174

.9418 0.9607 0.9672 0.9607 0.9629 0.9564 0.9540

.8709 0.9361 0.9136 0.9489 0.9073 0.8882 0.9041

.6933 0.9843 0.3043 0.9843 0.6500 0.2886 0.5343

.7000 1.0000 1.0000 1.0000 1.0000 0.8500 0.9250

.7167 0.8903 0.8417 0.8903 0.7667 0.6069 0.7542

.9550 0.9714 0.9286 0.9714 0.9018 0.8571 0.8714

.4000 0.8096 0.7429 0.8179 0.8263 0.3667 0.6846

.5000 0.6946 0.6143 0.6821 0.5911 0.1018 0.5357

.6000 0.9500 0.9333 0.9667 0.9333 0.1500 0.7767

.1500 0.8246 0.7937 0.8371 0.7750 0.5305 0.6963

.0667 0.9617 0.8159 0.9617 0.7454 0.4080 0.7564

.0000 0.7956 0.8611 0.7956 0.8189 0.6056 0.8067

.9750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

.6920 0.8990 0.8363 0.9013 0.8379 0.6601 0.7986

AUC

S RS WRS FILTER OS US MS

.6093 0.5544 0.7092 0.5769 0.6360 0.4522 0.6013

.8629 0.8135 0.8295 0.8176 0.7965 0.8603 0.8253

.7704 0.7792 0.7925 0.7858 0.7525 0.7842 0.7675

.6437 0.5419 0.5853 0.5598 0.6023 0.5773 0.5938

.9592 0.9576 0.9576 0.9576 0.9604 0.9601 0.9540

.9610 0.9605 0.9692 0.9623 0.9523 0.9466 0.9592

.8203 0.8133 0.8440 0.8061 0.8328 0.8345 0.8209

.9499 0.9408 0.9545 0.9428 0.9460 0.9449 0.9479

.8925 0.8644 0.8637 0.8783 0.8515 0.8722 0.8875

.5820 0.5055 0.6055 0.5088 0.6267 0.3693 0.6138

.9100 0.8970 0.9362 0.9070 0.9362 0.8367 0.9187

.7033 0.7389 0.7658 0.7389 0.7427 0.5583 0.7531

.9271 0.9474 0.9534 0.9474 0.9509 0.9397 0.9483

.6214 0.6964 0.7697 0.7102 0.7009 0.6250 0.7028

.6210 0.7933 0.7892 0.7921 0.7018 0.6957 0.7734

.6694 0.8044 0.7900 0.8150 0.7919 0.5594 0.7543

.4755 0.5485 0.6048 0.5773 0.5740 0.5528 0.5672

.6906 0.5488 0.5290 0.5488 0.5280 0.4520 0.5141

.8800 0.9007 0.9585 0.8995 0.9552 0.8992 0.9528

.9978 1.0000 1.0000 1.0000 0.9808 0.9904 0.9931

.7774 0.7803 0.8104 0.7866 0.7910 0.7355 0.7924
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effective for class imbalance learning. The detailed analysis of each
strategy is given as shown below:

(1) Compared to RS, WRS has an average increase of 0.0301 in
terms of the AUC and an average increase of 0.1359 in terms
of the accuracy of minority class. Sample weighting remark-
ably improves the performance of a rough set based method
in class imbalance learning.

(2) The methods based on the strategy of re-sampling comprise
OS, MS and US. Among these methods, MS achieves the best
performance, OS achieves the second best performance and
US achieves the worst performance. Compared to RS, MS
has an average increase of 0.0121 in terms of the AUC and
an average increase of 0.0805 in terms of the accuracy of
minority class.

(3) In our experiments, FILTER cannot remarkably increase
the AUC and the accuracy of minority class compared to
RS. This may be explained by the fact that FILTER intro-
duced the a priori knowledge of class distribution into
boundary regions rather than the whole set of samples.
Consequently, it can be used to improve the learning from
boundary regions only. Compared to RS, FILTER has an
average increase of 0.0063 in terms of the AUC and an
average increase of 0.0106 in terms of the accuracy of
minority class.

Among the strategies for class imbalance learning, weighting is
better than re-sampling, and re-sampling is better than filtering.
Moreover, the weighted rough set based method achieves the best
performance.

