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An Evaluation of the Robustness of MTS
for Imbalanced Data

Chao-Ton Su and Yu-Hsiang Hsiao

Abstract—In classification problems, the class imbalance problem will cause a bias on the training of classifiers and will result in the
lower sensitivity of detecting the minority class examples. The Mahalanobis-Taguchi System (MTS) is a diagnostic and forecasting
technique for multivariate data. MTS establishes a classifier by constructing a continuous measurement scale rather than directly
learning from the training set. Therefore, it is expected that the construction of an MTS model will not be influenced by data distribution,
and this property is helpful to overcome the class imbalance problem. To verify the robustness of MTS for imbalanced data, this study
compares MTS with several popular classification techniques. The results indicate that MTS is the most robust technique to deal with
the classification problem on imbalanced data. In addition, this study develops a “probabilistic thresholding method” to determine the
classification threshold for MTS, and it obtains a good performance. Finally, MTS is employed to analyze the radio frequency (RF)
inspection process of mobile phone manufacturing. The data collected from the RF inspection process is typically an imbalanced type.
Implementation results show that the inspection attributes are significantly reduced and that the RF inspection process can also

maintain high inspection accuracy.

Index Terms—Data mining, classification, class imbalance problem, imbalanced data, Mahalanobis-Taguchi System (MTS),

threshold, mobile phone inspection.

1 INTRODUCTION

HE classification problem is one of the main issues in

data mining because the attempt is to extract a classifier
that can be used to predict the classes of objects whose class
labels are unknown. The binary classification problem, a
subset of classification problems, is one in which the data
are restricted to one of two groups. At present, these
problems are often seen in product inspection, voice
recognition, disease diagnosis, credit rating, and so on.
Additionally, in order to execute a classification task
efficiently, feature selection is usually merged into estab-
lishing a classifier. Through the employment of feature
selection, a classifier can be established by fewer and more
important variables. Now, a number of statistics, machine
learning, and artificial intelligence techniques have been
used to solve a binary classification problem and can
accomplish the feature selection.

Classification techniques such as decision tree analysis,
discriminate analysis, neural networks, and so on always
assume that the training examples are evenly distributed
among different classes. However, this is not always the
situation in actual cases where one class might be repre-
sented by a large number of examples, whereas the other
class, usually the more important class, is represented by
only a few. For example, within a steady production process,
especially in a six sigma process, few defected items can be
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collected as compared to the large number of nondefected
ones. This situation is known as the class imbalance problem
[1], [2], and it occurs frequently in many real-world
applications such as fraud detection [3], product inspection,
text classification [4], and medical diagnosis [5], [6]. When a
classifier is learned from an imbalanced or skewed data set,
it will cause bias and, then, the tendency is that the classifier
will produce high predictive accuracy over the majority
class, but will predict poorly over the minority class [7].
Furthermore, the examples in the minority class can be
treated as noise and are ignored completely by the classifier.

Several researchers have studied at the data and
algorithm levels to cope with the class imbalance problem.
At the data level, the methods include many different forms
of sampling [3], [8], [9]. The main concept of sampling
methods is to balance class distribution by randomly
replicating (oversampling) the minority class examples or
eliminating (downsampling) the majority class examples or
both. At the algorithm level, however, the methods include
adjusting the cost matrices [5], moving the decision thresh-
olds [10], [11], and so on. Adjusting the cost matrices
assumes that the cost matrices are known for different types
of errors and aims to improve the prediction performance
by setting a high cost to the misclassification of a minority
class example. On the other hand, moving the decision
thresholds tries to adapt the thresholds to impose a bias on
the minority class. However, a common problem for these
methods is that they lack a rigorous and systematic
treatment on imbalanced data and sometimes may cause
problems [11]. For example, downsampling the data can
potentially remove certain important information, whereas
oversampling them may introduce noise. Moreover, adjust-
ing the cost matrices or changing thresholds for each class
lacks the systematic foundation in the same sense as the
sampling method, which may end up with rules overfitting
the training data [12]. Therefore, this study concentrated on
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finding a classification technique in which the training
cannot be influenced by the imbalanced data.

The Mahalanobis-Taguchi System (MTS), developed by
Taguchi, is a collection of methods proposed for a
diagnostic and forecasting technique using multivariate
data [13], [14], [15], [16], [17], [18] and has been used in
various applications [19], [20], [21]. MTS combines Maha-
lanobis distance (MD) and Taguchi’s robust engineering.
MD is used to construct a multidimensional measurement
scale and define a reference point of the scale with a set of
observations from a reference group [13], [14], whereas
Taguchi’s robust engineering is applied to determine the
important variables and then optimize the system. It must
be noted that unlike most classification techniques, MTS
establishes a classification model by constructing a con-
tinuous measurement scale using single class samples
rather than directly learning from the whole training data
set. This property seems useful in solving the class
imbalance problems. On the other hand, determining an
appropriate threshold is very important for MTS to carry
out the classification process effectively. Taguchi and
Jugulum suggested utilizing the loss function to determine
a threshold [14]; however, this approach is not popular in
practice because of the difficulty in exactly estimating the
relative cost or loss in each case [15]. For this reason, this
study used the Chebyshev’s theorem to propose a “prob-
abilistic thresholding method” (PTM) for MTS.

This study was carried out in order to investigate
whether or not MTS has a more robust classification ability
than other classification techniques when facing class
imbalance problems. Meanwhile, we also evaluated the
performance of the PTM. Finally, a real case about
improving the mobile phone radio frequency (RF) inspec-
tion process was employed to illustrate the practicality of
MTS. Through the application of MTS, the redundant
inspection attributes were efficiently detected and removed
without losing inspection accuracy.

