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Abstract—Power distribution systems have been significantly af-
fected by many outage-causing events. Good fault cause identifica-
tion can help expedite the restoration procedure and improve the
system reliability. However, the data imbalance issue in many real-
world data sets often degrades the fault cause identification per-
formance. In this paper, the -algorithm, which is extended from
the fuzzy classification algorithm by Ishibuchi et al. to alleviate the
effect of imbalanced data constitution, is applied to Duke Energy
outage data for distribution fault cause identification. Three major
outage causes (tree, animal, and lightning) are used as prototypes.
The performance of -algorithm on real-world imbalanced data is
compared with artificial neural network. The results show that the

-algorithm can greatly improve the performance when the data
are imbalanced.

Index Terms—Data imbalance, data mining, fault cause identifi-
cation, fuzzy classification, g-mean, neural network, power distri-
bution systems.

I. INTRODUCTION

POWER distribution systems are one vital lifeline of the
modern society for maintaining adequate and reliable flows

of energy. The geographically dispersed power distribution
systems are under various dynamic operating environments;
they have been significantly affected by various outage-causing
events such as equipment failures, animal contacts, trees,
lightning strikes, etc. It is important to diagnose the faults and
restore the systems in a timely manner in order to maintain
their vitality.

In order to enhance the reliability as well as the availability of
power distribution systems, their management systems need to
have proper and speedy responses to outages. However, many
utilities, for safety reasons, do not restore the faulty sections
until they have found the outage causes. The whole restoration
process may take from tens of minutes to hours. Linemen may
often need to walk along the power distribution lines, which
can be miles, in an attempt to find the outage evidences (e.g.,
burn marks on the pole for possible lightning faults, dead an-
imal bodies for possible animal faults) and to ensure safety (e.g.,
no down distribution lines) prior to re-energizing the system.
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Sometimes, linemen need to call the dispatch center for appro-
priate crews to execute specific advanced tasks. For instance,
tree crews may be requested to remove fallen trees in order to
restore the system.

Many different methods have been investigated to locate the
fault [1], [2]; on the other hand, effective fault cause identifica-
tion can also provide valuable information to narrow down the
areas that have to be searched so as to speed up the restoration
and improve the system reliability and availability. For example,
the dispatch center can inform the linemen to focus on cer-
tain types of outage causes or even dispatch appropriate crews
earlier to restore the system. Power distribution systems fault
cause identification can be viewed as a classification problem
in the sense that operators try to categorize a reported outage
into one of the existing fault cause classes that have been care-
fully arranged by domain experts. Various works make use of
the measured currents and voltages to gain fault cause informa-
tion [3], [4]. With the development of data mining techniques, a
large number of researches have studied the applications of data
mining approaches to power systems [5], [6]; some researches
[7], [8] have utilized the historical power distribution outage
data (which usually contain additional information such as en-
vironmental factors) to extract fault patterns. However, many
real-world outage data are imbalanced [9], i.e., at least one of the
classes significantly outnumbers other classes. Since most com-
monly used classification methods aim to minimize the overall
error rate, imbalanced data may cause a biased classification
performance [10]: a high accuracy on the majority class but a
very low accuracy on the minority class.

The -algorithm has been extended from the fuzzy classifi-
cation algorithm proposed by Ishibuchi et al. [11] to alleviate
the effect of data imbalance [12]. In this paper, the -algorithm
is applied to Duke Energy distribution outage data to illustrate
its effectiveness for power distribution system fault cause iden-
tification with imbalanced data. Three top customer interruption
causes in Duke Energy (and in most utilities [13]) are used as
prototypes: tree, animal contact, and lightning strike; the data
constitution is imbalanced with respect to each prototyping fault
cause. The performance of the -algorithm is compared with ar-
tificial neural network (ANN) that has been studied in our pre-
vious works [14], [15] and extensively applied in power systems
studies [16], [17].

Section II introduces the data mining-based fuzzy classifica-
tion -algorithm. Section III briefly describes power distribu-
tion fault cause identification using Duke Energy outage data.
Section IV presents the performance of the -algorithm on fault
cause identification and compares it with that of ANN.

