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Abstract. Learning from imbalanced datasets is inherently difficult due
to lack of information about the minority class. In this paper, we study
the performance of SVMs, which have gained great success in many real
applications, in the imbalanced data context. Through empirical anal-
ysis, we show that SVMs suffer from biased decision boundaries, and
that their prediction performance drops dramatically when the data is
highly skewed. We propose to combine an integrated sampling technique
with an ensemble of SVMs to improve the prediction performance. The
integrated sampling technique combines both over-sampling and under-
sampling techniques. Through empirical study, we show that our method
outperforms individual SVMs as well as several other state-of-the-art
classifiers.

1 Introduction

Many real-world datasets are imbalanced, in which most of the cases belong to a
larger class and far fewer cases belong to a smaller, yet usually more interesting
class. Examples of applications with such datasets include searching for oil spills
in radar images [1], telephone fraudulent detection [2], credit card fraudulent
detection diagnosis of rare diseases, and network intrusion detection. In such
applications, the cost is high when a classifier misclassifies the small (positive)
class instances.

Despite the importance of handling imbalanced datasets, most current clas-
sification systems tend to optimize the overall accuracy without considering the
relative distribution of each class. As a result, these systems tend to misclassify
minority class examples when the data is highly skewed. Techniques have been
proposed to handle the problem. Approaches for addressing the problem can be
divided into two main directions: sampling approaches and algorithm-based ap-
proaches. Generally, sampling approaches include methods that over-sample the
minority class to match the size of the majority class [3, 4], and methods that
under-sample the majority class to match the size of the minority class [1, 5, 6, 7].
Algorithmic-based approaches are designed to improve a classifier’s performance
based on their inherent characteristics.

This paper is concerned with improving the performance of the Support Vec-
tor Machines (SVMs) on imbalanced data sets. SVMs have gained success in
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many applications, such as text mining and hand-writing recognition. However,
when the data is highly imbalanced, the decision boundary obtained from the
training data is biased toward the minority class. Most approaches proposed
to address this problem have been algorithm-based [8, 9, 10], which attempt to
adjust the decision boundary through modifying the decision function.

We take a complementary approach and study the use of sampling as well
as ensemble techniques to improve SVM’s performance. First, our observation
indicates that using over-sampling alone as proposed in previous work (e.g.
SMOTE [10]) can introduce excessive noise and lead to ambiguity along de-
cision boundaries. We propose to integrate the two types of sampling strategies
by starting with over-sampling the minority class to a moderate extent, followed
by under-sampling the majority class to the similar size. This is to provide the
learner with more robust training data. We show by empirical results that the
proposed sampling approach outperforms over-sampling alone irrespective of the
parameter selection. We further consider using an ensemble of SVMs to boost
the performance. A collection of SVMs are trained individually on the processed
data, and the final prediction is obtained by combining the results from those
individual SVMs. In this way, more robust results can be obtained by reduc-
ing the randomness induced by a single classifier, as well as by alleviating the
information loss due to sampling.

2 Related Work

Sampling is a popular strategy to handle the class imbalance problem since it
straightforwardly re-balances the data at the data processing stage, and there-
fore can be employed with any classification algorithm [1, 3, 4, 5, 6, 7]. As one of
the successful oversampling methods, the SMOTE algorithm [11] over-samples
the minority class by generating interpolated data. It first searches for the K-
nearest-neighbors for each minority instance, and for each neighbor, randomly
selects a point from the line connecting the neighbor and the instance itself,
which will serve as a new minority instance. By adding the “new” minority in-
stances into training data, it is expected that the over-fitting problem can be
alleviated. SMOTE has been reported to achieve favorable results in many clas-
sification algorithms [11, 12]. Algorithm-based approaches include methods in
which existing learning algorithms are tailored to improve the performance for
imbalanced datasets. For example, some algorithms consider class distributions
or use cost functions for decision tree inductions [6, 13, 14].

SVMs have established themselves as a successful approach for various ma-
chine learning tasks. The class imbalance issue has also been addressed in the
literature. Through empirical study, Wu et al. [9] report that when the data
is highly imbalanced, the decision boundary determined by the training data
is largely biased toward the minority class. As a result, the false negative rate
that associates with the minority class might be high. To compensate for the
skewness, they propose to enlarge the resolution around the decision boundary
by revising kernel functions. Furthermore, Veropoulos et al. [8] use pre-specified
penalty constants on Lagrange multipliers for different classes; Akbani et al.
[10] combine SVMs with SMOTE over-sampling and cost sensitive learning. In
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contrast, Japkowicz et al. [15] argue that SVMs are immune to the skewness of
the data, because the classification decision boundary is determined only by a
small quantity of support vectors. Consequently, the large volume of instances
belonging to the majority class might be considered redundant. In this paper, we
will demonstrate that the decision boundary changes as imbalance ratios vary,
and discuss its implications.