6.4. Comparison among various configurations of the weighted rough
set based method

In the weighted rough set based method, several candidate con-
figurations can be used. In order to optimize the performance of
the weighted rough set based method in class imbalance learning,
we compare the configurations in this section.

For this comparison, the weighted rough set based method is
configured as follows.
Table 5
Accuracy of minority class and AUC achieved by the weighted rough set based method w

Data set Accuracy of minority class

WAR WRE WRS_ENT WRS_EXH WRS

Echocardiogram 0.6100 0.6900 0.7350 0.7600 0.71
Hepatitis 0.5750 0.6917 0.8583 0.8250 0.73
Heart_s 0.7583 0.7583 0.7500 0.7667 0.75
Breast 0.2556 0.3847 0.3514 0.4444 0.39
Horse 0.9341 0.9412 0.9412 0.9484 0.94
Votes 0.9526 0.9647 0.9761 0.9529 0.96
Credit 0.8276 0.8212 0.8308 0.8504 0.84
Breast_w 0.9292 0.9292 0.9292 0.9583 0.93
Tic 0.7927 0.8137 0.8250 0.8496 0.81
German 0.1133 0.8100 0.9067 0.9100 0.80
Zoo 0.7000 0.8000 0.7000 0.8000 0.80
Lymphography 0.5857 0.3333 0.7190 0.6857 0.58
Wine 0.9150 0.9100 0.9350 0.9350 0.91
Machine 0.1000 0.7000 0.8000 0.8000 0.80
Glass 0.4000 0.6000 0.7000 0.8000 0.70
Audiology 0.7000 0.7000 0.5000 0.5000 0.80
Heart 0 0.2000 0.3000 0.3000 0.30
Solar 0.0333 0.1000 0.1000 0.1000 0.10
Soybean 1.0000 1.0000 1.0000 1.0000 1.00
Anneal 1.0000 1.0000 1.0000 1.0000 1.00
Average 0.6091 0.7074 0.7429 0.7593 0.74
(1) WAR. WRS with weighted attribute reduction only. An
inverse class probability weight is assigned to each sample
for weighted attribute reduction, while an equal weight is
assigned to each sample for weighted rule extraction and
weighted decision.

(2) WRE. WRS with weighted rule extraction and weighted deci-
sion only. An inverse class probability weight is assigned to
each sample for weighted rule extraction and weighted deci-
sion, while an equal weight is assigned to each sample for
weighted attribute reduction.

(3) WRS_ENT. WRS with the weighted attribute reduction based
on weighted entropy, instead of that based on the weighted
degree of dependency.

(4) WRS_EXH. WRS with the rule extraction for the exhaustive
set of rules, instead of the weighted rule extraction for the
minimum set of rules.

(5) WRS_CER. WRS with the weighted decision based on the
maximum factor of weighted certainty, instead of that based
on the majority voting of the factor of weighted strength.

The comparative experiments are performed using 10-fold
cross validation. Table 5 lists the accuracy of minority class
and the AUC obtained by the weighted rough set based meth-
od with different configurations. It can be seen from the
results:

(1) Compared to RS, WAR has an average increase of 0.0097
and WRE has an average increase of 0.0165 in terms of
the AUC. In terms of the accuracy of minority class, com-
pared to RS, WAR has an average decrease of 0.0024 and
WRE has an average increase of 0.0959. WRE achieves bet-
ter performance than WAR, and this means that the
weighted rule extraction and weighted decision have
greater influence on the performance of the weighted
rough set based method than the weighted attribute
reduction.

(2) Compared to WRS, WRS_ENT has an average decrease of
0.0022 in terms of the AUC, and an average decrease of
0.0045 in terms of the accuracy of minority class. This means
that the straightforward weighted significance measure of
ith different configurations

