
Soft Comput (2009) 13:213–225
DOI 10.1007/s00500-008-0319-7

FOCUS

Evolutionary rule-based systems for imbalanced data sets

Albert Orriols-Puig · Ester Bernadó-Mansilla

Published online: 27 May 2008
© Springer-Verlag 2008

Abstract This paper investigates the capabilities of
evolutionary on-line rule-based systems, also called learning
classifier systems (LCSs), for extracting knowledge from
imbalanced data. While some learners may suffer from class
imbalances and instances sparsely distributed around the fea-
ture space, we show that LCSs are flexible methods that can
be adapted to detect such cases and find suitable models.
Results on artificial data sets specifically designed for tes-
ting the capabilities of LCSs in imbalanced data show that
LCSs are able to extract knowledge from highly imbalanced
domains. When LCSs are used with real-world problems,
they demonstrate to be one of the most robust methods com-
pared with instance-based learners, decision trees, and sup-
port vector machines. Moreover, all the learners benefit from
re-sampling techniques. Although there is not a re-sampling
technique that performs best in all data sets and for all lear-
ners, those based in over-sampling seem to perform better
on average. The paper adapts and analyzes LCSs for chal-
lenging imbalanced data sets and establishes the bases for
further studying the combination of re-sampling technique
and learner best suited to a specific kind of problem.

Keywords Imbalanced data · Rule-based systems ·
Data preprocessing · Classification

A. Orriols-Puig (B) · E. Bernadó-Mansilla
Grup de Recerca en Sistemes Intelligents,
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull,
Quatre Camins 2, 08022 Barcelona, Spain
e-mail: aorriols@salle.url.edu

E. Bernadó-Mansilla
e-mail: esterb@salle.url.edu

1 Introduction

During the last few years, machine learning techniques have
been applied to complex real-world problems with the aim of
extracting novel and useful knowledge. Many real-world pro-
blems contain few examples of the concept to be described
due to either the rarity or the cost to obtain them. This results
in data sets with either rare classes or rare cases (Weiss
2004), and learning from these rarities has been identified
as one of the main challenges in data mining. Some lear-
ners such as C4.5 or multi-layered perceptrons have been
shown to suffer when learning from data sets that contain
rare classes,1 since they are biased toward the majority class
(Japkowicz and Stephen 2000, 2002). On the other hand,
rare cases produce small disjuncts2 (Jo and Japkowicz 2004),
which concentrate the most part of classification error. In
supervised learning, rare classes and rare cases are closely
related; learners tend to create small disjuncts when learning
from data sets with rare classes, and so, their effect can be
hardly studied separately.

Evolutionary rule-based systems are a type of learners that
evolve a set of rules by means of evolutionary algorithms.
Among the different approaches that fit this definition, the
so-called learning classifier systems (LCSs) approach
(Holland 1976) is one of the best representatives. LCSs are
on-line learners which evolve a set of rules that jointly repre-
sent the target concept. Although the robustness of evolutio-
nary algorithms in imbalanced data has been widely shown
(Carvalho and Freitas 2000), no systematic analyses have
been conducted on LCSs, which intrinsically use evolutionary
algorithms to evolve the rule-based knowledge.

1 Also referred as data sets with class imbalances.
2 A disjunct is the definition of a subconcept of the original concept
made by a specific learner.

123

214 A. Orriols-Puig, E. Bernadó-Mansilla

This paper studies the behavior of XCS (Wilson 1995,
1998) and UCS (Bernadó-Mansilla and Garrell 2003), two
accuracy-based LCSs that have demonstrated to perform
competitively in classification tasks (Butz 2006, Bernadó-
Mansilla and Garrell 2003). First, we review the theory for
learning from imbalanced data in XCS and UCS. The theore-
tical analysis states that both LCSs should be robust to class
imbalances if they are properly configured. So, we summa-
rize the guidelines to configure LCSs for imbalanced data
sets, given its imbalance ratio. Furthermore, we propose an
algorithm that allows XCS/UCS to self-adapt if imbalances
are detected during learning. This approach is essential in
real-world problems, since the presence of small disjuncts
is unknown a priori. The performance of XCS and UCS is
tested on artificial problems that permit to vary separately the
concept complexity and the imbalance level. Next, both LCSs
are tested over a large set of real-world domains with different
imbalance ratios and compared with three other well-known
learners: C4.5 (Quinlan 1995), SMO (Platt 1998), and IBk
(Aha et al. 1991).

In highly imbalanced data sets, problems caused by rare
classes and rare cases have been usually tackled by
re-sampling the training data sets (Batista et al. 2004). We
investigate whether re-sampling techniques are valuable with
LCSs and the other learners, and which of them offer better
improvements.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem of mining from rarities and
reviews the main approaches proposed in the literature to
deal with class imbalances. Section 3 briefly introduces both
LCSs. Next, the theory of LCSs for imbalanced domains is
reviewed, and the algorithm that automatically adjusts XCS
and UCS is proposed (Sect. 4). Section 5 shows the behavior
of both LCSs on artificially imbalanced problems. Next, both
LCSs are compared with C4.5, SMO and IBk on a collec-
tion of 25 real-world problems. In Sect. 7, four re-sampling
techniques are selected and introduced in the comparison.
Finally, Sect. 8 summarizes, concludes and discusses further
work.

2 Mining from rarity: class imbalance and small
disjuncts

In the recent years, several investigations have been conduc-
ted on the detection of two types of rarities: rare classes
and rare cases. The concept of rare classes refers to data
sets that contain different proportion of instances per class.
The topic, which is mainly associated to supervised learning
tasks, has also been addressed as the class imbalance problem
(Japkowicz and Stephen 2000). Learning from data sets with
rare classes usually hinders the performance of different lear-
ners. It has been shown that some learners such as C4.5

or multi-layer perceptrons are biased toward the majority
class since they aim at minimizing a global measure of error
(Japkowicz and Stephen 2002). The concept of rare cases
is associated to both supervised and unsupervised tasks and
refers to the sparse distribution of examples in the feature
space. Specifically, it analyzes the problems derived from
the presence of a small number of examples belonging to one
class laying in a particular area of the feature space surroun-
ded by examples of other classes. Usually, learners define a
concept by means of several disjuncts3. In Holte et al. (1989),
small disjuncts were shown to hinder the performance of
some learners; lately, some studies (e.g., Weiss 2003) indi-
cated that most of the test error tends to concentrate around
the small disjuncts.

In classification tasks, rare classes and rare cases are clo-
sely related. Jo and Japkowicz (2004) argued that the per-
formance degradation in imbalanced data sets was actually
due to the presence of small disjuncts. Lately, Weiss (2004)
presented a unifying framework for both perspectives, sug-
gesting that imbalanced data sets and small disjuncts may
pose the same difficulties to data mining techniques. In fact,
imbalanced data sets tend to cause small disjuncts, as long
as they consist of few instances of one class. In this paper,
we consider both perspectives, and analyze the effect of class
imbalances and small disjuncts as a whole.