2 MAHALANOBIS-TAGUCHI SYSTEM

MTS was developed by Taguchi as a diagnostic and
forecasting technique using multivariate data. In a typical
multidimensional system, there is always more than one
variable that provide information that can be used to make
a decision. However, one can make wrong decisions if each
variable is looked at separately without considering its
correlation structure with other variables. The MD intro-
duced by Mahalanobis in 1936 takes the correlation
structure of a system into account. In MTS, MD is scaled
by dividing the original one by the number of variables and
then employed to construct a multidimensional measure-
ment scale. MD is calculated as follows:

MDzl/k:-ZT-Cfl-Z, (1)
where

e £k is the number of variables,
e 7 is the standardized vector of the example, and
e ( is the correlation matrix of the reference group.
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Taguchi’s robust engineering was proposed by Genichi
Taguchi in the 1950s, and it aims to improve the engineer-
ing quality that can be measured in terms of deviations
from the ideal performance. MD can be regarded as a kind
of engineering quality because it describes the degree of
abnormality of observations from the known reference
group. MTS combines MD with Taguchi’s robust engineer-
ing and is used for optimizing the multidimensional
systems.

To implement MTS, the first step is to identify a
“reference” or “normal” group, which is used to construct
the Mahalanobis space (MS). MS can be regarded as a
database for the normal group consisting of its mean vector,
standard deviation vector, and correlation matrix [14]. In
general, the examples in the normal group should be similar
and have common characteristics. Take medical diagnosis
for example, MS is constructed only using the people who
are healthy. The mean point and the average MD of the
normal group serve as the reference point and the base of
the measurement scale. To validate the scale, different
known “abnormal” examples must be checked. The MDs of
abnormal examples are also computed using the informa-
tion contained in the MS. If the scale is good, the MDs
corresponding to these examples should match with the
judgment. Otherwise, it implies that the MS cannot suitably
represent the real normal condition and is necessary to be
reconstructed. A good MS is very important for MTS.
However, it sometimes may be difficult to select an MS,
especially when we deal with historical data, in which the
“normal group” cannot be well identified due to the
disorganization of the data. In such situations, we can first
generate the MS using all normal examples and calculate
their MDs. Then, we discard the examples having higher
MDs and recalculate MDs with a new MS constructed using
the remaining normal examples. This process is repeated
until we generate a suitable MS for conducting a multi-
variate diagnosis [14].

In the next phase, orthogonal arrays (OAs) and signal-to-
noise (SN) ratios are used to screen the important variables.
Applying OAs, each variable is assigned to one column and
set with two levels: using and not using this variable. The
SN ratio, the larger-the-better SN ratio is frequently
suggested [13], [14], obtained from the abnormal MDs is
used as the response for each run of OA. The importance of
each variable is evaluated by calculating the “effect gain.” If
the gain corresponding to a variable is positive, the variable
may be considered as worth keeping; otherwise, it should
be removed. Finally, a “reduced model measurement scale”
is established using the important variables. Then, an
appropriate threshold to discriminate between the normal
group and the abnormal examples are determined for
future diagnosis. Fig. 1 shows the procedure of implement-
ing MTS.

MTS is different from classical multivariate methods in
the following ways [13], [14]. First, the methods used in
MTS are data analytic rather than being on probability-
based inference. That is, MTS does not require any
assumptions on the distribution of input variables. Second,
the MD in MTS is suitably scaled and used as a measure of
severity of various conditions. MTS can be used not only to
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Fig. 1. The implementing procedures of MTS.

classify observations into two different groups (that is,
normal and abnormal) but also to measure the degree of
abnormality of an observation. Third, every example out-
side the normal space (that is, abnormal example) is
regarded as unique and does not constitute a separate
population.

3 PROPOSED PROBABILISTIC THRESHOLDING
METHOD

In MTS, the MD distributions of normal and abnormal
examples usually overlap. An effective threshold can
enhance the diagnostic and forecasting ability of MTS.
However, how to find an appropriate threshold to
effectively distinguish the normal and abnormal examples
is an important issue. Taguchi and Jugulum suggested
using the “quadratic loss function” to determine a threshold
[14], yet this method is impractical because of the difficulty
in estimating the relative cost or loss in each case [15].
Instead, real applications always use the “exhaustive search
method” (ESM) to search the threshold that results in the
highest classification accuracy on the training set. However,
the ESM is time consuming, and the determined threshold
may cause the MTS model to overfit the training set and
lower the classification reliability. This study employed
Chebyshev’s theorem to develop a PTM. Chebyshev’s
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theorem is useful to estimate the probability of getting a
value that deviates from the mean by less than some degree
of standard deviation, especially when the probability
distribution of the data set is unknown. Our PTM applies
this probability property to compute a threshold for MTS.

According to Chebyshev’s theorem, it can be easily
proved that the following inequality is valid:

1
P(MXJFT'UxéX)ST—Qa (2)

where px and ox are the mean and the standard deviation,
respectively, of the random variable X. The probability of
getting a value that is larger than ux by at least rox is at
most . On the basis of MTS theory, only normal examples
can constitute a population, whereas each abnormal
example is unique. Therefore, we regard the normal MD
as a random variable X, that is generated from an
unknown probability distribution, and ¢ and o4 are its
mean and standard deviation. Let 7" denote our proposed
threshold that discriminates between normal and abnormal
examples, and the probability of false alarm is denoted by
P(T < Xp4)-

Now, we used the information provided by the training
set and (2) to develop a threshold. The steps are detailed as
follows:

Step 1. Remove the outliers, the examples with MDs out of
the three standard deviations, on the left tail of the MD
distribution of the abnormal examples

Step 2. Among the normal group, compute the percentage
of the examples whose MDs are smaller than the
minimum MD of the remainder abnormal examples.
The percentage is denoted by w. Because some abnormal
MDs on the left tail have been removed, a small
parameter A (w> A >0), 0.05 is typical, is introduced
to adjust the percentage w to reflect the real situation of
the nonoverlap of the normal group. Thus, under the MD
boundary covering w — X of the normal distribution, it is
confident that there will be a perfect prediction on
abnormal examples and a corresponding maximum false
alarm percentage 1 — (w — A) on the normal group.