0885-8950/$20.00 © 2007 IEEE



XU et al.: POWER DISTRIBUTION FAULT CAUSE IDENTIFICATION WITH IMBALANCED DATA 165

II. E-ALGORITHM

Ishibuchi et al. have proposed an elegant fuzzy classifica-
tion algorithm that demonstrates great capabilities to classify
well-preprocessed data sets (e.g., little data noises, balanced
data, and no outliers); however, it may not achieve a compa-
rably good performance on imbalanced data. Its modification
and extension, -algorithm, is able to effectively alleviate the
influence of data imbalance.

A. Fuzzy Sets and Fuzzy Rules

A fuzzy classification system has two key elements: fuzzy
sets and fuzzy rules. A fuzzy set can be fully defined by its
membership function. Fuzzy rules offer human-like reasoning
capabilities and provide transparent inference mechanisms.

Fuzzy rules are usually expressed as an if-then form. As-
suming a fuzzy classification system with rules, inputs,
and outputs (in this paper, we only consider the case with
single output attribute, so ), the th rule is expressed as

(1)

where is the fuzzy set for
input attribute in rule , and is the fuzzy set for output at-
tribute in rule . Fuzzy rules can also be expressed in vector
forms

where (2)

The determination of both fuzzy membership functions and
fuzzy rules usually requires sufficient domain knowledge from
experts. It can be a challenging task to develop a good fuzzy
classification system without adequate domain knowledge.
However, the -algorithm extracts both fuzzy set membership
functions and fuzzy rules from data by utilizing the statistical
information revealed by the normalized fuzzy versions of data
mining measures support and confidence so that an effective
fuzzy classification system can be developed even in short of
domain knowledge [12].

B. Support and Confidence

The association analysis in data mining discovers meaningful
relationships among attributes in the form of association rules

[18] (only one consequent attribute is considered in this
paper). Association rules have the same format as fuzzy rules;
they indicate that the data satisfying the antecedent part are
also likely to satisfy the consequent part .

Support measures how often the antecedent attributes
( is the number of association rules) and the
consequent attribute occur together. Confidence measures
how likely it is that the consequent attribute occurs when
the antecedent attributes X have occurred

support (3)

confidence

(4)

where is the probability operator.

Fig. 1. Four fuzzy partitions for each attribute membership function.

These two measures are extended into fuzzy versions using
the compatibility grade [19] of a data sample with a rule.
The compatibility grade of with the th rule is denoted as

(5)

where is the th data sample,
, where is the total number of data sam-

ples, is the number of attributes in each data sample, and
represents the membership of the

attribute in relation to the antecedent fuzzy set of the
rule .

The normalized fuzzy version of support, , is
defined as the ratio of the normalized sum of the compatibility
grades of class data with the th rule to the number of data
samples

(6)

The normalized fuzzy version of confidence, ,
is defined as the percentage of the normalized sum of compat-
ibility grades of class data with the th rule to the sum of
compatibility grades of all data samples with the th rule

(7)

C. Membership Functions

Since the appropriate fuzzy set partitions for each attribute
is unknown a priori, the -algorithm simultaneously uses four
fuzzy set partitions for each attribute, as shown in Fig. 1. As a
result, each antecedent attribute is initially associated with 14
fuzzy sets generated by these four partitions as well as a special
“do not care” set (i.e., 15 in total).

This approach can help define fuzzy membership functions
for the problems lack of domain knowledge, with the trade-off
of increasing the computational demand though.
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D. Fuzzy Rules

The -algorithm first enumerates all the possible combina-
tions of antecedent fuzzy sets and then assigns each combina-
tion a consequent part to generate a rule; all these rules form
an initial rule population. Since each antecedent attribute corre-
sponds to 15 possible fuzzy sets, the total number of possible
combinations of antecedent fuzzy sets for attributes is ,
which increases exponentially with . In order to reduce the
computational demand, only the rules with less than or equal to
three antecedent attributes are generated in this paper; it is also
a common practice in Ishibuchi et al.’s work [11]. As shown in
(5), the compatibility grade is the product of several member-
ship values. Since membership values are always no larger than
one, the longer the rule is, the more membership values are in-
cluded to calculate the compatibility grade of a data sample with
the rule, and then the smaller the compatibility grade usually is.
Thus, only short rules are logically included to reduce the com-
puting requirement while keeping the reasonable performance.