Different approaches have been proposed to deal with
class imbalances, which can be grouped in methods working
at (1) the learner level, or (2) the sampling level. Learner-level
methods modify the learner to increase the pressure toward
the discovery of the minority class. The main drawback of
these methods is that they are designed for specific learners,
and so, can hardly be adapted to other learning schemes.
Sampling-level methods, usually known as re-sampling tech-
niques, re-sample the training data set to balance the propor-
tion of examples per class. As they are data-preprocessing
methods, they can be generally used for any learner. Due
to their flexibility, we only consider re-sampling methods in
the remainder of this paper, and analyze whether they can
improve the performance of several learners.

3 Learning classifier systems

Learning classifier systems (LCSs) are evolutionary on-line
rule-based learners characterized by evolving a single set
of rules. The rule set is incrementally updated through the
interaction with the environment and eventually improved
by the action of evolutionary algorithms. XCS (Wilson 1995,
1998), one of the best representatives of LCSs, uses a rein-
forcement learning scheme to evaluate the rule set, while
UCS (Bernadó-Mansilla and Garrell 2003) uses a supervised

3 A disjunct is a definition of a subconcept of the original concept.

123

Evolutionary rule-based systems for imbalanced data sets 215

learning scheme. In the following, both systems are described
in more detail.

3.1 Description of XCS

In the following, we provide a brief description of the dif-
ferent components of XCS. The reader is referred to Wilson
(1995, 1998) for more details about the system, and to Butz
and Wilson (2001) for an algorithmic description.

Representation. XCS evolves a population [P] of classifiers,
where each classifier has a rule and a set of associated para-
meters estimating the quality of the rule. Each rule has the
form: condition→ class. The condition specifies the set of
inputs where the classifier can be applied. For binary inputs,
the condition is usually represented in the ternary alphabet:
{0, 1, #}n , where n is the length of the input string. In this
case, a condition (c1, c2, . . . , cn) matches an input example
(x1, x2, . . . , xn), if and only if ∀i ci = xi ∨ ci = #. The
symbol #, called don’t care, allows the formation of genera-
lizations in the rule’s condition. If the input attributes are real,
the condition is codified as a set of intervals [li , ui]n , which
globally represents a hyper rectangle in the feature space.
The consequent of the rule specifies the class predicted by
the rule.

Each classifier has a set of parameters estimating the qua-
lity of the rule. The most important ones are: (a) the payoff
prediction p, an estimate of the payoff that the classifier will
receive if its condition matches the input and its class is
selected, (b) the prediction error ε, which estimates the ave-
rage error between the classifier’s prediction and the received
payoff, (c) the fitness F , an estimate of the accuracy of the
payoff prediction, and (d) the numerosity num, the number
of copies of the classifier in the population.

Performance component. At each time step, a training
example x is sampled. Given x , the system builds a match
set [M], which is formed by all the classifiers in [P] whose
conditions are satisfied by x . If the number of classes repre-
sented in [M] is less than a threshold θmna , new classifiers
are created through the covering operator. From [M], a class
is selected and sent to the environment. If XCS is in training
mode, the class is selected randomly. Thus, XCS explores the
consequences of all classes for each possible input. Other-
wise, when XCS is in test mode, the selected class is the
one that maximizes the expected payoff from the environ-
ment. The chosen class determines the action set [A], which
consists of all classifiers advocating that class. The action set
works as a niche where the parameter’s update procedure and
the genetic algorithm take place.

Parameters update. Once the class is sent to the environ-
ment, the environment returns a reward which is maximal if

the proposed class is the same as the training example, and
minimal (usually zero) otherwise. The reward r is used to
update the parameters of the classifiers in [A]. Thus, the pre-
diction of each classifier is updated according to: p← p +
β(r− p), where β (0 < β ≤ 1) is the learning rate. Next, the
prediction error: ε ← ε+β(|r − p|− ε). Then, we compute
the accuracy of the classifier as an inverse function of the
error, and finally, we update the fitness of each classifier as
F ← F + β(k′ − F), where k′ is the classifier’s accuracy
relative to the action set. Thus, fitness is an estimate of the
accuracy of the classifier’s prediction relative to the accu-
racies of the overlapping classifiers. This provides sharing
among the classifiers belonging to the same action set.

Search component. The search component in XCS is based
on a genetic algorithm. The GA triggers with a frequency
fixed by θG A and takes place in the action set. It selects two
parents from the current [A] with probability proportional to
their fitness and copies them. The copies undergo crossover
with probability χ and mutation with probability µ per allele.

Each offspring is introduced in the population, removing a
classifier if the population is full. The deletion probability of
a classifier is proportional to the size of the action sets where
the classifier has participated and inversely proportional to its
fitness (Kovacs 1999). This biases the search toward highly
fit classifiers, and at the same time balances the classifiers’
allocation in the different action sets.

3.2 Description of UCS

UCS (Bernadó-Mansilla and Garrell 2003) is a learning clas-
sifier system derived from XCS. It inherits the main features
of XCS, but specializes them for supervised learning tasks.
UCS mainly differs from XCS in two perspectives. Firstly,
the learning interaction is adjusted to a supervised learning
scheme. UCS benefits from knowing the class of the input
example since it only explores the correct class. Secondly, in
UCS, the accuracy is computed as the proportion of correct
predictions of the rule.

In the following, we briefly describe each component
of the system. For further details, the reader is referred
to Bernadó-Mansilla and Garrell (2003), Orriols-Puig and
Bernadó-Mansilla.

Representation. UCS inherits the rule representation of
XCS. Thus, each rule has the form: condition−→class.
Moreover, each rule consists of the following parameters:
(a) accuracy acc; (b) fitness F ; (c) correct set size cs; (d)
numerosity num; and (e) experience exp. Accuracy and fit-
ness are measures of the quality of the classifier. The correct
set size is the estimated average size of all the correct sets
where the classifier participates. Numerosity is the number

123

216 A. Orriols-Puig, E. Bernadó-Mansilla

of copies of the classifier, and experience is the number of
times that a classifier has belonged to a match set.

Performance component. In training mode, at each learning
iteration, UCS receives an input example x and its class c.
Then, the system creates the match set [M], which contains
all classifiers in the population [P] whose condition matches
x . From that, the correct set [C] is formed, which consists of
the classifiers in [M] that predict class c. If [C] is empty, the
covering operator is activated, creating a new classifier with
a generalized condition matching x , and predicting class c.
The remaining classifiers form the incorrect set ![C].

In test mode, a new input example x is provided, and UCS
must predict the class. To do this, the match set [M] is created.
All classifiers in [M] emit a vote, weighted by their fitness,
for the class they predict. The most-voted class is chosen as
the output.

Parameter updates. Each time a classifier participates in a
match set, its experience, accuracy, and fitness are updated.
Firstly, the experience is increased. Then, the accuracy is
computed as the proportion of correct classifications:

acc = #correct classi f ications

experience
(1)

Thus, accuracy is a cumulative average of correct classifica-
tions over all matches of the classifier. Next, the accuracy of
the classifier relative to the action set is computed as follows:

k′ = acccl · numcl
∑

cli∈[M] acccli · numcli
(2)

and then, the fitness is updated: F = F + β · (k′ − F),
where (0 < β ≤ 1) is the learning rate. Finally, each time
the classifier participates in [C], the correct set size cs is
updated. cs is computed as the arithmetic average of the size
of the correct sets where the classifier has taken part.

