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Abstract 
 

The problem of class imbalance in machine learning 

is quite real and cumbersome when it comes to 

building a useful and practical classification model. 

We present a unique insight into addressing class 

imbalance for classification problems that involve 

three or more categories, i.e. non-binary. This study 

is different than related works in the literature 

because most works focus on addressing class 

imbalance only for binary classification problems, 

even if it means transforming a non-binary dataset 

into a binary classification problem. We propose an 

effective, yet simple approach to alleviating class 

imbalance issues when the classification problem 

involves more than two classes. The process, with 

four different methods, is based on applying random 

undersampling and random oversampling to 

different parts of the dataset for achieving better 

classification performance. The proposed data 

sampling methods are evaluated in the context of 

two real-world datasets obtained from the UCI 

Repository for Machine Learning Databases, and 

two commonly used classification algorithms: C4.5 

and RIPPER. Our results demonstrate that the multi-

group classification accuracy increases significantly 

in most cases after the proposed data sampling 

methods are applied. The positive outcome of this 

study motivates us to further our research on class 

imbalance and non-binary classification problems.  

 

Keywords: Machine learning, class imbalance, non-

binary classifiers, data sampling, artificial 

intelligence. 

 

1. INTRODUCTION 

 

Machine learning is an integral part of the artificial 

intelligence domain. The task of learning from past 

heuristic data and using the learnt knowledge to 

predict, decide, and analyze future events is a 

commonly observed task across various application 

domains – e.g., credit card fraud detection [17], 

software quality modeling [6], manufacturing 

process [17], etc.  

 

Classifying domain-specific entities into different 

categories (i.e. prediction) is one of the most 

common machine learning tasks observed in 

artificial intelligence. A classifier is typically built 

using known prior knowledge in the form of a 

training data, and the subsequent model is then 

applied to predict the unknown classification of 

target data points. The efficacy and usefulness of 

such a classifier is very much dependent on the 

characteristics of the training data used [13][15].  

 

One such characteristic of the training data is the 

relative distribution of its instances among the 

different classes. If the size of one class is relatively 

small (skewed) compared to the other classes, then 

it is very likely that the training process may not 

sufficiently learn trends of instances in that class. In 

contrast, a class that has a very high proportion of 

instances in the training data is likely to be 

represented too much in the trained model. It is 

intuitive to see how such a class imbalance problem 

can adversely affect the training process of a 

classifier.  

 

Existing literature related to the class imbalance 

problem has primarily focused on datasets that 

contain only two classes (binary classification, with 

a majority class and a minority class). However, that 

does not exclude the occurrence of class imbalance 

among more than one class in a dataset consisting of 

multiple groups. Many real-world classification 

scenarios mandate machine learning with multiple 

categories. This is clearly observed in the various 

datasets included in the UCI Repository for 

Machine Learning Databases [2].  

 

The contribution of this study is an effective, yet 

simple, solution to addressing the class imbalance 

problem for classification scenarios that involve 

more than two categories. We consider combining 

the random undersampling and random 

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.120

460

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.120

460

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.120

460



oversampling techniques (these are explained in the 

next section) in our data sampling process for 

alleviating the class imbalance problem. The 

combination of the two techniques is such that 

different parts of the dataset are subjected to a 

different data sampling process, i.e. either random 

undersampling or random oversampling. 

 

The proposed data sampling approach for non-

binary classification problems is presented and 

evaluated with two real-world datasets obtained 

from the UCI repository. Both datasets consist of 

more than two classes, and both have relatively 

skewed distributions of instances among their 

respective classes. Our empirical results clearly 

demonstrate the benefits of the proposed approach 

for addressing the class imbalance problem. In most 

cases, the classification performance improves 

compared to training without the proposed data 

sampling process. 

 

The remainder of the paper is structured as follows. 