Using an ensemble of classifiers to boost classification performance has also
been reported to be effective in the context of imbalanced data. This strategy
usually makes use of a collection of individually trained classifiers whose predic-
tion results are integrated to make the final decision. The work in this direction
includes that Chen et al. [6] use random forest to unite the results of decision
trees induced from bootstrapping the training data, and that Guo et al [4] apply
data boosting to improve the performance on hard examples that are difficult to
classify. However, most current studies are confined to decision tree inductions
instead of other classifiers, e.g, SVM. Moreover, decision-tree-based algorithms
might be ill-suited for the class imbalance problem as they favor short trees.

3 Background

3.1 Support Vector Machines

In this section we briefly describe the basic concepts in two-class SVM classifi-
cation. Assume that there is a collection of n training instances Tr = {xi, yi},
where xi ∈ RN and yi ∈ {−1, 1} for i = 1, . . . , n. Suppose that we can find some
hyperplane which linearly separates the positive from negative examples in a fea-
ture space. The points x belonging to the hyperplane must satisfy w · x+ b = 0,
where w is normal to the hyperplane and b is the intercept. To achieve this,
given a kernel function K, a linear SVM searches for Lagrange multiplier αi

(i = 1, ..., n) in Lagrangian

Lp ≡ 1
2
||w||2 −

n∑

i=1

αiyi(xi · w + b) +
n∑

i=1

αi (1)

such that the margin between two classes 2
||w|| is maximized in the feature space

[16]. In addition, in the αi optimizing process, Karush Kuhn Tucker (KKT) con-
ditions which require

∑n
i=1 αiyi = 0, must be satisfied.1 To predict the class label

for a new case x, we need to compute the sign of f(x) =
∑n

i=1 yiαiK(x, xi) + b.
If the sign function is greater than zero, x belongs to the positive class, and the
negative otherwise.

In SVMs, support vectors (SVs) are of crutial importance to the training
set. They lie closest to the decision boundary; thus form the margin between
1 In the case of non-separable data, 1-norm soft-margin SVMs minimize the La-

grangian Lp = 1
2
||w||2 + C

�
i ξi −�i αi{yi(xi ·w + b)− 1 + ξi}−�i µiξi, where ξi,

i ∈ [1, n] are positive slack variables, C is selected by users with a larger C indicat-
ing a higher penalty to errors, and µi are Lagrange multipliers to enforce ξi being
positive. Similarly, corresponding KKT conditions have to be met for the purpose
of optimization.
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two sides. If all other training data were removed, and training was repeated,
the same separating hyperplane would still be constructed. Note that there is a
Lagrange multiplier αi for each training instance. In this context, SVs correspond
to those points for which αi > 0; other training instances have αi = 0. This fact
gives us the advantage of classifying by learning with only a small number of
SVs, as all we need to know is the position of the decision boundary which
lies right in the middle of the margin; other training points can be considered
redundant. Further, it is of prime interest in the class imbalance problem because
SVMs could be less affected by the negative instances that lie far away from the
decision boundary even if there are many of them.

3.2 Effects of Class Imbalance on SVMs

We conducted a series of experiments to investigate how the decision boundaries
are affected by the imbalance ratio, i.e., the ratio between the number of negative
examples and positive examples. We start with classifying a balanced training
dataset, and detect that the real decision boundary is close to the “ideal bound-
ary”, as it is almost of equal length to both sides. We then reform successive new
datasets with different degrees of data skewness by removing instances from the
positive and add instances to the negative. Figure 1 reflects the data distribution
when imbalance ratios vary from 10:1 to 300:1, where crosses and circles repre-
sent the instances from positive and negative classes respectively. From Figure
1 (a), we find that if the imbalance ratio is moderate, the boundary will still
be close to the “ideal boundary”. This observation demonstrates SVMs could
be robust and self-adjusting; and is thus able to alleviate the problem arising
from moderate imbalance. Nonetheless, as the imbalance ratio becomes larger
and larger, as illustrated in Figure 1 (b) and (c), the boundaries get evidently
biased toward the minority class. As a consequence, making predictions with
such a system may lead to a high false negative rate.
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Fig. 1. Boundary changes with different imbalance ratios

4 Re-balancing the Data

We have shown that SVMs may perform well while the imbalance ratio is mod-
erate. Nonetheless, their performance could still suffer from the extreme data
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Fig. 2. Under-sampling majority instances

skewness. To cope with this problem, in this section, we study the use of sampling
techniques to balance the data.