Search component. The discovery component is copied from
XCS, and is applied to the correct set. It selects two parents
from [C] with a probability that depends on the classifier’s
fitness. The two parents are copied, creating two new chil-
dren, which are recombined and mutated with probabilities χ

and µ respectively. Finally, each offspring is introduced into
the population, removing another classifier if the population
is full.

3.3 Evolutionary pressures in LCS

Several studies (Wilson 1998, Bernadó-Mansilla and Garrell
2003) experimentally show that both XCS and UCS tend to
evolve rule sets which are complete, consistent, and mini-
mal representations of the target concept. This behavior has
been theoretically supported by the interaction of two types

of evolutionary pressures (Butz 2006): the accuracy pressure,
which moves the search toward accurate rules, and the gene-
ralization pressure, which guides the search toward the most
general representations. Moreover, mutation results in a pres-
sure toward specificity. The fact that the GA is applied in
niches, while deletion is done over the whole population,
tends to make rules more general. The global interaction of
all these components favors the evolution of compact rule
sets consisting of accurate and maximally general rules.

4 Facetwise analysis of learning classifier systems

Goldberg emphasizes the relevance of the design decompo-
sition and facetwise analysis for the understanding of com-
plex systems, which permit a more effective and efficient
design to solve bounded difficult problems quickly, accura-
tely, and reliably (Goldberg 2002). This approach has been
closely followed to understand the impact that class imba-
lances cause in the different mechanisms of XCS and pro-
pose new approaches that overcome the detected drawbacks
(Orriols-Puig and Bernadó-Mansilla 2006, Orriols-Puig and
Bernadó-Mansilla 2007). Specifically, facetwise models have
been developed to predict (1) the maximum class imbalance
until which XCS would not over-generalize toward the majo-
rity class, and (2) the minimum population size that permits
enough diversity of rules of the minority class to let the gene-
tic pressures take off. In the following, the theoretical analy-
sis is rewritten to be valid for both LCSs, and an algorithm
is proposed to let both LCSs self-adapt depending on the
imbalance level detected during learning.

Imbalance bound to prevent over-generalization. In Orriols-
Puig and Bernadó-Mansilla (2006), a bound on the maximum
imbalance ratio allowed in XCS is derived. The imbalance
ratio is defined as the fraction between the number of ins-
tances of the majority class and the minority class. The bound
defines the maximum imbalance ratio with which XCS can
deal without over-generalizing toward the majority class:

ir ≤ 2Rmax

ε0
(3)

where Rmax is the maximum reward that the system can
receive (in classification tasks, Rmax = 1000), and ε0 is the
maximum error that a rule can have to be considered accurate
(usually, ε0 = 1). Without loss of generality, this bound can
be extended for UCS by recognizing that ε0 = 1 − acc0.
If the inequality of Eq. 3 holds, it guarantees that neither
XCS nor UCS will over-generalize toward the majority class.
Moreover, the learning rate β and θG A, which controls the
frequency of activation of the GA, were identified as two cri-
tical parameters that need to be configured properly to satisfy
the imbalance bound.

123

Evolutionary rule-based systems for imbalanced data sets 217

Algorithm 4.1: Pseudocode for the online adaptation
algorithm.

Algorithm: OnlineAdaptation (cl is classifier)1

if cl is overgeneral then2

irn := expmaj (cl)
expmaj+expmin (cl)3

if (irn < 2Rmax
ε0
∧ numcl > num[P]) then4

Adapt β and θG A based on irn5
end6

end7

Population size bound. Next, in Orriols-Puig and Bernadó-
Mansilla (2007) a bound was derived on the minimum popu-
lation size required to guarantee that XCS would initially be
supplied with enough rules, and so, the genetic search would
pressure toward the discovery of the minority class. The same
bound is valid for UCS, which can be written as follows:

N = O [n · (1+ ir)] (4)

in which n is the number of classes of the problem and ir
the imbalance ratio. This bound shows up the robustness
of XCS and UCS when dealing with imbalances, indicating
that the population size only needs to increase linearly with
the imbalance ratio to ensure the discovery of the minority
class.

On-line adaptation algorithm. Both bounds were individu-
ally validated using artificial problems. The patchquilt inte-
gration of them resulted in a theory providing guidelines on
how to set the critical parameters of both LCSs. For a fixed
population size, β and θG A should be configured according
to the imbalance ratio between large niches and small niches4

that lay closely on the feature space (irn). Nonetheless, irn is
unknown for real-world problems and can hardly be estima-
ted before running LCSs. Thus, we propose an algorithm that
estimates irn from information that intrinsically resides in
over-general classifiers. Over-general classifiers cover seve-
ral niches that lay nearby in the feature space. By computing
the number of examples covered per class of an over-general
classifier, we can estimate the imbalance ratio between these
niches. Note that this strategy permits not only to detect small
disjuncts, but also to calculate an estimate of the imbalance
ratio between these small disjuncts and their neighbors.

The on-line adaptation algorithm works as follows (see
the pseudo code in Algorithm 4.1). After checking that the
classifier is over-general, it estimates irn from the number of
instances covered per class (labeled as exp in the algorithm).

4 Note that, in LCSs terms, a disjunct equals to a niche. Thus irn reflects
the imbalance ratio between big and small disjuncts.

Next, if irn satisfies the imbalance bound (see formula 3),
and the classifier is numerous enough (numcl > num[P]),
β and θG A are updated according to the formulas presented
in Orriols-Puig and Bernadó-Mansilla (2006). Next section
analyzes the behavior of XCS and UCS with the on-line adap-
tation algorithm on highly imbalanced data sets.

5 LCSs in artificial domains

This section explores the competence of XCS and UCS with
on-line adaptation of parameters to discover cases that are
infrequently sampled. For this purpose, we use the imbalan-
ced multiplexers, a family of problems of bounded difficulty
that permits to control separately the concept complexity and
the imbalance complexity. The multiplexer (Wilson 1995) is
one of the most used benchmarks in the LCS field. By using
the multiplexer problem, we enable replication of studies on
standard XCS and allow comparison with previous results.

5.1 The imbalanced multiplexer

The multiplexer is defined for binary strings of size �, where
the first log2 � bits are the address bits, and the remaining
bits are the position bits. The output is the value of the posi-
tion bit referred by the decimal value of the address bits. For
example, in the 6-bit multiplexer (i.e., � = 6), f(00 1001)= 1
or f(10 0101)= 0. The concept complexity of the multiplexer
is controlled by the input length �. To obtain the correct clas-
sification model, learners need to discover the linkages bet-
ween the address bits and the position bits, which increase
exponentially with �. For this reason, multiplexers pose a big
challenge to many well-known learners (Bernadó-Mansilla
and Garrell 2003), especially as � increases.