Step 3. Set the upper bound of the false alarm probability
P(T < X,,4) equal to empirical percentage 1 — (w — \):

P(T < Xpa) <1 —(w—=A). (3)

Step 4. Screen (3); if the y,,q and the 0,4 of random variable
Xmq are known and the upper bound probability is also
known, we can apply Chebyshev’s theorem (2) to obtain

the value of the corresponding lower bound of X4, T.

Let 1 — (w—A) =+%; we can compute r = |/r5— and,

— 1
thus/ T= Hmd + Tr—w  Omd-

Step 5. For the unknown of p,,; and o,,4, use the average
and standard deviation of MDs of the normal group, md
and spg, to be their unbiased estimators, respectively.
Thus, the threshold can be calculated with the following
formula:
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TABLE 1
Summary Descriptions of the Data Sets
Class . Training Set Test Set
Data Set TS #Var. | Exp. Crat
ata 5e Maj. / Min. ar P Fratio # Neg. # Pos. #Neg. | # Pos.
Breast 1 3.52 66 33
Wisconsin Normal / Abnormal 9 2 3.55 165 33 22 11
3 340 363 33
1 1.60 90 45
Letter A / Remainder 16 2 1.58 405 45 30 15
3 1.78 675 45
1 2.63 60 30
peat | Normal/Abnormal | 13 [ 2 2.67 180 30 30 15
3 2.66 300 30
Shuttle Remainder / Class 5 9 - 11.94 50000 45 200 200
Covtype Class 1/ Class 4 12 - 41.46 65516 20 300 300
_ 1 . . .
T=md++/ < Snd (4) be listed separately to give thg r.eader an even better idea of
I+A-w the performance of each classifier.
where

e md is the average of the MDs of the normal group,

® 5,4 is the standard deviation of the MDs of the
normal group,

e ) is a small parameter, and

e w is the percentage of the normal examples whose
MDs are smaller than the minimum MD of the
remainder abnormal examples.

4 ROBUSTNESS EVALUATION

In order to evaluate classifiers on the imbalanced data sets,
the medical community and, increasingly, the machine
learning community use two metrics, that is, sensitivity and
specificity. The sensitivity metric is defined as the accuracy
on the positive examples (true positives/(true positives +
false negatives)), whereas specificity is the accuracy on the
negative examples (true negatives/(true negatives + false
positives)). The abovementioned “negative” is taken as the
majority class, whereas “positive” is the minority class. The
g-means metric suggested by Kubat and Matwin [22] has
been used by several researchers for evaluating classifiers
on the imbalanced data sets [9], [23], [24]. This metric takes
sensitivity and specificity into account simultaneously,
which is defined as

®)

Relative sensitivity (RS) was proposed in this study as
follows:

g= \/Sensitivity - Specificity.

_ Sensitivity

RS (6)

~ Specificity”
The RS can be used to judge whether or not a classifier has
the balanced ability to predict the positive and the negative
examples. If the RS is much lower or higher than 1, it
indicates that the classifier has some bias on classifying.
This study simultaneously used the g-means and the RS to
be the two main metrics to evaluate the performance of
classifiers. Besides, the sensitivity and specificity will also

4.1 MTS versus Prevalent Classification

Techniques

In this section, we compared the performance of MTS
with other popular classification techniques such as the
stepwise discriminate analysis (SDA), decision tree analy-
sis (C4.5), back-propagation neural network (BPN), and
support vector machines (SVMs). In the meantime, we
used the proposed PTM and the ESM, respectively, to
determine the threshold for MTS (that is, MTS(PTM) and
MTS(ESM) models), and then, we compared their classi-
fication results. For the purposes of investigating how the
class imbalance problem impacts on the training of a
classifier and checking if MTS can have the robust ability
to overcome it, four different UCI data sets and one
Statlog data set were utilized. Table 1 shows the
characteristics of these five data sets. For each of the top
three data sets, three training sets with different degrees
of class imbalance were designed for training (that is,
experiments 1, 2, and 3), and the same test set was used
for evaluating the trained classifiers. The distribution of
the training set in experiment 1 was just imbalanced
slightly, whereas from experiment 1 to experiment 3, the
imbalance level was more and more significant. Through
comparing the test results corresponding to the experi-
ments 1, 2, and 3, we were able to trace if the training of a
classifier is affected by the different degrees of class
imbalance of the training set. The bottom two data sets
were much more imbalanced than the top three ones, and
the negative-to-positive ratios were more than 1,000:1. In
addition to the different class imbalance levels, these
problems involved widespread data sizes from dozens to
ten thousands and various complexities that were mea-
sured by the maximum Fisher’s Discriminant Ratio over
all the feature dimensions (f-ratio) [25]. A smaller f-ratio
means that the two classes have more overlap regions
and, thus, more difficult to deal with.