4.1 Undersampling

Under-sampling approaches have been reported to outperform over-sampling ap-
proaches in previous literatures. However, under-sampling throws away poten-
tially useful information in the majority class; it thus could make the decision
boundary trembling dramatically. For example, given the imbalance ratio as
100:1, in order to get a close match for the minority, it might be undesirable
to throw away 99% of majority instances. Figure 2 illustrates such a scenario,
where the majority class is undersampled to keep the same size as the minority,
but a considerable amount of SVs lie far away from the ideal boundary y = 1.
Accordingly, predicting with such SVMs may lead to low accuracies.

4.2 Oversampling

Considering that simply replicating the minority instances tends to induce over-
fitting, using interpolated data is often preferred in the hope of supplying addi-
tional and meaningful information on the positive class. SMOTE is the method
that has been mostly cited along this line.

However, the improvement of integrating SVMs with the SMOTE algorithm
can be limited due to its dependence on the proper selection of the number of
nearest neighbors K as well as imbalance ratios. Basically, the value of K deter-
mines how many new data points will be added into the interpolated dataset.
Figure 3 shows how the decision boundary will change with different K values.
Figure 3 (a) shows the original class distribution while the imbalance ratio is
100:1. Figure 3 (b) demonstrates that the classification boundary is relatively
smoothed when K has a small value; nonetheless, it is still biased toward the
minority class. This is due to SMOTE actually providing little information of
the minority; hence the oversampling in this case should be considered as a type
of “phantom-transduction”. When the interpolated dataset is considerably en-
larged as K increases, as shown in Figure 3 (c), ambiguities could arise along the
current boundary, because SMOTE makes the assumption that the instance be-
tween a positive class instance and its nearest neighbors is also positive. However
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Fig. 3. Using SMOTE with different K values

it may not be always true in practice. As a positive instance is very close to the
boundary, its nearest neighbor is likely to be negative, and this possibility may
increase as K and imbalance ratio become larger. Consequently, the new data
instance, which actually belongs to the negative class, is mis-labeled as positive,
and the induced decision boundary, as shown in Figure 3 (c), could be inversely
distorted to the majority class.

4.3 Combination of Two Types of Samplings

To address the problems arising from using each of the two types of sampling
approaches alone, we integrate them together. Given an imbalance ratio, we
first over-sample the minority instances with SMOTE to some extent, and then
under-sample the majority class so that both sides have the same or similar
amount of instances. To under-sample the majority class, we use the bootstrap
sampling approach with all available majority instances, provided that the size
of the new majority class is the same as that of the minority class after running
SMOTE. The benefit of doing so is that this approach inherits the strength of
both strategies, and alleviates the over-fitting and information loss problems.

In addition, to avoid taking risks of inducing ambuities along the decision
boundary, we choose to filter out the “impure” data firstly before sampling. In
this context, an instance is defined to be “impure”, if and only if two of its three
nearest neighbors provide different class labels other than that of itself. This
idea is motivated by the Edited Nearest Neighbor Rule [7], which was originally
used to remove unwanted instances from the majority. In our work, however, to
further reduce the uncertainty from both classes, such a filtering process is taken
on each side.

5 Ensemble of SVMs

In this section, we present a method that uses an ensemble of SVM classifiers
integrated with a re-balancing technique that combines both over-sampling and
under-sampling. Re-balancing is still necessary in this context since in learning
from extremely imbalanced data, it is very likely that a bootstrap sample used to
train an SVM in the ensemble is composed of few or even none of the minority
instances. Hence, each component learner of the ensemble would suffer from
severe skewness, and the improvement of using an ensemble would be confined.
Our proposed method, called EnSVM, is illustrated in Figure 4. As described in
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Fig. 4. EnSVM algorithm

Section 4.3, we start re-balancing the data by filtering out impurities which may
induce ambiguities. Then, the minority class is over-sampled with the SMOTE
method to smooth the decision boundary. That is, for each positive instance,
it finds the K nearest neighbors, draws a line between the instance and each
of its K nearest neighbors, and then randomly selects a point on each line to
use as a new positive instance. In this way, K × n new positive instances are
added to the training data, where n is the number of positive instances in the
original training data. After that, we under-sample the majority class instances
N times to generate N bootstrap samples so that each bootstrap sample has
the same or similar size with the over-sampled positive instances. Then, each
bootstrap sample (of the majority class) is combined with the over-sampled
positive instances to form a training set to train an SVM. Therefore, N SVMs can
be obtained from N different training sets. Finally, the N SVMs are combined
to make a prediction on a test example by casting a majority vote from the
ensemble of SVMs. In our experiments reported below, we set N to be 10.