In the imbalanced multiplexer (Orriols-Puig and Bernadó-
Mansilla 2006), the imbalance complexity is controlled by
under-sampling instances of the class labeled as “1”. That is,
when required, a new input example is selected randomly.
If the example belongs to the class “0”, it is given to the
system. Otherwise, it is accepted with a certain probability.
In the remainder of the paper, we use the imbalance ratio ir—
that is, the ratio between the number of instances of class “0”
(majority class) and class “1” (the minority class)—to refer
to the imbalance complexity.

5.2 Experimentation

In Orriols-Puig and Bernadó-Mansilla (2006), XCS was
shown to be sensitive to moderate imbalance ratios; particu-
larly, XCS could discover the minority class for imbalance
ratios up to ir = 32 in the 11-bit multiplexer. To analyze the
improvement introduced by the on-line adaptation algorithm,

123

218 A. Orriols-Puig, E. Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
P

 R
at

e
*

T
N

 R
at

e

Learning Iterations

(a) (b)

(c) (d)

XCS in the 11-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
P

 R
at

e
*

T
N

 R
at

e

Learning Iterations

XCS in the 20-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
P

 R
at

e
*

T
N

 R
at

e

Learning Iterations

UCS in the 11-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

T
P

 R
at

e
*

T
N

 R
at

e

Learning Iterations

UCS in the 20-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

Fig. 1 Incremental TP rate of XCS and UCS in the 11-bit and 20-bit multiplexers for imbalance ratios ranging from ir = 1 to ir = 256

we ran XCS and UCS5 in the 11-bit and 20-bit multiplexers
and imbalance ratios from ir = 1 (completely balanced data
set) to ir = 256. Populations were sized to N = {800, 2,000}
for XCS and to N = {400, 1,000} for UCS in the 11-bit and
the 20-bit multiplexer, respectively. As UCS works under a
supervised learning scheme, and so, does not need to explore
all the classes in the feature space, we configured smaller
population sizes for UCS as suggested in Bernadó-Mansilla
and Garrell (2003).

As a metric of performance for imbalanced data sets, the
average accuracy rate is biased toward the majority class.
Instead, we measured the performance with the proportion
of instances of the minority class correctly classified (TP rate)

5 To allow replicability, XCS’s parameters were configured with the
standard values typically used in the literature: α = 0.1, ε0 = 1, ν = 5,
θG A = 25, χ = 0.8, µ = 0.04, θdel = 20, δ = 0.1, θsub = 200,
P# = 0.8. For UCS, the same parameters were used but: ν = 10 and
acc0 = 0.99. See Wilson (1998), Bernadó-Mansilla and Garrell (2003)
for notation details.

and the proportion of instances of the majority class correctly
classified (TN rate). Figure 1 shows the product of TP rate
and TN rate of XCS and UCS averaged over 10 runs. Note
that the graph shows the incremental improvement of both
systems over the training iterations, where a training iteration
corresponds to sampling a single example of the data set.

In the 11-bit multiplexer, we observed that XCS and UCS
need more learning iterations to achieve 100% performance
as ir increases (see Fig. 1a, c). Specifically, the TN rate needs
only about 5,000 iterations to reach 100% in all runs. Thus,
all the error is concentrated on the prediction of the minority
class. This is because minority class instances are sampled
less frequently, and so, accurate rules of the minority class
receive a smaller number of genetic events. Note that the self-
adaptive algorithm allows both LCSs to discover the mino-
rity class for high imbalance ratios, while previous results
in Orriols-Puig and Bernadó-Mansilla (2006) indicated that
XCS only could learn the optimal rule set with imbalance
ratios up to ir = 32. The results also illustrate that UCS

123

Evolutionary rule-based systems for imbalanced data sets 219

Table 1 Description of the
data sets properties

The columns describe the
data set identifier (Id.), the
original name of the data set
(Data set), the number of
problem instances (#Ins.), the
number of attributes (#At.), the
proportion of minority class
instances (Min. (%)), the
proportion of majority class
instances (Maj. (%)), and the
imbalance ratio (ir)

Id. Data set #Ins. #At. Min. (%) Maj. (%) ir

bald1 balance-scale disc. 1 625 4 7.84 92.16 11.76

bald2 balance-scale disc. 2 625 4 46.08 53.92 1.17

bald3 balance-scale disc. 3 625 4 46.08 53.92 1.17

bpa bupa 345 6 42.03 57.97 1.38

glsd1 glass disc. 1 214 9 4.21 95.79 22.75

glsd2 glass disc. 2 214 9 6.07 93.93 15.47

glsd3 glass disc. 3 214 9 7.94 92.06 11,59

glsd4 glass disc. 4 214 9 13.55 86.45 6.38

glsd5 glass disc. 5 214 9 32.71 67.29 2.06

glsd6 glass disc. 6 214 9 35.51 64.49 1.82

h-s heart-disease 270 13 44.44 55.56 1.25

pim pima-inidan 768 8 34.90 65.10 1.87

tao tao-grid 1888 2 50.00 50.00 1.00

thyd1 thyroid disc. 1 215 5 13.95 86.05 6.17

thyd2 thyroid disc. 2 215 5 16.28 83.72 5.14

thyd3 thyroid disc. 3 215 5 30.23 69.77 2.31

wavd1 waveform disc. 1 5000 40 33.06 66.94 2.02

wavd2 waveform disc. 2 5000 40 33.84 66.16 1.96

wavd3 waveform disc. 3 5000 40 33.10 66.90 2.02

wbcd Wis. breast cancer 699 9 34.48 65.52 1.90

wdbc Wis. diag. breast cancer 569 30 37.26 62.74 1.68

wined1 wine disc. 1 178 13 26.97 73.03 2.71

wined2 wine disc. 2 178 13 33.15 66.85 2.02

wined3 wine disc. 3 178 13 39.89 60.11 1.51

wpbc wine disc. 4 198 33 23.74 76.26 3.21

converges more quickly than XCS, especially for the highest
ir . In fact, as UCS is specialized for classification tasks, its
convergence time was expected to be lower than XCSs time.

Figure 1b, d show the behavior of XCS and UCS on the 20-
bit multiplexer. The results show that, with a higher concept
complexity, both LCSs need more learning iterations to solve
an experiment with the same ir as before. Again, we observe
that (1) the convergence time is higher as ir increases and
(2) UCS needs lower convergence time than XCS.

6 LCSs in data mining

This section analyzes the performance of XCS and UCS in
various real-world imbalanced problems. The understanding
of LCSs behavior on real-world problems is really compli-
cated since they may have different sources of complexity
which can be hardly identified; the interaction of all these
complexities may limit the maximum performance that can
be achieved. To evaluate the competence of XCS and UCS,
we compare their performance to three highly competent
learners. In the following, we first present the methodology
and then, we compare XCS and UCS with the other learners.