AUC

_CER WAR WRE WRS_ENT WRS_EXH WRS_CER

00 0.7029 0.6568 0.7092 0.7099 0.7022
33 0.7670 0.8016 0.8962 0.8631 0.8295
83 0.7925 0.7858 0.7850 0.7900 0.7858
72 0.5381 0.5903 0.5662 0.6254 0.5940
12 0.9540 0.9554 0.9597 0.9655 0.9554
47 0.9632 0.9655 0.9692 0.9615 0.9692
08 0.8304 0.8179 0.8319 0.8417 0.8395
77 0.9493 0.9460 0.9471 0.9628 0.9525
97 0.8644 0.8637 0.8606 0.8992 0.8643
67 0.5267 0.6393 0.6055 0.6079 0.5769
00 0.9137 0.9129 0.9135 0.9362 0.9237
57 0.7859 0.7188 0.7984 0.7901 0.7741
50 0.9514 0.9585 0.9498 0.9647 0.9484
00 0.6659 0.7226 0.7650 0.7803 0.7634
00 0.7194 0.7921 0.7801 0.7893 0.7887
00 0.8015 0.7997 0.7272 0.7575 0.7819
00 0.5752 0.5686 0.6165 0.6107 0.6071
00 0.5462 0.5306 0.5381 0.5246 0.5399
00 0.9525 0.9110 0.9447 0.9451 0.9532
00 1.0000 1.0000 1.0000 1.0000 1.0000
55 0.7900 0.7968 0.8082 0.8163 0.8075
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an attribute based on the weighted degree of dependency
outperforms the complicated one based on weighted
entropy for weighted attribute reduction.

(3) Compared to WRS, WRS_EXH has an average increase of
0.0059 in terms of the AUC, and an average increase of
0.0119 in terms of the accuracy of minority class. This means
that the rule extraction for the exhaustive set of rules out-
performs the weighted rule extraction for the minimum
set of rules. However, it should be noted that WRS_EXH usu-
ally generates more rules than WRS. In our experiments,
WRS_EXH generates averagely 632.9 rules on all the data
sets, while WRS generates averagely 54.64.

(4) Compared to WRS, WRS_CER has an average decrease of
0.0029 in terms of the AUC, and an average decrease of
0.0019 in terms of the accuracy of minority class. This means
that the weighted decision based on the majority voting of
the factor of weighted strength outperforms that based on
the maximum factor of weighted certainty.

It can be concluded from the comparative experiments that the
weighted rule extraction and weighted decision have greater influ-
ence on the performance of the weighted rough set based method
than the weighted attribute reduction, and the weighted attribute
reduction based on the weighted degree of dependency, the rule
extraction for the exhaustive set of rules and the weighted decision
based on the majority voting of the factor of weighted strength are
the optimal configurations for class imbalance learning.

6.5. Comparison between the weighted rough set based method and
other developed methods

In this section, we compare the weighted rough set based meth-
od with the other developed methods for class imbalance learning.
The methods employed for the comparison comprise two decision
tree based methods and two SVM based methods. All the methods
are described and configured as follows:

(a) Two decision tree based methods (C4.5 is the traditional
method, and C4.5_CS is the method for class imbalance
learning).
Table 6
Accurac

Data se

Echocar
Hepatit
Heart_s
Breast
horse
Votes
Credit
Breast_
Tic
German
Zoo
Lympho
Wine
Machin
Glass
Audiolo
Heart
Solar
Soybea
Anneal
Average
(1) C4.5. C4.5 decision tree proposed by Quinlan [42].
y of minority class and AUC achieved by C4.5 and SVM based methods

t Accuracy of minority class

C4.5 C4.5_CS SVM WSVM

diogram 0.5050 0.4600 0.4750 0.6900
is 0.7583 0.6917 0.6583 0.5667

0.8267 0.8067 0.7917 0.8667
0.3167 0.5042 0.3653 0.5569
0.9264 0.9489 0.8747 0.8896
0.9765 0.9824 0.9699 0.9816
0.8435 0.8502 — —

w 0.9458 0.9128 0.9625 0.9625
0.8915 0.9307 0.5357 0.6804
0.4833 0.5400 0.4900 0.6133
0.7000 0.8000 0.7000 0.8000

graphy 0.7500 0.7857 1.0000 0.8000
0.9100 0.9500 0.9800 0.9600

e 0.6846 0.6929 – –
0.6000 0.7000 0.6000 0.7000

gy 0.8500 0.5500 0.8000 0.8000
0.1000 0 0.1000 0.4000
0 0.1333 0.3000 0.6000

n 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 – –
0.7034 0.7120 0.6825 0.7569
(2) C4.5_CS. Cost-sensitive (weighted) C4.5 decision tree
proposed by Ting [51]. An inverse class probability
weight is assigned to each sample for class imbalance
learning.
(b) Two SVM based methods (SVM is the traditional method,
and WSVM is the method for class imbalance learning).