Each antecedent fuzzy set’s combination corresponds to one
fuzzy rule once its consequence is specified. The consequence
is determined by (8): the class that gets the maximum confi-
dence value given the antecedent fuzzy sets combination is
assigned as the rule consequence

(8)

where is the total number of classes.
The -algorithm further assigns each rule a certainty grade

as the rule weight. The certainty grade is the difference
between the maximum confidence value and the second largest
confidence value given

(9)

where .
Using the product of and as

the measure, a user-defined number rules for each class are
chosen by trial and error from the initial rule population (in this
paper, ). These winning rules form the fuzzy classifi-
cation rule base extracted from the data and are responsible
to make decisions in classification tasks.

E. Fuzzy Classification

When implementing fuzzy classification tasks on test data,
the single winner rule method [19] is employed. For any test
data , the single winner rule method chooses from the fuzzy
classification rule base a rule that yields the maximum product
of the compatibility grade with the test data and the
certainty grade . This winner rule determines the class to
which belongs.

III. POWER DISTRIBUTION SYSTEM FAULT

CAUSE IDENTIFICATION

A. Data Selection

In this paper, Duke Energy distribution outage data are used
to illustrate the fault cause identification. Every time an outage

TABLE I
OVERVIEW OF ELEMENTS OF EACH INFLUENTIAL FACTOR

in Duke Energy distribution systems is detected as a result of
the activation of protective devices (e.g., a circuit breaker, a
fuse), the relative information is recorded into the data col-
lection system. Each outage record consists of 33 information
fields, of which six are considered as the most essential and
influential factors based on the suggestions from Duke Energy
senior distribution engineers and statistical significance test
[20]. These six fields are: circuit ID, weather, season, time
of day, phases affected, and protective devices activated. The
attribute cause entered by the crew during the restoration
process records the actual root cause of the outage; it is used as
the class label. Three major customer interruption causes (tree,
animal contact, and lightning strike) are used in this paper for
illustration purposes.

Based on domain experts’ suggestions and considerations
of different geographical features and system status, seven of
Duke Energy’s 32 service regions in North Carolina and South
Carolina are selected as reasonable service area representations:
Chapel Hill (CH), Clemson (CS), Durham (DH), Greenville
(GV), Hickory (HC), Lancaster (LC), and Winston-Salem (WS).
These seven regions cover metropolitan areas, cities, towns,
rural areas, and wooded areas; these regions also embody both
old systems and new systems.

B. Fault Cause Identification Scheme

All the six selected factors are categorical variables as shown
in Table I. The categorical variables are transformed into numer-
ical variables using the likelihood measure [21] so that they can
be used in the -algorithm, which requires numerical inputs in
order to determine attributes’ fuzzy memberships in relation to
different antecedent fuzzy sets.

The likelihood measure as shown in (10) represents the con-
ditional probability of the occurring of an outage caused by a
specific fault given a certain condition (e.g., the likelihood of an
observed outage caused by tree given icy weather condition)

(10)

where refers to fault cause (e.g., tree, lightning), refers to
fault-related event or condition (e.g., windy weather, fuse acti-
vated), is the number of outages caused by fault under
condition is the number of outages under condition , and

is the likelihood measure of fault given condition .
The likelihood measure can provide useful information for

fault cause identification; it is logically used as the inputs to
the -algorithm. However, the likelihood measure depends on
both fault type and influential condition ; the same data are
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Fig. 2. Power distribution fault cause identification schematic diagram.

TABLE II
PROPORTIONS OF TREE-CAUSED, ANIMAL-CAUSED, AND LIGHTNING-CAUSED

FAULTS IN DIFFERENCE REGIONS

mapped to different sets of likelihood measures for different
fault causes, even under the same influential condition. It means
that the likelihood measures change along with fault causes. As
a result, the power distribution fault cause identification scheme
shown in Fig. 2 consists of three identical branches in parallel:
the tree branch, the animal branch, and the lightning branch.
Each branch identifies its designated fault cause. It can be ex-
panded to identify more fault causes.