6.1 Methodology

We used a collection of 25 real-world problems with different
characteristics and imbalance ratios, which were constructed
as follows. We selected the following 12 problems: balance-
scale, bupa, glass, heart disease, pima indian diabetes,
tao, thyroid disease, waveform, Wisconsin breast cancer
database, Wisconsin diagnostic breast cancer, wine recog-
nition data, and Wisconsin prognostic breast cancer. All the
real-world problems were obtained from the UCI repository
(Blake and Merz 1998), except for tao, which was selected
from a local repository (Bernadó-Mansilla and Garrell 2003).
To force higher imbalance ratios, we discriminated each pair
of classes in each data set, considering each discrimination
as a new problem. Thus, n two-class problems were created
from a problem with n classes (n > 2), resulting in a testbed
that consisted of 25 two-class real-world problems. Table 1
gathers the most relevant features of the problems. Note that
the imbalance ratio between niches irn can be much higher
than the imbalance ratio of the learning data set reported in
the table.

The performance was measured with the product of
TP rate and TN rate. To have good estimates, we ran the

123

220 A. Orriols-Puig, E. Bernadó-Mansilla

Table 2 Comparison of C4.5,
SMO, IBk, XCS and UCS on
the 25 real-world problems

Each cells depicts the average
value of TP rate× TN rate and
the standard deviation. The row
labeled Avg gives the
performance average (and
standard deviation) of each
method over the 25 data sets

C4.5 SMO IB5 XCS UCS

bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

bald2 69.28 ± 7.68 83.98 ± 7.30 81.16 ± 5.54 71.22 ± 5.02 69.77 ± 8.19

bald3 71.21 ± 5.80 85.69 ± 8.40 82.11 ± 8.67 70.07 ± 7.23 73.65 ± 6.66

bpa 33.50 ± 10.30 0.00 ± 0.00 32.40 ± 9.44 47.22 ± 10.92 47.21 ± 11.22

glsd1 79.60 ± 41.93 0.00 ± 0.00 69.32 ± 48.30 20.00 ± 42.16 59.11 ± 50.87

glsd2 33.95 ± 46.69 15.00 ± 33.75 24.13 ± 35.36 59.40 ± 45.02 74.25 ± 41.89

glsd3 28.78 ± 41.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 19.39 ± 25.17

glsd4 73.36 ± 32.31 80.33 ± 24.33 77.07 ± 24.98 80.33 ± 24.33 83.61 ± 19.53

glsd5 65.35 ± 20.36 9.58 ± 9.42 62.26 ± 21.14 67.82 ± 18.71 64.45 ± 21.46

glsd6 52.03 ± 17.13 0.00 ± 0.00 61.74 ± 18.23 61.08 ± 11.21 57.90 ± 14.20

h-s 63.70 ± 11.02 68.80 ± 8.87 64.40 ± 14.65 60.32 ± 15.59 54.87 ± 13.61

pim 44.96 ± 5.77 48.36 ± 5.60 46.91 ± 4.84 46.06 ± 6.37 47.88 ± 6.60

tao 91.00 ± 2.37 70.57 ± 6.45 94.25 ± 2.10 82.90 ± 5.42 78.79 ± 7.18

thyd1 87.53 ± 16.53 76.67 ± 22.50 76.67 ± 22.50 78.69 ± 22.01 92.32 ± 13.66

thyd2 93.12 ± 13.21 54.17 ± 24.92 77.90 ± 21.40 82.50 ± 24.98 93.12 ± 12.09

thyd3 87.31 ± 13.18 33.81 ± 21.35 81.12 ± 16.16 89.74 ± 11.75 87.97 ± 14.89

wavd1 67.80 ± 3.82 78.65 ± 4.27 72.28 ± 3.97 80.43 ± 2.97 76.35 ± 2.10

wavd2 62.54 ± 3.53 72.35 ± 2.71 67.49 ± 1.75 73.48 ± 2.88 71.50 ± 3.83

wavd3 68.61 ± 2.18 79.61 ± 2.04 74.14 ± 2.86 81.01 ± 3.99 76.62 ± 4.14

wbcd 89.10 ± 4.57 92.72 ± 5.32 92.72 ± 5.36 92.29 ± 5.50 94.11 ± 4.23

wdbc 88.83 ± 4.98 94.27 ± 3.28 93.47 ± 3.64 90.30 ± 4.61 89.67 ± 5.61

wined1 85.58 ± 14.57 98.46 ± 3.24 94.98 ± 8.29 99.23 ± 2.43 99.23 ± 2.43

wined2 91.83 ± 8.50 97.51 ± 5.62 97.50 ± 4.03 99.17 ± 2.64 91.76 ± 10.02

wined3 87.64 ± 11.83 97.14 ± 6.02 87.94 ± 12.53 93.43 ± 7.15 85.36 ± 9.55

wpbc 33.96 ± 11.01 9.37 ± 16.98 28.98 ± 16.49 20.99 ± 16.38 16.97 ± 21.63

Avg 66.02 ± 14.01 53.88 ± 8.90 65.64 ± 12.49 65.91 ± 11.97 68.23 ± 13.23

experiments on a ten-fold cross validation (Dietterich 1998).
We used the multiple comparison Friedman’s test (Friedman
1937, 1940) to test whether all the learning algorithms perfor-
med equivalently on average. Moreover, the performance of
each pair of learning algorithms on each problem was com-
pared using a Wilcoxon signed-ranks test (Wilcoxon 1945).

Both LCSs were compared with three of the most com-
petent learners: C4.5 (Quinlan 1995), SMO (Platt 1998), and
IBk (Aha et al. 1991). C4.5 is a decision tree derived from the
ID3 algorithm. SMO is a support vector machine that imple-
ments the Sequential Minimal Optimization algorithm. IBk
is a nearest neighbor algorithm. All these machine learning
methods were run using WEKA (Witten and Frank 2005),
and the recommended default configuration was used. We
selected the model for SMO as follows. We ran SMO with
polynomial kernels of order 1, 5, and 10, and with Gaussian
kernels. We first discarded SMO with Gaussian kernels since
it achieved 0% performance in the majority of problems as
it misclassified all the instances of the minority class. Then,
we ranked the results obtained with the three polynomial
kernels, and chose the model that maximized the average

rank: SMO with lineal kernels. In this way we avoid using
particular configurations for each problem. We followed the
same process with IBk, and here we provide the results with
k = 5. XCS and UCS were configured as previously spe-
cified, except for N = 6, 400, r0 = 0.6, and m0 = 0.1.
Finally, we did not introduce asymmetric cost functions in
any system, although the majority of them permit it. In this
way, we aim at analyzing the intrinsic capabilities of each
method to deal with class imbalances.

6.2 Results

Table 2 summarizes the performance of the different lear-
ners on the 25 data sets. The overall results highlight which
problems are more complex. All learners presented poor per-
formance in the problems bald1, bpa, glsd1, glsd3, pim, and
wpbc. Examining the measure of performance, we obser-
ved that all learners had a low TP rate, which indicates that
the minority class is not well defined in these problems.
Most of these data sets are highly imbalanced; so, the imba-
lance ratio turns up to be an important factor that hinders

123

Evolutionary rule-based systems for imbalanced data sets 221

the performance of the tested learners. Nonetheless, the pro-
blems bpa and pim are almost balanced, so there may be
other complexity factors affecting the learning performance
such as small disjuncts.