(1) SVM. SVM with linear kernel function and parameter

C=100.
(2) WSVM. Weighted SVM [5] with linear kernel function

and parameter C = 100. An inverse class probability
weight is assigned to each sample for class imbalance
learning.
The comparative experiments are performed using 10-fold cross
validation. The accuracy of minority class and the AUC obtained by
the methods are listed in Table 6. It can be seen from the results:

(1) The decision tree based methods achieve satisfactory perfor-
mance in class imbalance learning. Compared to RS, C4.5 has
an average increase of 0.027 in terms of the AUC and an
average increase of 0.0919 in terms of the accuracy of minor-
ity class. Through sample weighting, C4.5_CS has an average
increase of 0.0055 in terms of the AUC and an average
increase of 0.0086 in terms of the accuracy of minority class
compared to C4.5. It can be seen from the comparison
between C4.5 and C4.5_CS that the decision tree based
methods are not sensitive to the class distribution of a data
set. Compared to WRS_EXH, i.e. the weighted rough set
based method with optimal configurations, C4.5_CS has an
average decrease of 0.0035 in terms of the AUC and an aver-
age decrease of 0.0473 in terms of the accuracy of minority
class. C4.5_CS is worse than WRS_EXH.

(2) Through comparing different kernel functions and different
values of parameter C, we find that the linear kernel function
is effective for class imbalance learning, and a big enough C
is helpful for improving the performance of the SVM based
methods. We select the linear kernel function and C = 100
in our experiments. Compared to RS, SVM has an average
increase of 0.0335 in terms of the AUC and an average
increase of 0.071 in terms of the accuracy of minority class.
AUC

C4.5 C4.5_CS SVM WSVM

0.6219 0.5835 0.6528 0.7256
0.8346 0.7929 0.7965 0.7465
0.7717 0.7450 0.8358 0.8333
0.5937 0.5978 0.6204 0.6264
0.9588 0.9679 0.9072 0.9018
0.9751 0.9781 0.9662 0.9739
0.8552 0.8599 – –
0.9565 0.9367 0.9670 0.9670
0.9338 0.9398 0.6928 0.6924
0.6645 0.6571 0.6893 0.7138
0.9137 0.9600 0.9583 0.9667
0.7799 0.8100 0.9252 0.8407
0.9513 0.9607 0.9730 0.9678
0.6690 0.7128 – –
0.7895 0.8176 0.7570 0.6863
0.8262 0.8315 0.9415 0.9100
0.5727 0.5587 0.5944 0.6192
0.5000 0.5667 0.5750 0.6176
0.9780 0.9799 0.9822 0.9833
1.0000 1.0000 – –
0.8073 0.8128 0.8138 0.8102
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Through sample weighting, WSVM has an average decrease
of 0.0036 in terms of the AUC and an average increase of
0.0744 in terms of the accuracy of minority class compared
to SVM. It can be seen from the comparison between SVM
and WSVM that the SVM based methods are not sensitive
to the class distribution of a data set in terms of the AUC,
but sample weighting is helpful for improving the accuracy
of minority class. Compared to WRS_EXH, WSVM has an
average decrease of 0.0061 in terms of the AUC and an aver-
age decrease of 0.0024 in terms of the accuracy of minority
class. WSVM is worse than WRS_EXH. Moreover, the SVM
based methods with linear kernel function are quite time-
consuming, and they cannot generate results on three data
sets in an acceptable period of time.

It can be seen from these comparative experiments that
WRS_EXH, i.e. the weighted rough set based method with optimal
configurations, outperforms the decision tree and SVM based
methods. Moreover, the performance of the weighted rough set
based method with other configurations, i.e. WRS, WRS_ENT and
WRS_CER, is also comparable to the best performance of the deci-
sion tree and SVM based methods. This means that the weighted
rough set based method is effective for class imbalance learning.

We also find that the rough set based methods are more sensi-
tive to the class distribution of a data set compared to the decision
tree and SVM based methods. When the class distribution of a data
set is skewed, it is necessary to employ some techniques for class
imbalance learning to improve the performance of a rough set
based method.
7. Conclusions

This paper performs systematic comparative researches on
rough set based class imbalance learning.

