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Abstract. We present our experience in applying a rule induction
technique to an extremely imbalanced pharmaceutical data set. We
focus on using a variety of performance measures to evaluate a number
of rule quality measures. We also investigate whether simply changing
the distribution skew in the training data can improve predictive
performance. Finally, we propose a method for adjusting the learning
algorithm for learning in an extremely imbalanced environment. Our
experimental results show that this adjustment improves predictive
performance for rule quality formulas in which rule coverage makes
positive contributions to the rule quality value.
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1 Introduction

Many real-world data sets exhibit skewed class distributions in which almost all
cases are allotted to one or more larger classes and far fewer cases allotted for
a smaller, usually more interesting class. For example, a medical diagnosis data
set used in [1] contains cases that correspond to diagnoses for a rare disease. In
that data set, only 5% of the cases correspond to “positive” diagnoses; the re-
maining majority of the cases belong to the “no disease” category. Learning with
this kind of imbalanced data set presents problems to machine learning systems,
problems which are not revealed when the systems work on relatively balanced
data sets. One problem occurs since most inductive learning algorithms assume
that maximizing accuracy on a full range of cases is the goal [12] and, there-
fore, these systems exhibit accurate prediction for the majority class cases, but
very poor performance for cases associated with the low frequency class. Some
solutions to this problem have been suggested. For example, Cardie and Howe
[5] proposed a method that uses case-specific feature weights in a case-based
learning framework to improve minority class prediction. Some studies focus on
reducing the imbalance in the data set by using different sampling techniques,
such as data reduction techniques that remove only majority class examples [9]
and “up-sampling” techniques that duplicate the training examples of the minor-
ity class or create new examples by corrupting existing ones with artificial noise
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[6]. An alternative to balancing the classes is to develop a learning algorithm
that is intrinsically insensitive to class distribution in the training set [11]. An
example of this kind of algorithm is the SHRINK algorithm [10] that finds only
rules that best summarizes the positive examples (of the small class), but makes
use of the information from the negative examples. Another approach to learning
from imbalanced data sets, proposed by Provost and Fawcett [13], is to build a
hybrid classifier that uses ROC analysis for comparison of classifier performance
that is robust to imprecise class distributions and misclassification costs. Provost
and Fawcett argued that optimal performance for continuous-output classifiers
in terms of expected cost can be obtained by adjusting the output threshold
according to the class distributions and misclassification costs. Although many
methods for coping with imbalanced data sets have been proposed, there remain
open questions. According to [12], one open question is whether simply chang-
ing the distribution skew can improve predictive performance systematically.
Another question is whether we can tailor the learning algorithm to this special
learning environment so that the accuracy for the extreme class values can be
improved.

Another important issue in learning from imbalanced data sets is how to
evaluate the learning result. Clearly, the standard performance measure used in
machine learning - predictive accuracy over the entire region of the test cases is
not appropriate for applications where classes are unequally distributed. Several
measures have been proposed. Kubat et al [11] proposed to use the geometric
mean of the accuracy on the positive examples and the accuracy on the negative
examples as one of their performance measures. Provost and Fawcette [13] made
use of ROC curves that visualize the trade-off between the false positive rate
and the true positive rate to compare classifiers. In information retrieval, where
relevant and irrelevant documents are extremely imbalanced, recall and precision
are used as standard performance measures.

We present our experience in applying rule induction techniques to an ex-
tremely imbalanced data set. The task of this application is to identify promising
compounds from a large chemical inventory for drug discovery. The data set con-
tains nearly 30, 000 cases, only 2% of which are labeled as potent molecules. To
learn decision rules from this data set, we applied the ELEM2 rule induction
system [2]. The learning strategies used in ELEM2 include sequential cover-
ing and post-pruning. A number of rule quality formulas are incorporated in
ELEM2 for use in the post-pruning and classification processes. Different rule
quality formulas may lead to generation of different sets of rules, which in turn
results in different predictions for the new cases. We have previously evaluated
the rule quality formulas on a number of benchmark datasets [3], but none of
them is extremely imbalanced. Our objective in this paper is to provide answers
to the following questions. First, we would like to determine how each of these
rule quality formulas reacts to the extremely imbalanced class distribution and
which of the rule quality formulas is most appropriate in this kind of environ-
ment. Second, we would like to know whether reducing the imbalance in the
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data set can improve predictive performance. Third, we would like to compare
different measures of performance to discover whether there is correlation be-
tween them. Finally, we would like to know whether a special adjustment of the
learning algorithm can improve predictive performance in an extremely imbal-
anced environment. The paper is organized as follows. In Section 2, we describe
our data set and the application tasks related to the data set. We then briefly
describe the learning and classification algorithms used in our experiment. In
Section 6 we present our experiments and experimental results. We conclude the
paper with a summary of our findings from the experiments.