Section 2 provides a summary on existing data 

sampling techniques and contrasts them with what 

is being proposed here. Section 3 details the 

proposed data sampling process for non-binary 

classification problems. Section 4 discusses the two 

classifiers we use in our case studies. Section 5 

presents the case studies of our empirical work, 

including dataset descriptions, results, and 

discussions. In Section 6 we summarize our work 

and provide some suggestions for future research 

directions.  

 

2.  RELATED WORK 
 

We limit our discussion to existing data sampling 

techniques for addressing the class imbalance 

problem. To our knowledge, such existing 

techniques are either majority undersampling or 

minority oversampling techniques since they only 

focus on binary classification situations when 

addressing the class imbalance problem. Their 

application to non-binary classification situations is 

not yet clear – hence, the focus of our study. 

 

In a binary classification problem, majority 

undersampling removes instances from the majority, 

i.e. larger class, with the aim of improving bias of 

the minority class instances. The majority 

undersampling techniques include random 

undersampling, Wilson's editing, and one-sided 

selection. Random undersampling is an effective 

technique in which a portion of the majority class 

instances are removed at random from the dataset 

[13][14][15]. Wilson's editing strives to remove 

noisy instances of the majority class based on a k-

nearest-neighbor (k-NN, with k = 3) algorithm that 

classifies each instance in the training dataset using 

the remaining instances [1][16]. One-sided selection 

aims to remove both noisy and redundant instances 

of the majority class from the training dataset [7]. 

Tomek links [12] are used to remove incorrectly 

classified instances and borderline instances which 

lie close to the boundary between the two classes in 

the feature space. 

 

Minority oversampling adds instances to the 

minority class group, also striving to increase bias 

of the minority class instances. The minority 

oversampling techniques include random 

oversampling, cluster-based oversampling, 

Synthetic Minority Oversampling Technique 

(SMOTE), and Borderline-SMOTE. Random 

oversampling augments the training dataset by 

randomly duplicating instances from the minority 

class [13]. SMOTE [3] creates new artificial 

(synthetic) minority data instances rather than 

simply duplicating from the existing instances. It 

creates attribute values for the new data instances by 

extrapolating values from the k-nearest-neighbors to 

each of the original minority class examples.  

 

Borderline-SMOTE [4] is a modified version of 

SMOTE, and extrapolates the new data instances 

only from those minority instances that exist close 

to a minority class boundary in the feature space. 

Cluster-based oversampling alleviates the imbalance 

between the majority and minority classes, and 

helps balance instance grouping within the two 

classes [5]. The algorithm creates independent 

clusters from the minority and majority classes, and 

then randomly oversampling each of the majority 

clusters, except the largest cluster. This is done with 

replacement until all of the majority clusters contain 

the same number of instances as the largest cluster. 

 

In contrast to the above techniques, we present a 

simple, but effective methodology that addresses the 

class imbalance problem when the real-world 

classification scenario mandates more than two 

groups. We do not reformulate the given dataset into 

a binary classification problem as is done in existing 

works related to class imbalance. As explained later, 

our process applies random undersampling and 

random oversampling to different parts of a given 

dataset while striving to alleviate the class 

imbalance problem. 
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3.  PROPOSED APPROACH 

 

To our knowledge, this paper presents a unique 

focus on addressing class imbalance problem in 

classification modeling tasks that involve three or 

more categories. Basic research in related literature 

is relatively well founded with techniques that 

address class imbalance with classification problems 

that involve only two (binary) categories.  

 

Many of the existing works on class imbalance 

modify real-world datasets that have three of more 

classes into a dataset that has only two categories 

[3][5][13][14]. This is typically done by selecting 

the smallest category of instances as the minority 

class, and then combining instances from all other 

categories and forming the majority class. 

Moreover, this is done to suit the existing data 

sampling techniques (discussed earlier) that require 

the dataset to have only two classes.  