Firstly, we compare the strategies of weighting, re-sampling
and filtering used in the rough set based methods for class imbal-
ance learning. We find that weighting is better than re-sampling,
and re-sampling is better than filtering. The weighted rough set
based method outperforms the methods based on re-sampling
and filtering.

Secondly, in order to optimize the performance of the
weighted rough set based method in class imbalance learning,
we compare various candidate configurations of the weighted
rough set based method. From the comparative experiments,
we find that the weighted rule extraction and weighted decision
have greater influence on the performance of the weighted
rough set based method than the weighted attribute reduction,
and the weighted attribute reduction based on the weighted de-
gree of dependency, the rule extraction for the exhaustive set of
rules and the weighted decision based on the majority voting of
the factor of weighted strength are the optimal configurations
for class imbalance learning.

Finally, we compare the weighted rough set based method with
the other developed methods for class imbalance learning.
WRS_EXH, i.e. the weighted rough set based method with optimal
configurations, outperforms the decision tree and SVM based
methods. Moreover, the performance of the weighted rough set
based method with other configurations, i.e. WRS, WRS_ENT and
WRS_CER, is also comparable to the best performance of the deci-
sion tree and SVM based methods. This means that the weighted
rough set based method is effective for class imbalance learning.
We also find that the rough set based methods are more sensitive
to the class distribution of a data set compared to the decision tree
and SVM based methods. When the class distribution of a data set
is skewed, it is necessary to employ some techniques for class
imbalance learning to improve the performance of a rough set
based method.

Acknowledgement

This work is supported by National Natural Science Foundation
of China under Grant 60703013.

References

[1] G. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several methods
for balancing machine learning training data, SIGKDD Explorations 6 (1) (2004)
20–29.

[2] J. Bazan, A comparison of dynamic and non-dynamic rough set methods for
extracting laws from decision tables, in: L. Polkowski, A. Skowron (Eds.),
Rough Sets in Knowledge Discovery, Physica-Verlag, Heidelberg, 1998, pp.
321–365.

[3] M. Beynon, Reducts within the variable precision rough sets model: a further
investigation, European Journal of Operational Research 134 (2001) 592–605.

[4] C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases,
Department of Information and Computer Science, University of California,
Irvine. Available from: <http://www.ics.uci.edu/~mlearn/MLRepository.html>,
1998.

[5] U. Brefeld, P. Geibel, F. Wysotzki, Support vector machines with sample
dependent costs, Proceedings of 14th European Conference on Machine
Learning, 2003, pp. 23–34.

[6] N. Chawla, N. Japkowicz, A. Kolcz (Eds.), ICML’2003 Workshop on Learning
from Imbalanced Data Sets (II), Proceedings available at: <http://
www.site.uottawa.ca/~nat/Workshop2003/workshop2003.html>, 2003.

[7] C. Cortes, V. Vapnik, Support-vector network, Machine Learning 20 (1995)
273–297.

[8] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods, Cambridge University Press,
Cambridge, 2000.

[9] C. Drummond, R.C. Holte, C4.5, class imbalance, and cost sensitivity: why
under-sampling beats over-sampling, Working Notes of the ICML’03
Workshop Learning from Imbalanced Data Sets, 2003.

[10] I. Duntsch, G. Gediga, Uncertainty measures of rough set prediction, Artificial
Intelligence 106 (1) (1998) 109–137.

[11] R.E. Fawcett, F. Provost, Adaptive fraud detection, Data Mining and Knowledge
Discovery 3 (1) (1997) 291–316.

[12] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27
(2006) 861–874.

[13] U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes
for classification learning, Proceeding of the 13th International Joint Conference
on Artificial Intelligence, Morgan Kaufman, 1993. pp. 1022–1027.

[14] S. Greco, B. Matarazzo, R. Slowinski, Rough set theory for multicriteria decision
analysis, European Journal of Operational Research 129 (2001) 1–47.

[15] S. Guiasu, Information Theory with Applications, McGraw-Hill, International
Book Company, New York, 1977.