Within each branch, the outage data are first transformed by
the likelihood calculation module. The generated likelihood
measures are then passed to the classification module, where
the -algorithm is applied to determine the class of the inputted
outages. Since each branch is only responsible for its designated
fault cause, it faces a binary classification task. For instance,
the tree branch categorizes the cause of an inputted outage as
either tree or nontree, which can be animal contact, lightning
strike, or others. The number of the outages by one particular
fault cause may only account for a small percentage of the total
outages due to the diversity of fault causes (the proportions of
tree-caused faults, animal-caused faults, and lightning-caused
faults are shown in Table II). Thus, the classifiers always face
imbalanced data classification tasks.

The decision fusion module combines the results from
different branches into a final classification decision. When
different branches reach consistent outage cause estimations,
the decision fusion model can make a straightforward decision.
When conflicting results happen occasionally, this module

TABLE III
CONFUSION MATRIX

compares the compatibility grades of the test data with the
winner rule from each branch chosen by the single winner rule
method to determine the outage cause.

IV. RESULTS AND DISCUSSIONS

The Duke Energy outage data from 1994 to 2002 are used
in this paper. In each representative region, the data are divided
into training data and test data by year: the outage data from
1994 to 1999 are used as the training set and the remaining data
(2000 to 2002) form the test set.

Table II shows proportions of tree-caused, animal-caused,
and lightning-caused faults in each region. Lightning-caused
faults account for an average proportion of 9.97% in training
data and 4.36% in test data. The region of DH only has 1.89%
lightning-caused faults in its test dataset. Animal-caused
faults have an average proportion of 15.25% in training data
and 14.83% in test data. Tree-caused fault is one of the largest
outage categories: tree-caused faults have an average proportion
of 25.52% in training data and 28.88% in test data. Comparing
with the lightning fault and animal fault, it is relatively balanced
between tree-caused outage and nontree-caused outage.

The performance of the -algorithm for outage cause iden-
tification is compared with a three-layer feed-forward ANN
using back-propagation algorithm as investigated in our pre-
vious works. The ANN-based fault cause identification employs
the same scheme as the one in Fig. 2. Due to its randomness
property, ANN is run 30 times for each case in order to generate
statistically representative results. In this paper, only the results
from individual branches are presented in order to demonstrate
the performance of two methods on imbalanced data.

A. Performance Measure

When the data are imbalanced, the conventional performance
measure of the overall classification accuracy can be misleading.
Take a two-class imbalanced data set as an example. Assume
that 95% of the data are from the majority class , while only
5% of the data are from the minority class . If a classifier
blindly categorizes every case into class , it can still achieve
an overall accuracy as high as 95% without even processing the
data, which is certainly undesirable. Kubat et al. have proposed
the g-mean [22] to evaluate the classification performance on
imbalanced data sets. The g-mean is developed from confusion
matrix as shown in Table III (assuming the tree/animal/lightning
faults are positive classes and nontree/nonanimal/nonlightning
faults as negative classes).

The true positive rate indicates
the classification accuracy of the positive class, while the true
negative rate indicates the classi-
fication accuracy of the negative class. The g-mean examines
classification accuracies on both positive and negative classes
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Fig. 3. G-means for lightning fault identification (test data).

and punishes large disparities between them; it is mathemati-
cally described as

(11)

The basic idea behind the g-mean is to maximize the accura-
cies on both classes: the g-mean is large when both and

are large and the difference between and is
small, i.e., the classification accuracies on both positive and neg-
ative classes are high and there is no large disparity between
them, which represents a balanced performance.

B. Results

The g-means achieved by the -algorithm and ANN on test
data for lightning/animal/tree fault are presented in Figs. 3–5,
respectively. The performance of ANN is based on its 30-run
results: the height of the vertical bars in the figures represents
the mean value, and the “whisker” represents its 95% confidence
intervals. The -algorithm has deterministic results once ,
the number of rules to be included in the fuzzy classification rule
base , has been decided, so only the actual value is presented as
the height of the corresponding vertical bar. The region names
have been defined in Section III-A.