6 Empirical Evaluation

In this section, we first introduce the evaluation measures used in our study, and
then describe the datasets. After that, we report the experimental results that
compare our proposed approach with other methods.

6.1 Evaluation Measures

The evaluation measures used in our experiments are based on the Confusion
Matrix. Table 1 illustrates a confusion matrix for a two class problem with pos-
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Table 1. Two-class confusion matrix

Predicted Positive Predicted Negative
Actual Positive TP(True Positive) FN(False Negative)
Actual Negative FP(False Positive) TN(True Negative)

itive and negative class values. With this matrix, our performance measures are
expressed as follows:

– g-mean =
√

a− × a+, where a− = TN
TN+F P

and a+ = TP
TP+F N

;

– F-measure = 2×Precision×Recall
Precision+Recall

, where precision = TP
TP+F P

and recall = TP
TP+F N

.

G-mean is based on the recalls on both classes. The benefit of selecting this
metric is that it can measure how balanced the combination scheme is. If a
classifier is highly biased toward one class (such as the majority class), the g-
mean value is low. For example, if a+ = 0 and a− = 1, which means none of the
positive examples is identified, g-mean=0. In addition, F-measure combines the
recall and precision on the positive class. It measures the overall performance
on the minority class. Besides, we utilize the ROC analysis [17] to assist the
evaluation. A ROC curve demonstrates a trade off between true positive and
false positive rates provided with different classification parameters. Informally,
one point in ROC space is superior to another if it is closer to the northwest
corner (TP is higher, but FP is lower). Thus, ROC curves allow for a visual
comparison of classifiers: the larger the area below the ROC curve, the higher
classification potential of the classifier.

6.2 Benchmark Data

We use five datasets as our testbeds. Four of the datasets are from the UCI Ma-
chine Learning Repository and another dataset is a medical compound dataset
(mcd) collected by National Cancer Institute (NCI) for discovering new com-
pounds capable of inhibiting the HIV virus. The four UCI datasets are spambase,
letter-recognition, pima-indians-diabetes and abalone. Each dataset in this study
is randomly split into training and test subsets of the same size, where a strati-
fied manner is employed to ensure that the training and test sets have the same
imbalance ratio. Table 2 shows the characteristics of the five datasets. The first

Table 2. Benchmark datasets

Dataset Datapoints Attributes ImbalanceRatio
letter 20000 16 2:1
pima 768 9 2:1
spambase 3068 57 10:1

abalone 4280 8 40:1
mcd 29508 6 100:1

three datasets (letter, pima, and spambase) are mildly imbalanced, while the
next two (abalone and mcd) are very imbalanced. These datasets were carefully
selected to (1) fulfill the requirements that they are obtained in real applications,
(2) distinct from feature characteristics, and vary in size and imbalance ratio,
and (3) maintain sufficient amount of instances in each individual class to keep
the classification performance.
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6.3 Experimental Results

In this section, we compare the performance of our proposed EnSVM method
with those of five other methods: 1) single SVM without re-sampling the data,
2) single SVM with over-sampling using SMOTE [10] (without applying cost
functions), 3) random forest with balanced training data from under-sampling
[6], 4) random forest with our combined sampling method, and 5) single SVM
with our combined sampling method. In our experiments, for all the SVMs, we
employed Gaussian RBF kernels of the form K(xi, xj) = exp(−γ|xi − xj |2) of
C-SVMs. For each method we repeated our experiments ten times, computed
average g-mean values and F-measures.

Table 3. Performance in terms of g-mean

Dataset SVM SMOTE SMOTE RandForest1 RandForest2 AvgSVM EnSVM EnSVM
K=1 K=highest K=1 K=highest

letter 0.9551 0.9552 0.9552 0.9121 0.9281 0.9563 0.9566 0.9566
pima 0.6119 0.7320 0.7320 0.7358 0.7002 0.7419 0.7503 0.7503
spam 0.8303 0.8364 0.8580 0.8593 0.9050 0.8592 0.8616 0.8988
abalone 0.6423 0.6280 0.8094 0.7358 0.7678 0.8041 0.8958 0.8311
mcd 0.4500 0.4496 0.5952 0.5896 0.5968 0.5931 0.5951 0.6039