2 Domain of the Case Study

The data set we used was obtained from the National Cancer Institute through
our colleagues in the Statistics Department at the University of Waterloo. It con-
cerns the prediction of biological potency of chemical compounds for possible use
in the pharmaceutical industry. Highly potent compounds have great potential
to be used in new medical drugs. In the pharmaceutical industry, screening ev-
ery available compound against every biological target through biological tests
is impossible due to the expense and work involved. Therefore, it is highly desir-
able to develop methods that, on the basis of relatively few tested compounds,
can identify promising compounds from a relatively large chemical inventory.

2.1 The Data Set

Our data set contains 29, 812 tested compounds. Each compound is described
by a set of descriptors that characterize the chemical structure of the molecule
and a binary response variable that indicates whether the compound is active
or not. 2.04% of these compounds are labeled as active and the remaining ones
as inactive. The data set has been randomly split into two equal-sized subsets,
each of which contains the same number of active compounds so that the class
distribution in either of the subsets remain the same as in the original data set.
We use one subset as the training set and the other as the testing test in our
experiments.

2.2 Tasks and Performance Measures

One obvious task is to learn classification rules from the training data set and
use these rules to classify the compounds in the test set. Since it is the active
compounds that are of interest, appropriate measures of classification perfor-
mance are not the accuracy on the entire test set, but the precision and recall
on the active compounds. Precision is the proportion of true active compounds
among the compounds predicted as active. Recall is proportion of the predicted
active compounds among the active compounds in the test set.
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However, simply classifying compounds is not sufficient. The domain experts
would like identified compounds to be presented to them in decreasing order of a
prediction score with the highest prediction indicating the most probably active
compound so that identified compounds can be tested in biological systems one
by one starting with the compound with the highest prediction. Therefore, in
addition to classification, the other task is to rank the compounds in the test set
according to a prediction score. To be cost effective, it is preferred that a high
proportion of the proposed lead compounds actually exhibit biological activity.

3 The Learning Algorithm

ELEM2 [2] is used to learn rules from the above bio-chemistry data set. Given
a set of training data, ELEM2 learns a set of rules for each of the classes in the
data set. For a class C, ELEM2 generates a disjunctive set of conjunctive rules
by the sequential covering learning strategy, which sequentially learns a single
conjunctive rule, removes the examples covered by the rule, then iterates the
process until all examples of class C is covered or until no rule can be generated.
The learning of a single conjunctive rule begins by considering the most general
rule precondition, then greedily searching for an attribute-value pair that is most
relevant to class C according to the following attribute-value pair evaluation
function: SIGC(av) = P (av)(P (C|av) − P (C)), where av is an attribute-value
pair and P denotes probability. The selected attribute-value pair is then added to
the rule precondition as a conjunct. The process is repeated by greedily adding a
second attribute-value pair, and so on, until the hypothesis reaches an acceptable
level of performance. In ELEM2, the acceptable level is based on the consistency
of the rule: it forms a rule that is as consistent with the training data as possible.
Since this “consistent” rule may overfit the data, ELEM2 then “post-prunes” the
rule after the initial search for this rule is complete.

To post-prune a rule, ELEM2 computes a rule quality value according to
one of the 11 statistical or empirical formulas. The formulas include a weighted
sum of rule consistency and coverage (WS), a product of rule consistency and
coverage (Prod), the χ2 statistic (Chi), the G2 likelihood ratio statistic (G2),
a measure of rule logical sufficiency (LS), a measure of discrimination between
positive and negative examples (MD), information score (IS), Cohen’s formula
(Cohen), Coleman’s formula (Coleman), the C1 and C2 formulas. These formu-
las are described in [3,4]. In post-pruning, ELEM2 checks each attribute-value
pair in the rule in the reverse order in which they were selected to determine if
removal of the attribute-value pair will decrease the rule quality value. If not, the
attribute-value pair is removed and the procedure checks all the other pairs in
the same order again using the new rule quality value resulting from the removal
of that attribute-value pair to discover whether another attribute-value pair can
be removed. This procedure continues until no pair can be removed.
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4 The Classification Method