[16] D.M. Grzymala-Busse, J.W. Grzymala-Busse, The usefulness of machine
learning approach to knowledge acquisition, Computational Intelligence 11
(1995) 268–279.

[17] J.W. Grzymala-Busse, LERS- a system for learning from samples based on
rough sets, in: R. Slowinski (Ed.), Intelligent Decision Support, Kluwer
Academic Publishers, 1992, pp. 3–18.

[18] D.J. Hand, Construction and Assessment of Classification Rules, John Wiley and
Sons, 1997.

[19] D.J. Hand, R.J. Till, A simple generalization of the area under the ROC curve to
multiple class classification problems, Machine Learning 45 (2) (2001) 171–
186.

[20] X.-H. Hu, N. Cercone, Data mining via discretization, generalization and
rough set feature selection, Knowledge and Information Systems 1 (1)
(1999) 33–60.

[21] N. Japkowicz, Learning from imbalanced data sets: a comparison of various
strategies, Working Notes of the AAAI’00 Workshop Learning from Imbalanced
Data Sets, 2000, pp. 10–15.

[22] N. Japkowicz (Eds.), AAAI Workshop on Learning from Imbalanced Data Sets,
Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2003.

[23] N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study,
Intelligent Data Analysis 6 (5) (2002) 429–450.

[24] M. Kryszkiewicz, Rules in incomplete information systems, Information
Sciences 113 (3–4) (1999) 271–292.

[25] M. Kryszkiewicz, Comparative study of alternative type of knowledge
reduction in inconsistent systems, International Journal of Intelligent
Systems 16 (2001) 105–120.

[26] J.-Y. Liang, Z.-B. Xu, The algorithm on knowledge reduction in incomplete
information systems, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 10 (2002) 95–103.

[27] H. Liu, F. Hussain, C.L. Tan, M. Dash, Discretization: an enabling technique,
Data Mining and Knowledge Discovery 6 (2002) 393–423.

[28] J.F. Liu, Q.H. Hu, D.R. Yu, A weighted rough set based method developed for
class imbalance learning, Information Sciences 178 (4) (2008) 1235–1256.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.site.uottawa.ca/~nat/Workshop2003/workshop2003.html
http://www.site.uottawa.ca/~nat/Workshop2003/workshop2003.html


J. Liu et al. / Knowledge-Based Systems 21 (2008) 753–763 763
[29] M.A. Maloof, Learning when data sets are imbalanced and when costs are
unequal and unknown, in: Proceedings of Working Notes ICML’03 Workshop
Learning from Imbalanced Data Sets, 2003.

[30] J.-S. Mi, W.-Z. Wu, W.-X. Zhang, Approaches to knowledge reduction
based on variable precision rough set model, Information Sciences 159
(2004) 255–272.

[31] R.S. Michalski, A theory and methodology of inductive learning, in: R.S.
Michalski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning: An Artificial
Intelligence Approach, Morgan Kaufman, San Mateo, CA, 1983, pp. 83–134.

[32] E. Osuna, R. Freund, F. Girosi, Support vector machines: training and
applications, AI Memo 1602, Massachusetts Institute of Technology, 1997.

[33] Z. Pawlak, Rough sets, International Journal of Computer and Information
Sciences 11 (1982) 341–356.

[34] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publishers, Dordrecht, 1991.

[35] Z. Pawlak, Rough sets and intelligent data analysis, Information Sciences 147
(2002) 1–12.

[36] Z. Pawlak, J.W. Grzymala-Busse, R. Slowinski, W. Ziarko, Rough sets,
Communications of the ACM 38 (11) (1995) 89–95.

[37] Z. Pawlak, A. Skowron, Rough sets: some extensions, Information Sciences 177
(1) (2007) 28–40.

[38] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences 177 (1)
(2007) 3–27.

[39] Z. Pawlak, A. Skowron, Rough sets and boolean reasoning, Information
Sciences 177 (1) (2007) 41–73.

[40] R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, Class imbalances versus class
overlapping: an analysis of a learning system behavior, MICAI, 2004, pp. 312–
321.

[41] F.J. Provost, T. Fawcett, Analysis and visualization of classifier performance:
comparison under imprecise class and cost distributions, KDD, 1997, pp.
43–48.

[42] J.R. Quinlan, C4.5 Programs for Machine Learning, Morgan Kaufman, CA,
1988.