One-sample tests of hypothesis are also performed on the ex-
perimental data to determine whether the -algorithm provides
higher g-means statistically than ANN does. That is

(12)

is tested against

(13)

The decision is made based on P-values of the tests that show
the probability of obtaining the existing experimental data given
the null hypothesis [23]; so a low P-value leads to the rejection

Fig. 4. G-means for animal fault identification (test data).

Fig. 5. G-means for tree fault identification (test data).

TABLE IV
P-VALUES OF ONE-SAMPLE TESTS OF HYPOTHESIS ON G-MEANS

of the null hypothesis. The commonly used level of significance
0.95 is chosen in this paper; so a P-value under 0.05 will re-
ject the null hypothesis in favor of the alternative hypothesis.
Table IV presents the P-values of the one-sample tests of hy-
pothesis on g-means achieved by the -algorithm and ANN.

Fig. 3 clearly indicates that the -algorithm has a sig-
nificant dominance of g-means when identifying light-
ning-caused faults. In the region of LC, the average value
of g-mean by the -algorithm even exceeds ANN by as
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much as 271%. In Table IV, the P-values of the one-sample
tests of hypothesis for lightning-caused faults are smaller
than 0.05 in all seven regions. Thus, the null hypothesis

is rejected in favor of the alter-
native hypothesis ; in another
words, it can be concluded that the g-mean by the -algorithm
is larger than the average g-mean by ANN.

Although the -algorithm consistently achieves higher per-
formance than ANN for lightning-caused faults in all the seven
selected regions, the similar clear-cut conclusions cannot be
drawn for the other two fault causes.

As shown in Fig. 4, the g-means by the -algorithm for an-
imal-caused fault are larger than the average g-means by ANN
in five regions but are smaller in two regions: CS and GV. The
one-sample tests of hypothesis also indicate that the -algo-
rithm outperforms ANN in five regions and ANN actually has a
larger g-mean value than the -algorithm in the region of GV;
the conclusion cannot be drawn for the remaining region CS at
the significance level of 0.95.

Similarly, the -algorithm for tree-caused faults has larger
g-means in four regions but smaller g-means in CH, CS, and
WS comparing with ANN, as shown in Fig. 5. The results
of one-sample tests of hypothesis in Table IV show that the

-algorithm outperforms ANN in four regions and gets smaller
g-means in CS and WS. The conclusion cannot be made for the
region of CH at the significance level of 0.95.

C. Discussions

When implementing classification tasks, a standard ANN
with back-propagation algorithm aims to minimize the overall
error rate. For an imbalanced data set, the majority class has
dominant influence on the overall error since ANN tends to
prioritize the different classes in favor of the class with more
training data examples in order to achieve a high overall ac-
curacy. This biased favor may sacrifice the performance on
classifying minority class and achieves a high accuracy on
the majority class but a very low, sometimes unacceptable,
accuracy on the minority class.

The -algorithm extracted qualified classification rules from
the data based on the statistical information revealed by two
normalized fuzzy versions of data mining concepts: support

and confidence ; the normalization
of these measures, as shown in (6) and (7), alleviates the effect
of data imbalanced constitution [12].

Based on the comparisons, the -algorithm achieves larger
g-mean values than ANN in most of the cases. It is also noticed
that with the increase of outage proportion, the dominance of
the -algorithm over ANN is weakened: the average propor-
tion of lightning faults, animal faults, and tree faults is in an
ascending order as shown in Table II, while -algorithm out-
performs ANN in all the seven regions for lightning faults, five
regions for animal faults, and only four regions for tree faults.

We further examine the individual cases in Table II. It is ob-
served that animal faults do not necessarily account for more
percentage than lightning faults; neither do tree faults with an-
imal faults. For example, the region of LC only has 7.46% an-
imal faults, while the region of WS has 9.72% lightning faults;
the region of WS only has 21.90% tree faults, while the region of

Fig. 6. Relationship between the increase of g-means and the percentage of
positive classes.