The classification procedure in ELEM2 considers three possible cases when a new
example matches a set of rules. (1)Single match. The new example satisfies one
or more rules of the same class. In this case, the example is classified to the class
indicated by the rule(s). (2)Multiple match. The new example satisfies more than
one rule that indicates different classes. In this case, ELEM2 activates a conflict
resolution scheme for the best decision. The conflict resolution scheme computes
a decision score for each of the matched classes as follows: DS(C) =

∑k
i=1 Q(ri),

where ri is a matched rule that indicates C, k is the number of this kind of rules,
and Q(ri) is the rule quality of ri. The new example is then classified into the
class with the highest decision score. (3)No match. The new example e is not
covered by any rule. Partial matching is considered where some attribute-value
pairs of a rule match the values of corresponding attributes in e. If the partially-
matched rules do not agree on the classes, a partial matching score between e
and a partially-matched rule ri with n attribute-value pairs, m of which match
the corresponding attributes of e, is computed as PMS(ri) = m

n × Q(ri). A
decision score for a class C is computed as DS(C) =

∑k
i=0 PMS(ri), where k

is the number of partially-matched rules indicating class C. In decision making,
e is classified into the class with the highest decision score.

5 Ranking the Test Examples

The classification procedure of ELEM2 produces a class label for each test ex-
ample. To meet the requirement of our particular application, we design another
prediction procedure which outputs a numerical score for each test example.
The score is used to compare examples as to whether an example more likely
belongs to a class than another example. Intuitively, we could use the decision
score computed in the classification procedure to rank the examples. However,
that decision score was designed to distinguish between classes for a given exam-
ple. It consists of either full-matching scores (when the example fully matches a
rule) or partial-matching scores (when no rule is fully matched with the example,
but partial matching exists). It is possible that an example that only partially
matches some rules of class C obtains a higher decision score than an example
that fully matches one rule of C, even though the fully matched example is more
likely to belong to C than the partially matched example.

In order to rank examples according to their likelihood of belonging to a
class we need to design a criterion that can distinguish between examples given
the class. To do so, we simply adjust the calculation of the decision score in
the classification procedure to consider both kinds of matches (full and partial
matches) in calculating a score for an example. The score is called the ranking
score of an example with respect to a class. For class C and example e, we first
compute a matching score between e and a rule r of C using MS(e, r) = m

n ×Q(r),
where n is the number of attribute-value pairs that r contains and m is the
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number of attribute-value pairs in r that are matched with e. Note that this
calculation covers a full match when m = n, a partial match when < m < n,
and no match when m = 0. The ranking score of e with respect to C is defined
as RS(e, C) =

∑k
i=0 MS(e, ri), where ri is a rule of C and k is the number of

rules of C.
The ranking algorithm of ELEM2 ranks the test examples according to both

the predicted class label (produced by ELEM2’s classification program) for the
example and the ranking score of that example with respect to a specified class
C, e.g., the minority class for an imbalanced data set. It places test examples
that are classified into the specified class C in front of other test examples and
ranks the examples in each group in decreasing order of the ranking score with
respect to C.

6 Experiments with the Pharmaceutical Data Set

6.1 Comparison on Rule Quality Formulas

Our first objective is to determine how each of the rule quality formulas in-
corporated in ELEM2 reacts to the imbalance in our data set. To achieve this
goal, we run ELEM2 with different rule quality formulas on our training data
set. For each formula, a set of rules is generated. We then test these rules by
running the classification program of ELEM2 to classify the examples in the test
set. This program generates a discrete output for each test example, which is
the predicted class label for that example. The performance of this classifier is
measured by precision and recall (defined in Section 2.2) on the smaller class
that corresponds to the active compounds. We also combine precision and recall
by way of a geometric mean (g-mean) defined as

√
precision ∗ recall. Figure 1

shows the precision, recall and g-mean of ELEM2’s classification program using
different rule quality formulas. Generally, formulas that produce higher recalls
give lower precisions and formulas that give lower recalls produce higher pre-
cisions. In terms of g-mean, the G2 (the G2 likelihood ratio statistic) formula
produces the best result, while the WS (a weighted sum of rule consistency
and rule coverage) and Prod (a product of rule consistency and rule coverage)
formulas have the worst performance.