Table 2 shows the test results on the Breast-Wisconsin
data set. The results indicated that MTS(PTM) performed
slightly worse than SVMs but better than the other methods.
In experiment 1, the two classes of the training set were
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TABLE 2
Comparison of Test Results on the Breast-Wisconsin Data Set
Data Set | Exp. Index MTS(PTM) | MTS(ESM) | SDA C4.5 BPN | SVMs
Sensitivity 100.00 100.00 100.00 | 90.91 | 100.00 | 100.00
! Specificity 95.45 100.00 100.00 [ 100.00 | 100.00 | 100.00
g-means 97.70 100.00 100.00 [ 95.35 | 100.00 | 100.00
RS 1.05 1.00 1.00 0.91 1.00 1.00
Sensitivity 90.91 90.91 81.82 | 63.64 77.78 90.91
Breast 5 Specificity 95.45 95.45 100.00 | 95.49 91.67 | 100.00
Wisconsin g-means 93.15 93.15 90.45 | 77.96 84.44 | 9535
RS 0.95 0.95 0.82 0.67 0.85 0.91
Sensitivity 100.00 90.91 81.82 | 4545 81.82 | 100.00
3 Specificity 100.00 100.00 100.00 [ 100.00 | 100.00 | 100.00
g-means 100.00 95.35 90.45 | 67.42 90.45 | 100.00
RS 1.00 0.91 0.82 0.45 0.82 1.00
TABLE 3
Comparison of Test Results on the Letter Data Set
Data Set | Exp. Index MTS(PTM) | MTS(ESM) | SDA C4.5 BPN SVMs
Sensitivity 100.00 100.00 100.00 | 86.67 9333 | 100.00
, Specificity 100.00 100.00 93.33 80.00 | 90.00 [ 93.33
g-means 100.00 100.00 96.61 83.27 91.65 96.61
RS 1.00 1.00 1.07 1.08 1.04 1.07
Sensitivity 93.33 80.00% 86.67 80.00 | 93.33 93.33
Letter 2 Specificity 96.67 100.00% 100.00 | 100.00 | 100.00 | 100.00
g-means 94.98 89.44% 93.10 89.44 | 96.61 96.61
RS 0.97 0.80 0.87 0.80 0.93 0.93
Sensitivity 93.33 93.33% 53.33 60.00 86.67 80.00
3 Specificity 93.33 96.67% 96.67 | 100.00 | 100.00 | 100.00
g-means 93.33 94.98% 71.80 | 7746 | 93.10 89.44
RS 1.00 0.97 0.57 0.60 0.87 0.80
TABLE 4
Comparison of Test Results on the Heart-Disease Data Set
Data Set Exp. Index MTS(PTM) | MTS(ESM) SDA C4.5 BPN SVMs
Sensitivity 86.67 86.67 73.77 46.67 73.33 40.00
1 Specificity 83.33 83.33 86.67 96.67 | 90.00 | 90.00
g-means 84.98 84.98 79.96 67.17 81.24 | 60.00
RS 1.04 1.04 0.85 0.48 0.81 0.44
Sensitivity 93.33 80.00 66.67 20.00 | 46.67 | 40.00
Heart 5 | Specificity 90.00 93.33 86.67 96.67 | 96.67 96.67
Disease g-means 91.65 86.41 76.02 43.97 67.17 62.18
RS 1.04 0.86 0.77 0.21 0.48 0.41
Sensitivity 93.33 53.33 53.33 13.33 33.33 46.67
3 Specificity 93.33 96.67 86.67 96.67 | 96.67 96.67
g-means 93.33 71.80 67.99 35.90 56.76 | 67.17
RS 1.00 0.55 0.62 0.14 0.34 0.48

slightly imbalanced, and all the six methods had good
performance on the sensitivity and specificity metrics.
However, when the degree of class imbalance of the
training set was increased, as done in experiments 2 and
3, the sensitivity of SDA, C4.5, and BPN significantly
decreased although the specificity was still at a high level.
By contrast, MTS(PTM) and SVMs could have high
sensitivity and specificity even if the training sets were
much imbalanced, and this resulted in good g-means
metrics on the three experiments. The RSs of MTS(PTM)
and SVMs on the three experiments were all near to 1,
whereas the RS of SDA, C4.5, and BPN decreased as the
degrees of class imbalance increased. It appears that the
ability of SDA, C4.5, and BPN classifiers to predict the
positive examples decreases as the proportion of the
positive instances in the training set decreases. In the Letter

data set, the test results are in Table 3. It is clear that only
MTS(PTM) could achieve high g-means and keep RSs to be
around 1. The Heart-Disease data set has a significant
overlap between its two classes. Thus, to determine an
appropriate threshold to correctly differentiate the two
classes seems more important for MTS. Table 4 shows the
test results on the Heart-Disease data set. The performance
of MTS(PTM) was much better than that of the other five
methods. Additionally, we also found that the specificity of
SDA, C4.5, BPN, and SVMs were much higher than the
sensitivity, especially in experiment 3. In experiment 3, the
C4.5 classifier almost lost the ability to predict the positive
examples. Table 5 shows the test results on the Shuttle and
Covtype data sets. Under a negative-to-positive ratio more
than 1,000:1, MTS(PTM) still performed robustly on
g-means and RS and was better than the other methods.



1326 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 10, OCTOBER 2007
TABLE 5
Comparison of Test Results on the Shuttle and Covtype Data Sets
Data Set Index MTS(PTM) | MTS(ESM) SDA C4.s BPN SVMs
Sensitivity 100.00 97.78 100.00 0.00 0.00 100.00
Shuttle | -Specificity 100.00 100.00 98.00 100.00 100.00 100.00
g-means 100.00 98.88 98.99 0.00 0.00 100.00
RS 1.00 0.98 1.02 0.00 0.00 1.00
Sensitivity 100.00 100.00 100.00 0.00 0.00 37.67
Covtype |-Specificity 100.00 100.00 99.33 100.00 100.00 100.00
g-means 100.00 100.00 99.66 0.00 0.00 61.38
RS 1.00 1.00 1.01 0.00 0.00 0.38
TABLE 6
Mean and Standard Deviation of g-Means Prediction Accuracy on UCI Data Sets
Dataset | fratio | # Var. | #Neg. | # Pos. SVMs SMOTE ACT KBA MTS(PTM)
Car 1.01 6 1659 69 99.0+2.2 | 99.0£23 [ 999402 | 99.9£02 | 99.9%0.2
Yeast 1.24 8 1433 51 | 59.0+12.1 | 69.9+10 | 785145 | 822%7.1 | 77.6128
Abalone | 0.52 8 4145 32 0000 | 0.0+0.0 | 5191276 | 57.8+54 | 69.4%12.6

We can see that the SVM classifier could not predict with
good accuracy in all cases, and the BPN and C4.5 classifiers
entirely lost their ability to predict the minority class.