 

We argue that the practice of modifying real-world 

datasets to form a binary classification problem is 

not reflective of real-world situations and is not 

always practical. For example, a given machine 

learning dataset may contain multiple categories 

that are relatively very small, yet important, 

compared to the other categories in the dataset. One 

may need to address the class imbalance problem 

for multiple, skewed classes in the same dataset.  

 

An effective, yet simple approach is proposed here 

for addressing class imbalance when the 

classification problem mandates using a machine 

learning dataset that has more than two categories, 

i.e. non-binary. Moreover, a given dataset can have 

more than one skewed class, as is the case in the 

two real-world datasets used in this study. The 

proposed data sampling process is described in the 

remainder of this section. 

 

Consider a dataset D consisting of instances 

grouped into {C1, C2, …, Cm} classes, where Ci is 

the ith class and i = {1, 2, …, m}. Let D′ be the 

dataset after data sampling has been performed. The 

following steps detail our data sampling process, 

which allows four different methods of data 

sampling prior to classifier training. 

 

1. Determine the sizes of all classes in D, i.e. {|C1|, 

|C2|, …, |Cm|} and sort them in a descending 

order. All instances are now sorted based on 

their associated class size, from largest class to 

smallest class. However, instances within a 

given class are not sorted. At this point D′ = D, 

since no data sampling has occurred. 

 

2. Select the method to use for obtaining modified 

class sizes for performing data sampling, either 

random undersampling or random 

oversampling. Four methods are considered: 

 

a. Standard Mean (SMean) 

i. Compute the mean of all class sizes in D, 

and denote this size as SM.  

ii. For a class Ci in D, if |Ci| > SM, then 

instances from Ci are randomly removed 

(i.e. random undersampling) from D′ until 

|Ci| = SM.  

 

For a class Ck in D, if |Ck| ≤ SM, then 

instances from Ck are randomly added 

(i.e. random oversampling) to D′ until |Ck| 

= SM. 

 

b. Modified Mean (MMean) 

i. Compute the mean of all class sizes in D, 

and denote this size as SM.  

ii. Divide the sorted classes (from Step 1) 

into two groups, Upper and Lower, by 

using SM as the dividing threshold. 

Hence, the size of a class belonging to the 

Upper group is greater than SM, while the 

size of a class belonging to the Lower 

group is lesser than or equal to SM. 

iii. Compute MMUpper as the mean class size 

among all classes belonging to the Upper 

group, MMLower as the mean class size 

among all classes belonging to the Lower 

group.  

iv. For a class Ci in D, if |Ci| > MMUpper, then 

instances from Ci are randomly removed 

(i.e. random undersampling) from D′ until 

|Ci| = MMUpper.  

 

For a class Ck in D, if MMUpper ≥ |Ck| > 

SM, then instances from Ck are randomly 

added (i.e. random oversampling) to D′ 

until |Ck| = MMUpper. 

 

For a class Cq in D, if SM ≥ |Cq| > 

MMLower, then instances from Cq are 

randomly removed (i.e. undersampling) 

from D′ until |Cq| = MMLower. 

 

For a class Ct in D, if |Ct| ≤ MMLower, then 

instances from Ct are randomly added (i.e. 

oversampling) to D′ until |Ct| = MMLower. 
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Compared to method (a), our rationale for 

developing and using this modified 

approach was to minimize a high rate of 

undersampling from the larger classes, 

and also minimize a high rate of 

oversampling from the smaller classes. 

This seemed intuitive because if the size 

of the largest class in a dataset was 

relatively very high than sizes of the other 

classes, one stands to possibly loose 

useful information via too much 

undersampling. Finally, this modified 

data sampling method seems more suited 

for addressing class imbalance in a 

classification problem consisting of three 

or more classes.  

 

c. Standard Median (SMedian) 

The steps of this method are similar to those 

for SMean, i.e., (a) above. The only 

difference here is that SM now represents 

the median class size among all classes in 

D. 