The Friedman multiple comparison test did not permit
to reject the null hypothesis that all the learning methods
performed the same on average with p = 0.2519. Conse-
quently, post hoc tests could not be applied since no signi-
ficant differences between the multiple learners were found
(Demšar 2006). This result is not surprising; in fact, in gene-
ral terms, the no-free-lunch theorem (Wolpert 1992, 1996)
justifies that no learning algorithm can systematically out-
perform the others. However, we are interested in methods
that are robust in a wide range of problems. To analyze that,
we applied statistical pairwise comparisons according to a
Wilcoxon signed-ranks test at 0.95 confidence level. Table 3
shows the results. The • and ◦ symbols denote a signifi-
cant degradation/improvement of the given learning algo-
rithm with respect to another in a particular data set.

The overall degradation-improvement comparison (see the
row labeled Score) permits to rank the quality of the five lear-
ners. Under this criterion, XCS appears as the most robust
method with a ratio of degradation-improvement of 8-20,
followed closely by IBk and UCS. Both LCSs show the
poorest results with respect to the other learners in the pro-
blems bald2, bald3, and tao, which have a low imbalance
ratio. In Bernadó-Mansilla and Ho (2005), the hyper rec-
tangle codification used by XCS and UCS was shown to
be inappropriate when the boundary between classes in the
learning data set is curved. This is the case of the tao pro-
blem (Bernadó-Mansilla and Ho 2005). We hypothesize that
bald2 and bald3 are also characterized by curved bounda-
ries, which would explain the degradation in performance of
both LCSs. This hypothesis is also supported by the results
obtained with IBk, which improves XCS and UCS in the three
problems mentioned. IBk is not affected by curved bounda-
ries since it decides the output as the majority class of the k
nearest neighbors.

The two last methods in the ranking are C4.5 and SMO.
The surprisingly poor rank of C4.5 is mainly caused by the
results obtained in the problems wavd1, wavd2, and wavd3,
in which C4.5 is outperformed by all the other learners. These
results are not correlated with the imbalance ratio, so there
may be other types of complexity that make C4.5 perform
poorly in these problems. Finally, SMO is the last ranked
method. It shows a tendency to over-generalize toward the
majority class in problems with moderate and high class
imbalances such as glsd1, glsd3, and glsd6, in which the
TP rate is zero. The same behavior is shown in problems
with low imbalance ratios such as the bpa problem, which
we identified as a difficult problem may be due to small dis-
juncts. However, we can also find significant improvements
with respect to other learners in the problems: bald2, bald3

Table 3 Comparison of C4.5, SMO, IBk, XCS and UCS on the 25
real-world problems

C4.5 SMO IBk XCS UCS

bald1

bald2 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bald3 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bpa • • ◦ • • •• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
glsd1 ◦◦ • • • ◦ • ◦
glsd2 •• • ◦ ◦◦
glsd3

glsd4

glsd5 ◦ • • •• ◦ ◦ ◦
glsd6 ◦ • • •• ◦ ◦ ◦
h-s ◦ ◦ ••
pim

tao • ◦ ◦◦ • • •• ◦ ◦ ◦◦ • • ◦◦ • • •◦
thyd1

thyd2 ◦ • • •• ◦ ◦ ◦
thyd3 ◦ • • •• ◦ ◦ ◦
wavd1 • • •• ◦◦ • • •◦ ◦ ◦ ◦ • ◦ ◦
wavd2 • • •• ◦◦ • • •◦ ◦◦ ◦◦
wavd3 • • •• ◦◦ • • ◦ ◦ ◦ ◦ •◦
wbcd • • • ◦ ◦ ◦
wdbc • ◦◦ ◦ • •
wined1 • • • ◦ ◦ ◦
wined2

wined3 ◦ ◦ ••
wpbc

Score 26–10 29–18 11–22 8–20 14–18

Scoreir>5 0–3 9–0 1–2 1–2 0–4

For a given problem, the • and ◦ symbols indicate that the learning
algorithm of the column performed significantly worse/better than ano-
ther algorithm at 0.95 confidence level (pairwise Wilcoxon signed-ranks
test). Score counts the number of times that a method performed worse–
better, and Scoreir>5 does the same but only for the highest imbalanced
problems (ir > 5)

and wdbc. Thus, these results indicate that SMO performs
competitively in a restricted set of problems, but it is affec-
ted by some complexities, among which we may find the
imbalance ratio.

Finally, let us compare the learners in terms of imbalance
robustness. To do that, we consider the most imbalanced pro-
blems: glsd1, glsd2, bald1, glsd3, glsd4, thyd1, and thyd2,
which have imbalance ratios ranging from ir = 5 to ir = 23.

In these problems, UCS appears to be the best learner, with a
degradation-improvement ratio of 0–4, followed closely by
C4.5. These results agree with several papers which indi-
cate that C4.5 can deal with high amounts of class imbalance
(Japkowicz and Stephen 2002, Batista et al. 2004). IBk and
XCS are the two next methods in the ranking. IBk may suffer

123

222 A. Orriols-Puig, E. Bernadó-Mansilla

from small disjuncts, since minority class regions are sur-
rounded by many instances of the majority class, concentra-
ting a high amount of the test error around the small disjuncts.
XCS also appears to be more sensitive to class imbalances
than UCS and C4.5. This confirms the results observed in
Sect. 4, which indicate that XCS is less robust than UCS in
problems with the highest imbalance ratios. Finally, SMO
performs poorly in the most imbalanced data sets. As men-
tioned above, we tried other orders of polynomial kernels,
as well as a Gaussian kernel, but no significant improvement
was found.

7 Resampling the training data sets

Resampling techniques have been said to boost the perfor-
mance of several learners on imbalanced data sets (Chawla
et al. 2002, Japkowicz and Stephen 2002). They are based on
balancing the proportion of instances per class in the training
data set by either over-sampling instances of the minority
class or under-sampling instances of the majority class. In
this section, we aim at analyzing if resampling techniques
also improve the performance of LCSs and which of them is
best suited combined with each learning algorithm.

7.1 Methodology and resampling techniques

In our analysis, we chose four resampling techniques which
have demonstrated to be highly competitive in reduced test-
beds:

Random over-sampling. This is a non-heuristic method that
replicates the instances of the minority class until there is the
same proportion of instances per class in the training data
set. Some authors have suggested that over-sampling may
cause over-fitting, since it makes exact copies of some mino-
rity class instances. Nevertheless, this method has shown to
perform competitively in many comparisons (Japkowicz and
Stephen 2002, Chawla et al. 2002).

Under-sampling based on Tomek Links. This method con-
sists in eliminating instances of the majority class that do not
belong to any Tomek Link (Tomek 1976) until the data set is
balanced. A Tomek Link is a pair of instances (Ii , I j) that lay
on the class boundary.

Synthetic minority over-sampling technique (SMOTE). The
SMOTE (Chawla et al. 2002) is an over-sampling method that
creates new minority class instances by interpolating several
minority class examples that lay nearby in the feature space.
It is said that this method avoids overfitting by creating rather
than replying instances of the minority class.