4.2 MTS versus Modified SVMs

SVMs have been extensively studied and successfully
applied to many domains such as image processing [26],
text classification [27], and so on. However, when facing the
class imbalance problem, the classification performance of
SVMs drops significantly [23], [24], [28], [29]. Up to the
present, a lot of research has been proposed for SVMs to deal
with imbalanced data sets, such as the Synthetic Minority
Oversampling Technique (SMOTE) [4] at the data level, and
Adaptive Conformal Transformation (ACT) [29] and Kernel
Boundary Alignment (KBA) [23] at the algorithm level. The
experimental results of these techniques or algorithms
showed their good ability to overcome the class imbalance
problem [23], [29]. In order to justify the superiority of
MTS(PTM) for imbalanced data classification, we compared
MTS(PTM) with regular SVMs, SMOTE, ACT, and KBA. In
this comparison, we employed three of the most imbalanced
UCI data sets used in [23], and the measure of complexity
(f-ratio) of each problem was appended to Table 6. In each
run, the training and the test subsets were similarly
generated in the ratio 6:1, and the setting of each algorithm
was identical to that in [23]. Based on the results obtained
from [23] and our experiments, the means and standard
deviations of the classification g-means are both reported in
Table 6. It was found that MTS(PTM) achieved a good
prediction accuracy. MTS(PTM) tied for the highest accu-
racy in the Car data set and was slightly lower than ACT and
KBA in the Yeast data set. However, in the Abalone data set
with most imbalanced ratio, MTS(PTM) had the highest
accuracy among all methods and, meanwhile, we can
observe that both regular SVMs and SMOTE performed
poorly.

4.3 Discussion

In Section 4.1, we in total employed 11 experiments with
different imbalance levels, sample sizes, and classification
complexities to evaluate the performance of different
classification techniques. The results indicated that using
the PTM to determine a threshold can help MTS to avoid
overfitting the training sets and to attain better classification
ability than using ESM. The experimental results also
revealed that the classification techniques, that is, SDA,
C4.5, BPN, and SVMs, were influenced by the class
imbalance problem much more easily than MTS regardless
of the data sizes or complexities of the problems. Given the
observance made on the g-means metric, MTS could almost
make the highest value in the 11 experiments. Besides, the
RSs of MTS steadily kept close to 1, whereas those of the
other methods decreased with the increase in the degrees of
class imbalance of the training sets. These performances
mean that the ratio of the classes in the training set exercises
influence over the learning procedures of the SDA, C4.5,
BPN, and SVMs classifiers. On the contrary, MTS is robust
not only when facing the class imbalance problem but also
under the various data sizes and different problem
complexities. In Section 4.2, we compared MTS with several
modified SVMs devised for the class imbalance problem.
The comparison results verified the good ability of MTS to
deal with imbalanced data and conformed that MTS is not
inferior to the modified SVMs.

Besides, from the viewpoint of implementation, there are
no parameters needed to be optimized in executing MTS,
whereas other techniques such as BPN and SVMs always
spend much time on determining the best combination of
parameters. Moreover, it is unnecessary for MTS to do any
adjustment or modification at the data or algorithm level in
order to fit imbalanced data learning. On the other hand,
correctly predicting the positive examples is always more
important in real applications because they affect the
performance of a system. For example, if a production
inspection system cannot correctly and immediately detect
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TABLE 7
Attribute Value, Mean, and SD of the Normal Group
Attribut
Sample 2 - G Cs C Ce: Cs2
1 32220 1117 0 0 1 0
2 32,191  1.076 0 0.014 1 1
3 32411 1.555 0 0.014 0 1
270 32204 1.094 0 0.029 1 1
X, 3222 1467  0.003  0.021 0.652 0511
s; 0.082 024 0019  0.017 0493 0523
TABLE 8
Standardized Attribute Value and MD of the Normal Group
ttribut
Sample el ¢ C, Cs C Car C2 MD
1 0 -1458 0158 -1.235 0.706  -0.977 | 1.07470
2 0354  -1.629  -0.158  -0.412 0.706 0.935 | 0.91999
3 2.329 0367  -0.158  -0.412 -1.323 0935 | 1.09532
270 -0.195  -1.554  -0.158 0471 0.706 0.935 | 0.99650

the defective products, it will entail a huge cost later.
Therefore, a classification technique should have the ability
to overcome the class imbalance problem. It is apparent that
the ability of MTS to predict both of the classes is robust and
is not affected by the distribution of the training set even
though it is much imbalanced. This property is useful for
real applications.

5 CASE STuDY

5.1 Case Description

The case studied here comes from a mobile phone
manufacturer located in Taiwan [30]. The RF functional
inspection aims to inspect if a dual-band mobile phone
receive/transmit signal satisfies the enabled transmission
interval (ETI) protocol on different channels and power
levels. In order to ensure the quality of communication of
mobile phones, the manufacturer added many extra
inspection items to the RF functional inspection process,
such as several different frequency channels and power
levels. However, the added inspections caused an increase
in the required operation time and made the RF functional
inspection process the bottleneck of the entire mobile phone
manufacturing procedure.