We then run the ranking program of ELEM2 to rank the test examples
according to the ranking score defined in Section 5. The performance of this
program is measured by recall-level precisions, case-level precisions and an aver-
age precision.1 Recall-level precisions are the precisions at a list of recall cutoff
1 These measures are used in the TREC competitions of the information retrieval

community [8]. We adopt these measures for use in our application because the
requirement for our application (presenting predicted active compounds in an order
in which the most probably active compounds are ranked first) is similar to the
requirement in information retrieval, which ranks the retrieved documents according
to the degree of relevance.



A Case Study for Learning from Imbalanced Data Sets 7

0

10

20

30

40

50

M
D

W
S C2 C1 LS

Cole
m

an
Pro

d

G2(
ex

ce
ed

) IS Chi

Coh
en

Formula

%
g-mean precision recall

Fig. 1. Classification Performance of the Formulas

values. The recall cutoff values used are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
and 1. A graph on recall-level precisions depicts tradeoffs between precision and
recall. Case-level precisions are the precisions at a list of case cutoff values. A
case cutoff value is a number of cases being “retrieved”. A precision at a case
cutoff value n is the precision of the first n examples in the ranked list of test
examples. The case cutoff values we used are 5, 10, 20, 30, 50, 100, 200, 400,
800, and 1000. Compared to recall-level precisions, case-level precisions give a
better picture on the precisions at the top ranked cases. Average precision is
the average of the precision values at the points where active compounds were
correctly recognized in the run.

Figure 2 illustrates recall-level precisions and case-level precisions of the re-
sults generated by the ranking program using different formulas. In the figure,
we only show the results for 7 formulas; the curves for our remaining 4 for-
mulas (whose performance ranked medium) were deleted for graph clarity. The
average precisions from each of the 11 formulas are shown in Figure 3. From
recall-precision curves, we observe that formula G2 takes the lead generally, es-
pecially in the small to middle recall cutoff region. However, at the recall cutoff
value of 0.1, formula LS (measure of logical sufficiency) takes the lead, followed
by formula MD (measure of discrimination). The right graph of Figure 2 presents
a clearer picture on the top ranked cases, which shows that LS is the “winner”
for the top 50 cases and the χ2 statistic (Chi) also performs well within this top
region. In terms of average precision, Figure 3 shows that G2 takes the lead,
followed by LS and then MD.

We also evaluate the result of each run using the ROC convex hull method
proposed by Provost and Fawcett [13]. A ROC curve shows how the percentage of
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correctly recognized active compounds (recall or “true positive rate”) depends
on the “false positive rate”, i.e., the percentage of the incorrectly classified inac-
tive compounds. ROC curves illustrate tradeoffs between recall and false alarm
rate for continuous output classifiers. The performance of a discrete classifier
(which outputs only class labels) can be depicted as a point in the ROC space.
A classifier is optimal for some conditions if and only if it lies on the northwest
boundary (i.e., above the line y=x) of the convex hull of the set of points and
curves in the ROC space. A nice feature of the ROC convex hull method is
that the optimal classifier in terms of expected cost can be determined using
iso-performance lines [13] in the ROC space according to the class distribution
and the misclassification costs. Figure 4 depicts the ROC curves generated from
the results of 7 formulas. Again the curves for the 4 other formulas were deleted
for clarity. Figure 4 also shows the points corresponding to the performance of
ELEM2’s “discrete” classifier. Each point in the graph corresponds to a rule
quality formula that was used to generate the classifier. The convex hull of these
7 curves and 11 points is shown in the picture. We notice that none of the
discrete classifiers is optimal because their corresponding points are not on the
convex hull curve. An optimal performance in terms of misclassification costs
and class distribution can be obtained by setting a threshold for the continu-
ous output value for the continuous “classifier” whose curve intersects with the
convex hull. In our application, the cost of missing an active compound (cost
of a false negative error) is potentially much higher than the cost of screening
an inactive compound in the lab (cost of a false positive error). Suppose the
false negative cost is 10 times higher than the false positive cost and the true
distribution of the data is the same as the distribution in the training data. We
can draw an iso-performance line (the straight line of 5x + 0.1555) in the ROC
space in Figure 4 based on the formula provided in [13], which intersects the
convex hull. The intersection of this line and the convex hull is the point that
determines the threshold value for the continuous-output classifier in order to
obtain the optimal performance. These ROC curves also clearly show that G2
is the leading formula, followed by LS and then MD, which correlates with the
conclusion obtained from average precisions in Figure 3.