Clustered SMOTE (CSMOTE). The CSMOTE (Orriols-Puig
2006) is an over-sampling method that derives from SMOTE,
but introduces two modifications. First, new instances of the
minority class are generated from minority class examples
that belong to the same cluster. Second, it introduces a clea-
ning phase that removes all instances whose n neighbors
belong to the same class.

We applied each resampling algorithm to the 10 folds of
each data set, obtaining 100 new problems, and ran C4.5,
SMO, IBk, XCS, and UCS on these data sets. Learners were
configured as specified in Sect. 6.1.

7.2 Results

We analyzed the performance of each resampling technique
and each learner (the complete tables are not shown for
brevity). The multiple comparison Friedman’s test did not
permit to reject the hypothesis that all resampling methods
performed the same on average. However, significant impro-
vements were shown in particular problems by using a pair-
wise t-test. To summarize the results, Table 4 ranks the perfor-
mance obtained with the original and the resampled data sets
for each learner. For each classifier, the resampling method
that places first is marked in bold. The last column provides
the average rank and the standard deviation for each resam-
pling method.

The results show that, in general, data set resampling
yields better learning performance. On average, the best
results are achieved with random over-sampling and SMOTE.
The empirical observations agree with some studies conclu-
ding that over-sampling is more effective than under-
sampling in C4.5 (Japkowicz and Stephen 2002, Batista et al.
2004) and SMO (Japkowicz and Stephen 2002). The results
obtained herein allow us to extend this conclusion to IBk,
XCS, and UCS. We hypothesize that under-sampling may
cause a problem of sparsity as it removes instances that may
be needed for learning. In fact, under-sampling is better ran-
ked in the problems pim, wavd1, wavd2, and wavd3, which
have the highest number of instances per dimension,6 and
poorly ranked in the problems with the lowest number of
instances per dimension: wdbc, wined1, wined2, wined3, and
wpbc.

The standard deviation of the rank somehow denote the
dependency of each re-sampling method on the characteris-
tics of the training domain. For C4.5, SMOTE is the best
ranked re-sampling method with a low deviation. In most
of the cases, SMOTE is the first or the second method in
the ranking. These results indicate that SMOTE should be
used in combination with C4.5 to deal with class imbalances.

6 The ratio between the number of instances and the number of attri-
butes of a problem has been proposed elsewhere (Bernadó-Mansilla and
Ho 2005) as a measure of sparsity.

123

Evolutionary rule-based systems for imbalanced data sets 223

Table 4 Intra-method ranking
for original and rebalanced
data sets for C4.5, SMO, IBk,
XCS, and UCS

Columns “first” to “fifth”
indicate the number of times
that each re-sampling technique
was ranked in the correspondent
position. The last column shows
the average rank and its standard
deviation

Resamp. method First Second Third Fourth Fifth Avg. ± Std.

C4.5

Original 6 2 5 9 3 3.04 ± 1.87

Oversampling 7 4 8 4 2 2.60 ± 1.60

Undersampling TL 0 5 7 6 7 3.60 ± 1.20

SMOTE 10 8 3 2 2 2.12 ± 1.54

CSMOTE 2 6 2 4 11 3.64 ± 2.07

SMO

Original 6 2 2 4 11 3.48 ± 2.73

Oversampling 11 11 3 0 0 1.68 ± 0.46

Undersampling TL 2 8 9 3 3 2.88 ± 1.23

SMOTE 3 3 8 7 4 3.24 ± 1.46

CSMOTE 3 1 3 11 7 3.72 ± 1.56

IBk

Original 6 6 2 6 5 2.92 ± 2.23

Oversampling 4 8 11 1 1 2.48 ± 0.89

Undersampling TL 4 2 5 4 10 3.56 ± 2.17

SMOTE 10 4 2 7 2 2.48 ± 2.09

CSMOTE 1 5 5 7 7 3.56 ± 1.45

XCS

Original 3 5 2 6 9 3.52 ± 2.09

Oversampling 7 5 4 1 8 2.92 ± 2.63

Undersampling TL 1 8 10 6 0 2.84 ± 0.69

SMOTE 11 3 2 6 3 2.48 ± 2.33

CSMOTE 3 4 7 6 5 3.24 ± 1.62

UCS

Original 2 4 8 5 6 3.36 ± 1.51

Oversampling 6 5 5 7 2 2.76 ± 1.70

Undersampling TL 5 4 7 7 2 2.88 ± 1.55

SMOTE 7 11 4 1 2 2.20 ± 1.28

CSMOTE 5 1 1 5 13 3.80 ± 2.48

For SMO and IBk, over-sampling is the best ranked method
and, at the same time, it shows a very low standard devia-
tion. Consequently, SMO and IBk should be combined with
random over-sampling in imbalanced domains. Note that,
for IBk, over-sampling and SMOTE have the same average
rank. However, SMOTE has a much higher standard devia-
tion, which indicates that its behavior highly depends on the
domain. For XCS, the best ranked re-sampling method, i.e.,
SMOTE, has one of the highest standard deviations. Thus, the
behavior of this combination depends on the characteristics
of the data. In this case, it should be more adequate to com-
bine XCS with under-sampling based on Tomek Links, since
it has the second best average rank and a very low standard
deviation. For UCS, the best and the most robust re-sampling
method is SMOTE.

Finally, let us note that, in some cases, the best results
are achieved with the original data set. For example, a detai-

led inspection (not shown for brevity) revealed that the per-
formance of many learners worsens when the data sets are
re-sampled. This happens in h-s, tao, wined1, wined2, and
wined3. This indicates that re-sampling the training instances
may introduce other complexities, or even may create new
small disjuncts around the feature space.

8 Summary and conclusions

This paper showed that evolutionary on-line rule-based sys-
tems, usually called LCS, can successfully deal with the chal-
lenges posed by learning from imbalances, mainly related
to the disproportion of instances per class in the training
data set and to the need of learners to create small disjuncts
(or niches in LCSs terms) in the knowledge model. Theore-
tical analyses indicated that XCS and UCS are robust to high
imbalance ratios if some critical parameters are configured

123

224 A. Orriols-Puig, E. Bernadó-Mansilla

according to the ratio of the size between big and small dis-
juncts irn . As irn is not known a priori, and can hardly be
estimated, we proposed a self-adaptive method that estimates
irn on-line and lets LCSs adapt themselves so that accurate
small disjuncts can be evolved for infrequent cases. Results
on artificially imbalanced problems supported the theoretical
analyses, demonstrating that both LCSs can model infrequent
cases and classes.

In real-world problems, LCSs were among the best perfor-
mers, compared with instance-based learners, induction trees
and support-vector machines. Although the set of real-world
problems used in the experiments did not contain high imba-
lance ratios, there is uncertainty about whether they contai-
ned small disjuncts or other mixed complexity factors. This
is a common problem when we test the algorithms in real-
world problems. Our proposal as a further work is to study
measures that evaluate the presence of small disjuncts in the
feature space and try to relate the algorithms’ performance to
such complexities. This would probably allow us to unders-
tand in which cases each algorithm is superior and provide
guidelines toward the selection of particular algorithms given
a data set characterization.