The RF functional inspection process includes 62 inspec-
tion attributes, and they were labeled as C; to Cg. The
purpose of this case study was to remove the redundant RF
functional inspection attributes by using MTS to reduce the
production costs, to shorten the time to market, and to
enhance market competition.

5.2 Implementation

In this case study, the products passing the 62 RF functional
inspection attributes were defined as the normal condition.
The data were randomly sampled and split into training and
test sets. The training set used to construct a measurement
scale contained 270 normal and 30 abnormal examples,

whereas the test set used to demonstrate the capability of
the scale contained 90 normal and 10 abnormal examples.

5.2.1 Phase 1: Construct a “Full Model Measurement
Scale” with MS as the Reference

The 270 normal examples in the training set were designed
as the reference (normal) group. At first, the attribute
values, means, and SDs of the normal group were collected,
calculated, and depicted in Table 7 and, then, the
standardized values of the 62 attributes were computed
and shown in Table 8.

Next, we used the standardized attribute values in
Table 8 to compute the inverse of the correlation matrix of
the normal group in Table 9. Finally, we applied (1) to
calculate the MDs of the normal group. For example, the
MD of the first example of the normal group was calculated
as follows:

MDI:()%[O —1.458 —0.977 ]} 60
16.69 —1.35 0.008 0
—1.35 3.013 0.214 —1.458
: : —0.069 :
0.008 0.214 1457 | gy L=0.977 | 0.1
= 1.0747.

The MD of each example of the normal group is shown in
Table 8. These MDs defined an MS, and this space was
taken as a reference point for the measurement scale.

5.2.2 Phase 2: Validate the Measurement Scale

The MDs corresponding to the 30 abnormal examples in the
training set were also calculated using (1) to validate the
accuracy of the scale. If the measurement scale constructed
in phase 1 is good, the MDs of the abnormal examples will be
larger than that of the normal group. The MD distributions
of the normal group and the 30 abnormal examples were
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TABLE 9
Inverse of the Correlation Matrix of the Normal Group

C] C2 C3 C4 C5 C6 C7 oee C5 8 C5 9 C6 0 C6 1 C62
C; 1669  -135 0254 -0.033 0.182  0.008 -0.565 0.038 0224 -0311 -0.078  0.008
C, -1.35  3.013  -0.073 0.107 0.109  0.035 -0.203 0.032  -0.123  0.041 -0.021 0214
C; 0254  -0.073 117 0.107  -0.096  0.07  0.006 SE-04  0.031  0.023  -0.057 -0.069
C, | -0.033 0.107 0107 1301 -0.037 -0.158 -0.036 0.029 0289  0.035 0.193  0.024
Cs 0.182 0.109 -0.096  -0.037 1.734 -0.206  -0.146 0.12 -0.099 -0.133  -0.054  -0.022
Cs 0.008  0.035 0.07  -0.158 -0206 1.793  0.137 -0.054 -0267 -0.191  -0.04  -0.160
C, | -0565 -0203 0.006 -0.036 -0.146 0.137  1.575 0.169  0.048  -0.023 -0235  0.075
Csg | 0038 0032 5E-04 0.029 0.12  -0.054  0.169 1.565  0.238 -0.1 0.016  -0.474
Cso | 0224 -0123 0031 0289 -0.099 -0.267 0.048 0.238  1.539 0.1 025  -0.004
Csp | -0311 0041 0023 0035 -0.133 -0.191 -0.023 .. -0.1 -0.1 135 0.049  0.089
Cs; | -0078 -0.021 -0.057 0193 -0.054 -0.04 -0.235 0.016 0.25 0.049 1444  -0.018
Cs, | 0008 0214 -0069 0024 -0022 -0.16 0.075 -0.474  -0.004  0.089  -0.018  1.457

depicted in Fig. 2. It is obvious that the MDs of the abnormal
samples are indeed larger than that of normal groups, and it
appears that the measurement scale is effective.

5.2.3 Phase 3: Identify Important Variables (Feature
Selection Phase)

In this phase, we regarded the 62 attributes as the control
factors. Each factor was set into two levels, that is, level 1
was inclusive of the factor, and level 2 was exclusive of the
factor. The 62 factors were allocated to the first 62 columns
of an Lg(2%) array. For each run of the OA, we used the
factors with level 1 to construct an MS and, then, the MDs
corresponding to the 30 abnormal examples of the training
set were computed on the basis of the MS. Using the MDs
corresponding to the 30 abnormal examples, the larger-the-
better SN ratio was calculated for each run. The allocation of
the factors in the OA and the SN ratios are shown in
Table 10. Take run 1, for instance, the SN ratio was
calculated as follows:

1 1 1
- -10-1 Bl e R T
n ©810 {30 (7.98674 SRR 802)}

= 18.02903.
70
—Normal = ' Abnormal
60 |
50
[y
§ 40
g 30
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=
20
10 :\
'
— LN\ .,
0
P S, SN NS T - K, VR SR, "SR, VR S W N S NN
DT DT DT N NT N NV VT AV P a2 2 o X DT
DN SN AN AN PN MPAMPC RPN PN P N N '\99'

MD

Fig. 2. MD distributions of the RF functional inspection training set (full
model).

After obtaining the SN ratio of each run, we computed
the effect gain of each attribute and plotted them into a
graph, as shown in Fig. 3. Take attribute C as an example,
the effect gain was calculated as follows:

— 1
SN = 32 (18.02903 + 7.608896 + - - - 4+ 11.64836)

=12.91363

1
=35 (14.42624 + 12.68887 + - - - 4+ 13.35158)

4
|

= 12.75443
Gainy = SN — SN, = 12.91363 — 12.75443 = 0.1592.

If the gain is positive, the attribute can be considered as
worth keeping; if it is negative, the attribute should be
removed.