Results in terms of g-mean are shown in Table 3, where SVM denotes the single
SVM method with the original training data, SMOTE represents oversampling
the minority class and then training a system with single SVMs, RandForest1 de-
notes undersampling the majority class and then making an ensemble with C4.5
decision trees, RandForest2 denotes sampling data with our combined method,
followed by forming an ensemble with C4.5, AvgSVM denotes the average perfor-
mance of 10 single SVMs with our sampling method, and EnSVM is our ensemble
method with the combined sampling method. For the first two datasets, the K
values for SMOTE and EnSVM can only be set to be 1 since their imbalance
ratio is 2:1. For each of other datasets, we test two K values: the smallest value,
which always equals to 1, and the highest value. The latter will depend on the
imbalance ratios of three datasets, which are 9, 39, and 99 respectively. From
the results we can see that EnSVM achieves the best results on all the datasets
except on the spam dataset for which RandForest2 is the best. 2

Table 4 shows the performance for each method in terms of F-measure. We
find that EnSVM deserves the highest value on all five datasets. In particular, a
big improvement is made on the datasets where the imbalance ratios are large.
By comparing the results from the four SVM methods, we can see that (1)
using SMOTE to over-sample the data is better than SVM without sampling;
(2) using our combined sampling method with single SVMs is better than using
only over-sampling with SMOTE; and (3) using the ensemble method together
with the combined sampling method achieve the best results. By comparing the
two Random Forest methods, using the combined sampling method is better than
2 In Table 3, from top to bottom, the optimal γ obtained empirically in using SVMs

is 1.0× 10−2, 5.0× 10−5, 7.0× 102, and 102 respectively. In addition, C is set to be
1000 for each case.
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Table 4. Performance in F-measure

Dataset SVM SMOTE SMOTE RandForest1 RandForest2 AvgSVM EnSVM EnSVM
K=1 K=highest K=1 K=highest

letter 0.9548 0.9549 0.9549 0.9111 0.9268 0.9406 0.9563 0.9563
pima 0.5664 0.7135 0.7135 0.7098 0.6165 0.7259 0.7357 0.7357
spam 0.8164 0.8238 0.8492 0.8512 0.8751 0.7498 0.8553 0.8950

abalone 0.5843 0.5659 0.7938 0.7938 0.7426 0.7875 0.8940 0.8190
mcd 0.3367 0.3364 0.5285 0.5285 0.5286 0.5274 0.5272 0.5415

using only the under-sampling method on most datasets. Moreover, between the
Random Forest method and the ensemble of SVMs method, the latter performs
better.

In addition to the imbalance ratio, the selection of K may also impact on the
prediction accuracy of SMOTE and EnSVM. To make a better understanding,
we present a ROC analysis result with the spambase dataset. This dataset is
considered since it has a moderate imbalance ratio and instance volume. The
original spambase has an imbalance ratio of 10; therefore, in this experiment, we
test K from 1 to 9, and depict the ROC curves of the two approaches in Figure
5. Clearly, compared to simply over-sampling the minority instances, EnSVM
generates a better result. We also test how the g-mean value may change with
different Ks in SMOTE and EnSVM. The abalone and mcd datasets are used in
this case as they hold large imbalance ratios and allow K to vary in relatively
large ranges. We set parameter K to vary from 1 to 39 for the abalone dataset
and from 1 to 99 for the mcd dataset. As shown in Figures 6.3 (a) and (b), the
prediction performance of EnSVM is superior to simply applying the SMOTE
algorithm with respect to each K value. Moreover, we can see that the optimal
K value can be difficult to determine in both SMOTE and EnSVM. For EnSVM,
when K is small, we get better neighbors for the oversampling process, so the
prediction performance can be dramatically improved. Further, when K is big,
more noise is likely to be introduced, but a larger training data set is generated
using EnSVM and less information is lost. Consequently, it becomes a trade
off between inducing more noise and losing less information. Nonetheless, our
method is better than SMOTE with all K values.
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7 Conclusions

This paper introduces a new approach to learning from imbalanced datasets
through making an ensemble of SVM classifiers and combining both over-
sampling and under-sampling techniques. We first show in this study that using
SVMs for class prediction can be influenced by the data imbalance, although
SVMs can adjust itself well to some degree of data imbalance. To cope with
the problem, re-balancing the data is a promising direction, but both undersam-
pling and oversampling have limitations. In our approach, we integrate the two
types of sampling strategies together. Over-sampling the minority class provides
complementary knowledge for the training data, and under-sampling alleviates
over-fitting problem. In addition, we make an ensemble of SVMs to enhance the
prediction performance by casting a majority vote. Through extensive experi-
ments with real application data, our proposed method is shown to be effective
and better than several other methods with different data sampling methods or
different ensemble methods. We are now working on a method for automatically
determining the value of K based on the data set characteristics in order to
optimize the performance of EnSVM.
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