 

d. Modified Median (SMedian) 

The steps of this method are similar to those 

for MMean, i.e., (b) above. The differences 

here are that SM now represents the median 

class size among all classes in D, and 

MMUpper and MMLower now respectively 

represent the median class sizes among all 

classes in the Upper and Lower groups. 

 

3. Obtain the modified dataset, D′. This resampled 

machine learning dataset is now ready for 

classification modeling. 

 

The proposed data sampling methods are 

implemented as a custom filter Java class that is 

used as a plug-in for the Java-based WEKA data 

mining and machine learning tool [17]. In our study 

we use WEKA 3.5.6 version for our empirical case 

studies. 

 

4.  SELECTED CLASSIFIERS 

 

The two non-binary classifiers used in our study are 

briefly described in this section. We selected these 

two learners because of their common use among 

machine learning practitioners and their provision of 

handling a dataset with three or more classes. 

However, the proposed data sampling methods can 

be applied with any other non-binary classifier 

because data sampling is a preprocessing step 

during classification modeling. 

 

• C4.5 Decision Tree: The C4.5 algorithm is an 

inductive supervised learning system which 

employs decision trees to represent a quality 

model. We use the J48 classification model, 

which is WEKA's implementation of the C4.5 

algorithm [10][17]. Starting with the root node, 

the algorithm recursively selects an independent 

variable to split the data into sub-trees, until 

stopping criteria is satisfied. When determining 

which attribute to split the data, C4.5 works to 

maximize the purity of the resulting child nodes.  

 

The purity of the node is measured by its 

information value or its entropy. C4.5 will 

choose the attribute which provides the greatest 

information gain ratio for the split as it tries to 

form nodes with an information value as close 

to zero as possible, i.e., a pure node. To avoid 

overfitting, C4.5 implements two types of 

pruning: subtree replacement and subtree 

raising.  

 

• RIPPER: The Repeated Incremental Pruning to 

Produce Error Reduction algorithm is a rule-

based learner that generates classification rules 

[17]. Using a “separate and conquer” strategy, a 

rule-based learner initially creates a rule that 

satisfies a set of instances of one class. The 

algorithm then removes the instances covered 

by that rule from the training dataset and then 

continues generating more rules using the 

remaining instances.  

 

The RIPPER algorithm seeks to maximize the 

information gain, and creates the conditions for 

its rules by greedily selecting the condition that 

yields the greatest information gain. To find a 

condition for the rule's antecedent, RIPPER 

evaluates all possible values for all of the 

nominal attributes in the dataset and checks 

thresholds between the possible values for 

numeric attributes. To avoid model over-fitting 

during training, RIPPER prunes the rules using 

a method called reduced-error pruning. We use 

the default RIPPER parameter settings in 

WEKA for our case studies. 

 

We use the default parameter settings in WEKA for 

both C4.5 and RIPPER. The task of parameter 

optimization for both learners is beyond the scope 

of our study.  
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5.  EMPIRICAL CASE STUDIES 

 

Case Study Datasets 

The two datasets used in our case studies are 

described in this section. Both datasets were 

obtained from the UCI Repository for Machine 

Learning Databases [2]. 

 

• Glass: This dataset consists of 214 instances. 

The nominal class attribute identifies each 

instance as one of six different types of glass. 

The nine independent attributes are all numeric 

and describe the levels of different oxides in the 

glass sample. The smallest class consists of 9 

instances, while the largest class consists of 76 

instances. 

 

• Satimage: The Landsat Satellite database is one 

of the Statlog Project databases. A given 

instance is characterized by 36 independent, 

numeric attributes which are the 9 byte pixel 

values for each of the four spectral images. The 

original dataset has six classes, where each 

represents a specific soil type for the section of 

land in the 3x3 image. In our study we combine 

the training data (4435 instances) and test data 

(2000 instances) into one large dataset. This is 

done since our focus is on addressing the class 

imbalance problem in non-binary classification 

problems, and we wanted to consider one very 

large dataset in addition to one very small 

dataset (i.e., Glass). The smallest class has 626 

instances, while the largest class has 1533 

instances.   