5.2.4 Phase 4: Future Predict with Important Variables

The number of the inspection attributes was reduced from
62 to 36, 31, 27, 24, 17, 14, 10, 8, 7, and 6, respectively,
according to the different gains (>0, > 0.1, > 0.2, > 0.3,
> 04, > 0.5, >0.6, >0.7, > 0.8, and > 0.9).

Take the case of gain > 0.5, the remainder attributes are
Cr, Cro, Cos, Crg, O3z, Csa, Cs, Cag, Caz, Caa, Csp, C3, Css,
and Cg, and we used the normal group with these
14 attributes to develop a reduced model measurement
scale. Similarly, the 30 abnormal examples were then
employed to validate the scale. Fig. 4 shows the MD
distributions under the reduced model, and it indicates that
the new scale is good. After making sure that the reduced
model measurement scale was efficient, we applied the
PTM to determine a threshold. The threshold was calcu-
lated by (4) as follows:

— 1
Ty =md - .
() = METN TN S
1
= 0.982 ——0.393 = 2.724.
TViT00s -1



SU AND HSIAO: AN EVALUATION OF THE ROBUSTNESS OF MTS FOR IMBALANCED DATA 1329
TABLE 10
Factors Allocation and SN Ratios

Rup GG G G G G G G G Cu Co  Co Co MD, MDy SN ratio
1 2 3 4 5 6 7 8 9 10 60 61 62 63 n (dB)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1| 798674 564802 | 18.02903
2 |1 1 1 1 1 1 1 1 1 1 22 2 2 | 129013 978550 | 7.608896
3 /1 1 1 1 1 1 1 1 1 1 22 2 2 | 150223 339314 | 12.57003
411 1 1 1 1 1 1 1 1 1 1 1 1 1 | 160727 505956 | 14.05007
s |t 1 1 1 1 1 1 2 2 2 22 2 2 | 127893 752904 | 12.57109
6 |1 1 1 1 1 1 1 2 2 2 1 1 1 1| 160313 622553 | 11.40608
7 /1 1 1 1 1 1 1 2 2 2 1 1 1 1| 126725 390273 | 12.94864
8 |1 1 1 1 1 1 1 2 2 2 22 2 2| 18m 188601 | 16.63614
9 |t 1 1 2 2 2 2 1 1 1 2 2 2 2 | 14267 978514 | 12.81961
|1 1 1 2 2 2 2 1 1 1 1 1 1 1| 1.68229 117000 | 13.28187
60 |2 2 1 2 1 1 2 1 2 2 2 1 12 | 101236 489627 | 10.97286
66 (2 2 1 2 1 1 2 2 1 1 1 2 2 1| 155941 778281 | 12.66432
62 (2 2 1 2 1 1 2 2 1 1 2 1 1 2 | 134182 602506 | 13.4991
6 |2 2 1 2 1 1 2 2 1 1 2 1 12 | 997475 38333 | 11.44389
64 | 2 2 1 2 1 1 2 2 1 1 1 2 2 1| 929266 194704 | 1335158

For this reduced model with 14 attributes, using 2.724 to
be the threshold resulted in 100 percent classification
accuracy on the training set, which can be observed in
Fig. 4. Finally, to verify the classification capability of the
reduced model, the test set was utilized. The MDs of the
examples of the test set were also computed by (1). Fig. 5
shows the MD distributions of the test set. By continu-
ously applying 2.724 to be the threshold, the classification
accuracy was 100 percent.

In the same way as described above, we can also obtain
the analysis results of the other reduced models according
to the different effect gains. Table 11 summarizes the
remainder numbers of attributes, the threshold calculated
using PTM, and the training and test classification accuracy
of each reduced model. The reduced models with the gain
larger than 0.2, 0.3, 0.4, and 0.5 all had perfect training and
test classification accuracy. Clearly, we should adopt the
reduced model with 14 attributes to be the final outcome of
this case because it had the best performance with the least
number of attributes. That is, we can use only the 14 test
attributes (C7, Cio, Ca6, Cag, C32, C34, C3g, Cag, Caz, Cus, Cso,

§ ] :i: L lllleslllC
1 4 50 g
”””””””””” - 13 474 616;
1 Ii“ gy Isel‘.|i |I|
II lzs I 53 .5-8
3 l] 13 17 15 22

Gain (dB)

=}
|

Attribute

Fi

g. 3. The effect gains of the RF functional inspection attributes.

C53, Cs5, and Cyp) instead of the original 62 attributes for the
mobile phone RF functional test process.

5.3 The Benefit

This case study drew support from MTS to analyze the RF
functional inspection process of dual-band mobile phone
manufacturing. The result indicated that the number of the
RF functional test attributes was significantly reduced from
62 to 14 without losing classification accuracy. In virtue of
attribute reduction, the operation time of the RF functional
inspection process was reduced from 190 to 110 seconds.
Because the bottleneck of the entire mobile phone manu-
facturing procedure was broken, the throughput increased
from 18 to 32 in one hour, that is, the production efficiency
is close to the double of the past. Additionally, this led to
the number of the RF functional inspection machine
reducing from 8 to 5, which saved the manufacturer a
direct cost of five million New Taiwan (NT) dollars per
year. With MTS, the redundant inspection attributes were
removed so that the required operation time was cut down,
and this resulted in a smoother flow of production and
enhanced market competitiveness.

‘ ——Normal — Abnormal

Toa =2.724

Frequency

Fig. 4. MD distributions of the RF functional inspection training set
(reduced model with 14 attributes).
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Fig. 5. MD distributions of the RF functional inspection test set (reduced
model with 14 attributes).