[43] G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C. Spyropoulos, P.
atamatopoulos, Stacking classifiers for anti-spam filtering of E-mail, in: L. Lee,
D. Harman (Eds.), Proceedings of the 6th Conference on Empirical Methods in
Natural Language Processing (EMNLP 2001), Carnegie Mellon University, 2001,
pp. 44–50.

[44] Q. Shen, A. Chouchoulas, A rough-fuzzy approach for generating classification
rules, Pattern Recognition 35 (11) (2002) 2425–2438.
[45] D. Slezak, Approximate reducts in decision tables, Proceedings of Sixth
Internation Conference on Information Management of Uncertainty in
Knowledge-based System, Granada, 1996.

[46] D. Slezak, Approximate entropy reducts, Fundamenta Informaticae 53 (3–4)
(2002) 365–390.

[47] J. Stefanowski, On rough set based approaches to induction of decision rules,
in: L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery,
Physica-Verlag, Heidelberg, Germany, 1998, pp. 501–529.

[48] J. Stefanowski, D. Vanderpooten, A general two stage approach to rule
induction from examples, in: W. Ziarko (Ed.), Rough Sets, Fuzzy Sets and
Knowledge Discovery, Springer-Verlag, London, UK, 1994, pp. 317–325.

[49] J. Stefanowski, S. Wilk, Rough sets for handling imbalanced data: combining
filtering and rule-based classifiers, Fundamenta Informaticae 72 (1) (2006)
379–391.

[50] Q. Tao, G.-W. Wu, F.-Y. Wang, J. Wang, Posterior probability support vector
machines for unbalanced data, IEEE Transactions on Neural Networks 16 (6)
(2005) 1561–1573.

[51] K.M. Ting, An instance-weighting method to induce cost-sensitive trees, IEEE
Transactions on Knowledge and Data Engineering 14 (3) (2002) 659–665.

[52] S. Tsumoto, Automated extraction of medical expert system rules from clinical
databases based on rough set theory, Information Sciences 112 (1–4) (1998)
67–84.

[53] S. Tsumoto, Mining diagnostic rules from clinical databases using rough sets
and medical diagnostic model, Information Sciences 162 (2) (2004) 65–80.

[54] V. Vapnik, Statistical Learning Theory, Wiley, New York, NY, 1998.
[55] G.Y. Wang, J. Zhao, J.J. An, et al., A comparative study of algebra viewpoint and

information viewpoint in attribute reduction, Fundamenta Informaticae 68 (3)
(2005) 289–301.

[56] G.M. Weiss, Mining with rarity – problems and solutions: a unifying
framework, SIGKDD Explorations 6 (1) (2004) 7–19.

[57] G.M. Weiss, F. Provost, The effect of class distribution on classifier learning: an
empirical study, Technical Report ML-TR-44, Rutgers University, Department
of Computer Science, 2001.

[58] B. Zadrozny, C. Elkan, Learning and making decisions when costs and
probabilities are both unknown, Technical Report CS2001-0664, UCSD, 2001.

[59] Z.-H. Zhou, X.-Y. Liu, Training cost-sensitive neural networks with methods
addressing the class imbalance problem, IEEE Transactions on Knowledge and
Data Engineering 18 (1) (2006) 63–77.

[60] W. Ziarko, Variable precision rough set model, Journal of Computer and
System Sciences 46 (1993) 39–59.


	A comparative study on rough set based class imbalance learning
	Introduction
	Preliminary notions related to rough sets
	Various configurations of learning and classification based on rough sets
	Two popular significance measures of attributes
	Two popular rule extraction algorithms
	Two popular decision algorithms

	Rough set based methods for class imbalance learning
	Re-sampling training data
	Over-sampling
	Under-sampling
	Middle-sampling

	Filtering inconsistent samples in boundary regions
	Weighted rough sets

	Other methods for class imbalance learning
	C4.5_CS
	Weighted SVM

	Systematic comparative experiments on rough set based class imbalance learning
	Data sets
	Performance indexes
	Comparison among three strategies for class imbalance learning
	Comparison among various configurations of the weighted rough set based method
	Comparison between the weighted rough set based method and other developed methods

	Conclusions
	Acknowledgement
	References