TABLE V
CAUSE-AVERAGED OVERALL ACCURACY BY ANN AND E-ALGORITHM

CS has 22.56% of animal faults. Therefore, we disregard the cat-
egories of fault causes to further investigate the relationship be-
tween the increase of g-mean values and the percentage of pos-
itive classes (lightning/animal/tree faults), as shown in Fig. 6.

A simple linear regression model in Fig. 6 demonstrates the
relationship between the percentage of positive classes (which
can be animal fault, tree fault, or lightning fault) and the increase
of g-mean values of the -algorithm over ANN. This straight-
line function in the figure is expressed as

(14)

As the percentage of positive classes gets larger, the increase
of the g-mean values gets smaller. It means that when the data
balance issue gets less severe (i.e., the data are more balanced),
the improvement of the -algorithm over ANN gets smaller;
when the data constitution is relatively balanced, the -algo-
rithm does not show significant superiority over ANN.

G-mean emphasizes the balance in classifying different
classes rather than the overall classification accuracy. Table V
further presents the average overall accuracy rates (over seven
regions) of the prototyping outage causes identification. The

-algorithm has an accuracy rate as high as 0.9069 for light-
ning-caused fault while maintaining much more balanced
performance on different classes, though it is lower than the
value of 0.9516 achieved by ANN. The -algorithm has an
overall accuracy of 0.8748 for animal-caused faults, which is
close to the rate of 0.8767 achieved by ANN. The -algo-
rithm even achieves a higher average accuracy of 0.7633 for
tree-caused faults than the rate of 0.7527 by ANN.
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Comparing with lightning strike and animal contact, tree
fault diagnosis is more complicated: the tree fault category in
Duke Energy outage database includes a few subcategories
such as trees, danger trees, and vines, which diversifies the fault
patterns; tree faults are closely related with many influential
factors (such as weather condition, geographic information, tree
trimming cycle, and human activities), many of which are not
captured by the measurements or not presented in the outage
database. As we can see in Table V, the accuracy of tree-caused
outage identification is lower than the other two outage causes.
Considering that the results are based on real-world data,
the -algorithm does achieve a satisfactory performance.
Dispatchers can use the algorithm with more confidence on
lightning-caused faults, followed by animal-caused faults, and
then tree-caused faults.

Other than its advantage in classifying imbalanced data, the
-algorithm can extract fuzzy rules from the data to help ex-

plain the inference mechanism of outage cause identification;
this is the generally acknowledged advantage of a fuzzy clas-
sification technique. A few rule examples for lightning-caused
faults are as follows.

1) IF the likelihood measure of weather is medium (according
to membership partition No. 4 in Fig. 1) AND the like-
lihood measure of phases affected is high (according to
membership partition No. 1 in Fig. 1), THEN the outage
is likely to be caused by lightning.

2) IF the likelihood measure of weather is low (according to
membership partition No. 1 in Fig. 1), THEN the outage is
not likely to be caused by lightning.

As presented in Section II-C, the -algorithm simultaneously
applies four membership partitions, as shown in Fig. 1, to each
attribute and then chooses the antecedent fuzzy set combina-
tions that have more statistical support to implement the clas-
sification task. The attributes within a chosen combination do
not have to follow the same partition. For example, the first an-
tecedent attribute in rule example 1 uses membership partition
No. 4 (as labeled in Fig. 1) while the second antecedent attribute
uses membership partition No. 1.

V. CONCLUSION

Effective power outage cause identification can help expedite
the restoration procedure and improve the distribution system
reliability and availability. However, the data imbalance issue
encountered in many real-world data sets often affects the per-
formance of fault cause identification, especially for minority-
class causes, since most commonly used methods aim to min-
imize the overall error rate. In this paper, the -algorithm that
is extended from the elegant fuzzy classification algorithm by
Ishibuchi et al. for imbalanced data is applied to Duke Energy
distribution outage data for cause identification. Its performance
in terms of g-mean, the performance measure for imbalanced
classification, is compared with ANN investigated in our pre-
vious works. The results show that the -algorithm can achieve
better performance when the data are imbalanced; the superi-
ority is proportional to the severeness of the data imbalance.
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