TABLE 11
Results of All Reduced Models
Gain # Attributes | Treshold Accuracy
Training Test

>0 36 1.994 99.67% 99.00%
>0.1 31 2.0345 99.00% 99.00%
>0.2 27 2.099 100.00% 100.00%
>0.3 24 2.1388 100.00% 100.00%
>0.4 17 2.5479 100.00% 100.00%
>0.5 14 2.724 100.00% 100.00%
>0.6 10 2.745 99.33% 99.00%
>0.7 8 3.4866 99.33% 98.00%
>(0.8 7 1.791 87.00% 90.00%
>0.9 6 1.9867 87.67% 89.00%

5.4 Classification Robustness Evaluation

To demonstrate the robustness of MTS and the effectiveness
of the proposed PTM for real applications, we also designed
three experiments on this case data and compared the
performance of MTS with that of SDA, C4.5, BPN, and
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SVMs. The data used for the analysis are described in
Table 12. The training and test sets of experiment 1 were the
same as that used in Section 5.2. From experiment 1 to
experiment 3, the degree of class imbalance gradually
increased.

The results are shown in Table 13. It is worthy to note
that the specificities of SDA, C4.5, BPN, and SVMs were
almost perfect in the three experiments, whereas their
sensitivities performed poorly. Besides, the performance of
our proposed PTM was better than that of the ESM in
implementing MTS. MTS had the best classification ability
and was the most robust classification technique.

6 CONCLUSION

MTS is a collection of methods proposed for a diagnostic
and forecasting technique. MTS can be used not only to
execute classification tasks but also to identify the important
variables of a multivariate system. For a multivariate
classification problem, the ratio of the positive to the
negative examples of the training set is one of the important
factors that impact on the effective training of a classifier.
One of the main purposes of this study was to investigate
the effect caused by an imbalanced training set on MTS and
other popular classification techniques such as SDA, C4.5,
BPN, and SVMs. Additionally, when implementing MTS in
real applications, what seems to be lacking is a method to
set a threshold efficiently to discriminate between the two
classes and to avoid overfitting problems. Thus, a PTM was
developed using Chebyshev’s theorem. This study com-
pared the performance of MTS with other classification
techniques and also verified the performance of the PTM.
The results indicated that the class imbalance problem
indeed caused a training bias on SDA, C4.5, BPN, and
SVMs, and it follows that the learned classifiers tended to
weaken the ability to predict the minority class. In contrast,
MTS performed robustly against the class imbalance

TABLE 12
RF Functional Inspection Data Set
Class - Training Set Test Set
Data Set Maj. / Min. #Var. | Exp. fratio # Neg. % Pos. # Neg. 4 Pos.
1 0.40 270 30
RF Functional
Tnspection Normal / abnormal 62 2 0.38 450 30 90 10
3 0.39 810 30
TABLE 13
Comparison of Test Results on the RF Functional Inspection Data Set

Data Set | Exp. Index MTS(PTM) | MTS(ESM) | SDA C4.5 BPN SVMs
Sensitivity 100.00 100.00 40.00 60.00 60.00 80.00
1 Specificity 100.00 100.00 100.00 | 100.00 | 100.00 | 100.00
g-means 100.00 100.00 63.25 77.46 77.46 89.44

RS 1.00 1.00 0.40 0.60 0.60 0.8

Sensitivity 100.00 90.00 40.00 30.00 60.00 70

RF 5 Specificity 98.89 100.00 96.67 96.67 | 100.00 100
g-means 99.44 94.87 62.18 53.85 77.46 83.67

RS 1.01 0.90 0.41 0.31 0.60 0.7

Sensitivity 90.00 80.00 40.00 30.00 50.00 80.00
3 Specificity 100.00 100.00 100.00 | 100.00 | 100.00 | 100.00
g-means 94.87 89.44 63.25 54.77 70.71 89.44

RS 0.90 0.80 0.40 0.30 0.50 0.8
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problem regardless of the data sizes and complexity of the
problems. Besides, by using the PTM, the threshold was
determined more efficiently, and the classification ability of
MTS was enhanced. Finally, this study sought the assistance
of the robustness of MTS to improve the RF functional
inspection process of mobile phone manufacturing. The
case study aimed to remove the redundant inspection
attributes and expected to maintain the original inspection
accuracy level. The results showed that the number of
attributes was successfully reduced from 62 to 14 without
losing inspection effectiveness. As a result of diminishing
the inspection time and relative production expenses, the
manufacturer improved its productivity and enhanced the
flexibility of responding to demands; thus, the manufac-
turer stands on a vantage point vis-a-vis its competitive
market. These results led us to conclude that MTS is a
powerful and useful classification technique for imbalanced
data analysis. Thus, it adequately appears that MTS is
practical for industry improvement, especially for high-
technology industries that have a high yield rate and with
data that are imbalanced.

This study has four contributions. First, the research
provided a detailed description of the concepts, principles,
and implementing procedures of MTS. This can help us
understand this diagnostic and forecasting technique.
Second, with the systematic experiments and analyses, this
paper showed that the imbalanced training set indeed
causes a bias on classifier training, whereas MTS is robust
even though the training set distribution is much imbal-
anced. This finding can be a reference for future classifica-
tion tasks on imbalanced data. Third, this study proposed a
PTM that can aid MTS in efficiently determining a thresh-
old. Finally, we successfully introduced MTS to improve the
RF functional inspection process of mobile phone manu-
facturing. This indicates the practicability of MTS in high-
technology production.

However, there are some important issues that need to
be studied in our future work. In a multivariate system, the
case in which all samples have equal value on some variable
and the multicollinearity problem are unavoidable. The
former will result in a zero standard deviation on the
variable, whereas the latter will cause some errors when
establishing the correlation matrix. All these phenomena
will lead to the unsuccessful construction of MS. Moreover,
how to extend the MTS and the research scheme to
multiclass tasks is also one of the important research topics
that will be tackled in the near future.
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