Although the learners may be robust to class imbalances,
re-sampling techniques usually lead to better accuracy rates.
In general, over-sampling techniques were preferred over
under-sampling. Nevertheless, none of the re-sampling tech-
niques systematically outperformed the others and, for a par-
ticular data set, the best re-sampling method depended on
the learner. In fact, re-sampling methodologies change the
geometry of the data set. Thus, to justify such dependencies,
we need to seek for the geometrical characterization of the
original data set, and analyze the changes introduced by the
different re-sampling techniques. Once we showed that LCSs
are highly competitive methods for dealing with imbalances,
our future work is to continue investigating on the imbalance
characterization of real-world data sets, which can lead us to
provide guidelines for re-sampling and learner selection.

Acknowledgments The authors are grateful to the three anonymous
reviewers for their comments on earlier darfts of this paper. The authors
thank the support of Enginyeria i Arquitectura La Salle, Ramon Llull
University, as well as the support of Ministerio de Ciencia y Tecnología
under project TIN2005-08386-C05-04, and Generalitat de Catalunya
under Grants 2005FI-00252 and 2005SGR-00302.

References

Aha DW, Kibler DF, Albert MK (1991) Instance-based learning algo-
rithms. Mach Learn 6(1):37–66

Batista G, Prati RC, Monrad MC (2004) A study of the behavior of seve-
ral methods for balancing machine learning training data. SIGKDD
Explor Newsl 6(1):20–29

Bernadó-Mansilla E, Garrell JM (2003) Accuracy-based learning clas-
sifier systems: Models, analysis and applications to classification
tasks. Evol Comput 11(3):209–238

Bernadó-Mansilla E, Ho TK (2005) Domain of competence of XCS
classifier system in complexity measurement space.. IEEE Trans
Evol Comput 9(1):1–23

Blake CL, Merz CJ (1998) UCI repository of machine learning data-
bases. University of California. http://www.ics.uc.edu/~mlearn/
MLRepository.html

Butz MV (2006) Rule-based evolutionary online learning systems: a
principled approach to LCS analysis and design. In: Studies in
fuzziness and soft computing, vol 109. Springer, New Yok

Butz MV, Wilson SW (2001) An algorithmic description of XCS. In:
Lanzi PL, Stolzmann W, Wilson SW (eds) Advances in learning
classifier systems: proceedings of the third international workshop.
Lecture notes in artificial intelligence, vol 1996. Springer, New
York, pp 253–272

Carvalho DR, Freitas AA (2000) A hybrid decision tree/genetic algo-
rithm for coping with the problem of small disjuncts in data mining.
In: Proceedings of GECCO’00. Morgan Kaufmann, San Francisco,
pp 1061–1068

Chawla NV, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE: syn-
thetic minority over-sampling technique. J Artif Intell Res 16:
321–357

Demšar J (2006) Statistical comparisons of classifiers over multiple
data sets. J Mach Learn Res 7:1–30

Dietterich TG (1998) Approximate statistical tests for comparing
supervised classification learning algorithms. Neural Comp
10(7):1895–1924

Friedman M (1937) The use of ranks to avoid the assumption of norma-
lity implicit in the analysis of variance. J Am Stat Assoc 32:675–
701

Friedman M (1940) A comparison of alternative tests of significance
for the problem of m rankings. Ann Math Stat 11:86–92

Goldberg DE (2002) The design of innovation: lessons from and for
competent genetic algorithms, 1 edn. Kluwer Academic Publi-
shers, Dordrecht

Holland JH (1976) Adaptation. In: Rosen R, Snell F (eds) Progress in
theoretical biology, vol. 4. Academic Press, New York, pp 263–293

Holte RC, Acker LE, Porter BW (1989) Concept learning and the pro-
blem of small disjuncts. In: IJCAI’89, pp 813–818

Japkowicz N, Stephen S (2000) The class imbalance problem: signifi-
cance and strategies. In: IC-AI’00, vol 1, pp 111–117

Japkowicz N, Stephen S (2002) The class imbalance problem: a syste-
matic study. Intell Data Anal 6(5):429–450

Jo T, Japkowicz N (2004) Class imbalances versus small disjuncts.
SIGKDD Explor 6(1):40–49

Kovacs T (1999) Deletion schemes for classifier systems. In:
GECCO’99. Morgan Kaufmann, San Francisco, pp 329–336

Orriols-Puig A (2006) Facetwise analysis of learning classifier systems
in imbalanced domains. Technical report, Ramon Llull University

Orriols-Puig A, Bernadó-Mansilla E (2006) Bounding XCS parameters
for unbalanced datasets. In: GECCO ’06. ACM Press, New York,
pp 1561–1568

Orriols-Puig A, Bernadó-Mansilla E (2007) Modeling XCS in
class imbalances: population size and parameters’ settings. In:
GECCO’07. ACM Press, New York, pp 1838–1845

Orriols-Puig A, Bernadó-Mansilla E (2008) A further look at UCS clas-
sifier system. In: Advances at the frontier of LCS. Springer, New
York (in press)

Platt J (1998) Fast training of support vector machines using sequential
minimal optimization. In: Advances in Kernel methods—support
Vector Lear. MIT Press, Cambridge

Quinlan JR (1995) C4.5: programs for machine learning. Morgan
Kaufmann Publishers, San Mateo

Tomek I (1976) Two modifications of CNN. IEEE Trans Syst Man
Cybern 6:769–772

Weiss GM (2003) The effect of small disjuncts and class distribu-
tion on decision tree learning. PhD thesis, Graduate School New

123

http://www.ics.uc.edu/~mlearn/MLRepository.html
http://www.ics.uc.edu/~mlearn/MLRepository.html

Evolutionary rule-based systems for imbalanced data sets 225

Brunswick, The State University of New Jersey, New Brunswick,
New Jersey

Weiss GM (2004) Mining with rarity: a unifying framework. SIGKDD
Explor 6(1):7–19

Wilcoxon F (1945) Individual comparisons by ranking methods. Bio-
metrics 1:80–83

Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput
3(2):149–175

Wilson SW (1998) Generalization in the XCS classifier system.
In: Third annual conference on genetic programming. Morgan
Kaufmann, San Francisco, pp 665–674

Witten IH, Frank E (2005) Data mining: practical machine learning
tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco

Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
Wolpert DH (1996) The lack of a priori distinctions between learning

algorithms.. Neural Comput 8(7):1341–1390

123

	Evolutionary rule-based systems for imbalanced data sets
	Abstract
	1 Introduction
	2 Mining from rarity: class imbalance and small disjuncts
	3 Learning classifier systems
	3.1 Description of XCS
	3.2 Description of UCS
	3.3 Evolutionary pressures in LCS

	4 Facetwise analysis of learning classifier systems
	5 LCSs in artificial domains
	5.1 The imbalanced multiplexer
	5.2 Experimentation

	6 LCSs in data mining
	6.1 Methodology
	6.2 Results

	7 Resampling the training data sets
	7.1 Methodology and resampling techniques
	7.2 Results

	8 Summary and conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