 

Results and Discussion 
The 10-fold cross-validation performances for C4.5 

and RIPPER using the two case study datasets are 

shown in Tables 1 and 2, respectively. The tables 

present the classification accuracies based on using 

one of the four proposed data sampling methods, or 

not using any data sampling prior to training the 

classifiers. Since our focus is on multi-group (non-

binary) classification, the overall classification 

accuracies are presented instead of the more 

commonly used performance metrics for binary 

classification such as false positive, false negative, 

true positive, true negatives, Recall, Precision, etc.  

 

With C4.5 and Glass, there is generally a clear 

improvement in the overall classification accuracy 

compared to modeling with no data sampling for 

addressing the class imbalance problem. The latter 

yielded 65.89% accuracy, while three of the four 

proposed data sampling methods yielded greater 

than 75% accuracy. A z-test at an α = 0.05 (95% 

significance) validated the positive improvements. 

The MMean method yielded a modest 69.16% 

accuracy, and is still greater than using no data 

sampling prior to classification modeling.  

 

In the case of C4.5 and Satimage, while an 

improvement over the base case (i.e. No Sampling 

with 85.84% accuracy) was generally observed, the 

performance increase was rather modest in most 

cases. The highest improvement of 3.41 percentage 

points was obtained with the SMean data sampling 

method. Based on z-test, three of the four data 

sampling methods were significant at an α = 0.10, 

but not at an α = 0.05.  Our overall conclusion with 

the case study involving C4.5 and the two datasets 

is that the proposed data sampling methods 

generally provided significant benefits compared to 

not using any data sampling prior to classification 

modeling (non-binary). 

 

The case study involving RIPPER with the two 

datasets yielded results (Table 2) that generally 

followed similar trends observed in Table 1. With 

RIPPER and Glass, the base case yielded 63.77% 

accuracy, compared to about 70% or higher 

accuracy with the four data sampling methods. 

However, classification accuracy with RIPPER for 

Glass was always lower than those obtained with 

C4.5. We note that identifying the best classification 

algorithm in the context of class imbalance is not 

the focus of this study, but is a candidate empirical 

investigation for future work. 

 

In the case of RIPPER and Satimage, improvement 

over the base case (i.e. 86.51%) was generally not 

noticeable. The largest improvement in overall 

accuracy was 1.58 percentage points with the 

SMean data sampling method. Our overall 

impression with the case study involving RIPPER 

and the two datasets is that the proposed data 

sampling methods generally provided good, but 

modest, improvements compared to not using any 

data sampling, especially with the Satimage dataset. 

Like others [11], we have noted earlier that various 

characteristics of a dataset can impact, positively or 

adversely, the outcome of a machine learner. 

 

A comparison among the four data sampling 

methods presented in this study (Tables 1 and 2) 

provided relatively mixed results. In the case of 

C4.5, SMean provides the best classification 

accuracy for both Glass and Satimage. However, for 

Satimage the other three data sampling methods 

provide competitive performances. In the case of 
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RIPPER, SMean once again provides the best 

accuracy for both Glass and Satimage. However, 

again for Satimage the other three data sampling 

methods are competitive.  

 

A comparison among the respective standard and 

modified methods (Tables 1 and 2) provides some 

interesting results. With C4.5 and Glass, SMean is 

clearly better than MMean. However, this 

improvement is not impressive with C4.5 and 

Satimage. With RIPPER and Glass, once again 

SMean provides better performance than MMean; 

however, with Satimage the two are again relatively 

competitive. In the case of SMedian and MMedian, 

both provided relatively similar results when either 

classifier is applied to either datasets. 
 