6.2 Balancing the Data

We would like to discover whether decreasing the imbalance in the training data
set would improve the predictive performance. For this purpose, we created 6
additional training sets by duplicating the examples of active compounds to
increase the prevalence of active compounds in the training data. Distributions
of active compounds in these 6 training sets are 4%, 8%, 14%, 25%, 40% and
50%, respectively.

We picked three formulas (G2, MD, Cohen) ranging from good to poor based
on the above results for use in this experiment. Figure 5, illustrates the results
of increasing the minority class prevalence in terms of g-mean, precision, recall
and average precision for the three formulas, respectively. All the three graphs
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indicate that, generally, as the percentage of the active compounds in the train-
ing set increases, recall increases, but precision decreases. As a result, g-mean
does not have significant changes. Also, average precision (for continuous output
classifiers) does not change significantly either.

7 Adjusting the Learning Algorithm

Finally, we would like to determine whether adjusting the learning algorithm
for an imbalanced data set would improve predictive performance. By analyzing
the rules generated from each rule quality formula, we found that some formulas
lead to generation of very few rules for the majority class. This is due to the
fact that, when post-pruning a rule, removing an attribute-value pair from a
rule for the majority class can greatly increase the coverage of the rule. In this
case, for some rule quality measures in which the rule coverage makes a positive
contribution, the value of rule quality is mostly likely to increase when removing
an attribute-value pair, which results in general rules that cover a large number
of cases of both the majority class and the minority class. This kind of rule
does not describe well the instances in the majority class and has limited power
in discriminating between the two classes. Therefore, we adjust the learning
algorithm to only post-prune the rules generated for the minority class when the
data set is extremely imbalanced. This adjustment is based on the assumption
that we have enough training cases for the majority class and there is no noise
in the training set for this class. We still post-prune the rules for the minority
class because the training examples for the minority class is relatively rare and
we do not want the rules to overfit the minority class examples.

We use five rule quality formulas that led to generation of a relatively small
number of rules for the majority class, based on the above experiments, to test
our strategy for adjusting the learning algorithm. The left graph of Figure 6
compares, in terms of g-mean and average precision, the results for pruning only
minority class rules to the results for pruning rules for both classes. The results
show that this adjustment greatly improves the predictive performance of these
formulas. The right graph of Figure 6 shows the improvement on the recall-level
precisions for the χ2 statistic formula.

8 Conclusions

We have compared a number of rule quality formulas on an extremely imbalanced
data set for identifying active chemical compounds. The rule quality formulas are
used in ELEM2’s rule induction and classification processes. Among the 11 tested
statistical and empirical formulas, the G2 likelihood ratio statistic outperforms
others in terms of g-mean, average precision and recall-level precisions. The
ROC analysis also shows that G2 gives the best results. Other formulas that
perform relatively well on this data set include the measure of logical sufficiency
(LS) and the measure of discrimination (MD). In evaluating these formulas, we
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observed that ROC curves give a clearer picture than recall-precision curves
on the overall performance of continuous output classifiers. Case-level precision
curves produce a better picture on precisions at the top ranked cases. Another
good measure of performance is average precision, which is good at ranking
the evaluated continuous output classifiers. In our evaluation of rule quality
formulas, the conclusion drawn from average precisions correlates well with the
observation on ROC curves.
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We also observed that increasing prevalence of the minority class in the train-
ing data does not improve predictive performance on our test data. This is be-
cause our learning algorithm (and many others for that matter) is based on
statistical measures and assumes that the classifier will operate on data drawn
from the same distribution as the training data. In terms of adjusting learning
algorithm for extremely imbalanced data sets, we found that allowing rules for
the majority class to “overfit” (without pruning) can improve predictive per-
formance for rule quality formulas in which coverage of a rule makes a positive
contribution to the rule quality value. Our future work includes evaluating a
variety of statistical and machine learning methods on this imbalanced data set.
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