Table 1: C4.5 Classification Accuracy  

with Proposed Data Sampling Methods 

Sampling Method Glass Satimage 

SMean 82.87 89.25 

MMean 69.16 87.09 

SMedian 75.36 88.71 

MMedian 76.31 86.73 

No Sampling 65.89 85.84 

 

 

Table 2: RIPPER Classification Accuracy  

with Proposed Data Sampling Methods 

Sampling Method Glass Satimage 

SMean 75.93 88.09 

MMean 71.03 86.60 

SMedian 69.63 86.90 

MMedian 73.09 86.71 

No Sampling 63.77 86.51 

 

 

Table 3: Resampled Instance  

Counts with Glass Dataset 

Class SMean MMean SMedian MMedian Original 

I 36 73 23 70 70 

II 36 73 23 70 76 

III 36 17 23 13 17 

IV 36 17 23 13 13 

V 36 17 23 13 9 

VI 36 17 23 70 29 

Total 216 214 138 249 214 

 

 

The class-wise numbers of instances for the Glass 

and Satimage datasets are shown in Tables 3 and 4, 

respectively. The tables show both the Original 

class-wise instance count and after each of the four 

data sampling methods are applied to obtain D′, i.e. 

the final resampled dataset. Both datasets have six 

classes, as shown by the Class column. The last row 

provides the total of each column. 

 
Table 4: Resampled Instance  

Counts with Satimage Dataset 

Class SMean MMean SMedian MMedian Original 

I 1073 1466 1033 1508 1533 

II 1073 679 1033 703 703 

III 1073 1466 1033 1508 1358 

IV 1073 679 1033 703 626 

V 1073 679 1033 703 707 

VI 1073 1466 1033 1508 1508 

Total 6438 6435 6198 6633 6435 

 

In the case of Glass, the original dataset increases 

from 214 to 249 instances when the MMedian 

method is used. On the other hand the original 

dataset decreases from 214 to 138 instances when 

SMedian is used. In the case of SMean a negligible 

increase of 2 instances is observed, while no change 

in size is observed with MMean.  

 

In the case of Satimage, MMedian increases the 

original dataset to 6633 instances, while SMedian 

decreases the dataset to 6198 instances. There is 

either no, or very minor change in size when SMean 

or MMean are used. We note that is it is by chance 

that MMean for both datasets did not change the 

original size. The median based data sampling 

methods seems to make the most changes in sizes of 

the two datasets, as compare to the mean based data 

sampling methods. 

 

6.  CONCLUSION 

 

The problem of class imbalance in machine learning 

is addressed in the context of non-binary 

classification problems. While existing literature on 

the class imbalance problem presents good 

solutions, they are all limited to a two-group or 

binary classification problem. However, it is not 

uncommon to have a machine learning task where a 

classification model is to be built for classifying 

domain-specific instances into three or more groups. 

There is no existing solution that addresses class 

imbalance in the case of non-binary classification 

problems.  

 

We proposed an effective, yet simple strategy to 

alleviate the adverse effects class imbalance can 

have on a multi-group classification problem. Our 

approach, with four different application methods, is 

based on performing random undersampling and 

random oversampling on different parts of the 

machine learning dataset for achieving better 
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classification accuracy. Case studies of two real-

world datasets are used to empirically evaluate the 

proposed data sampling approach. The impact on 

classification accuracy is observed by using the 

C4.5 decision tree and RIPPER machine learners. 

 

Our results demonstrate that the multi-group 

classification accuracy increases significantly in 

most cases after the proposed data sampling 

methods are applied. The positive outcome of this 

study motivates us to further our research on class 

imbalance and non-binary classification problems.  

 

Some future directions will include: investigating 

other existing data sampling techniques (such as 

Cluster-based oversampling, SMOTE, Borderline-

SMOTE, Wilson’s editing, etc.) for their 

applicability to non-binary classification problems; 

developing new ways to determine, for a given 

machine learning dataset, which parts should be 

undersampled and which parts should be 

oversampled; and, further empirical validation by 

performing additional case studies other datasets 

and/or machine learners. 
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