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Abstract. Class imbalance is a widespread problem in many classifica-
tion tasks such as medical diagnosis and text categorization. To over-
come this problem, we investigate one-class SVMs which can be trained
to differentiate two classes on the basis of examples from a single class.
We propose an improvement of one-class SVMs via a conformal ker-
nel transformation as described in the context of binary SVM classi-
fiers by [2, 3]. We tested this improved one-class SVM on a health care
problem that involves discriminating 11% nosocomially infected patients
from 89% non infected patients. The results obtained are encouraging:
compared with three other SVM-based approaches to coping with class
imbalance, one-class SVMs achieved the highest sensitivity recorded so
far on the nosocomial infection dataset. However, the price to pay is a
concomitant decrease specificity, and it is for domain experts to decide
the proportion of false positive cases they are willing to accept in order
to ensure treatment of all infected patients.

1 The Imbalanced Data Problem

Data imbalance is a crucial problem in applications where the goal is to maximize
recognition of the minority class, as is typically the case in medical diagnosis.
The issue of class imbalance has been actively investigated and remains widely
open; it is handled in a number of ways [14], including: oversampling the minority
class, building cost-sensitive classifiers [10] that assign higher cost to misclassi-
fications of the minority class, stratified sampling on the training instances to
balance the class distribution [15] and rule-based methods that attempt to learn
high confidence rules for the minority class [1]. In this paper we investigate an-
other way of biasing the inductive process to boost sensitivity (i.e., capacity to
recognize positives). This approach, based on one-class support vector machines
(SVMs) with a conformal kernel, is described in Section 2 and its application to
nosocomial infection detection is discussed in Section 3. Experiments conducted
to assess this approach as well as results are described in Section 4.
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2 Using Conformal Kernels in One-Class SVMs

2.1 One-Class Classification

While the majority of classification problems consist in discriminating between
two or more classes, some other problems are best formulated as one-class or
novelty detection problems. In a probabilistic sense, one-class classification is
equivalent to deciding whether an unknown case has been produced by the dis-
tribution underlying the training set of normal cases. In one-class classification
the classifier is trained exclusively on cases from the majority class and never
sees those from the minority class. It must estimate the boundary that separates
two classes and minimize misclassification based only on data lying on one side
of it.

The one-class approach is particularly attractive in situations where cases
from one class are expensive or difficult to obtain for model construction (i.e.
imbalanced datasets). The most straigthforward method for detecting novel or
abnormal cases is to estimate the density of the training data and to set a
threshold on this density [4, 17]. However, it is much simpler to model the support
of a data distribution, i.e., to create a binary-valued function which is positive in
those regions of input space containing most of the data and negative elsewhere;
the following section describes this approach.

2.2 One-Class Support Vector Machines

Support vector machines [18, 8] are learning machines based on the Structural
Risk Minimization principle (SRM) from statistical learning theory. They were
originally introduced to solve the two-class pattern recognition problem. An
adaptation of the SVM methodology in order to handle classification problems
using data from only one class has been proposed by [16]. This adapted method,
termed one-class SVM, identifies “abnormal” cases amongst the known cases and
assumes them to belong to the complement of the “normal” cases. Schölkopf et
al. formulate the one-class SVM approach as follows:
Consider a training set X = {xi}, i = 1, . . . , n, xi ∈ R

d, and suppose its in-
stances are distributed according to some unknown underlying probability dis-
tribution P. We want to know if a test example x is distributed according to P
or not. This can be done by determining a region R of the input space X such
that the probability that a test point drawn from P lies outside of R is bounded
by some a priori specified value ν ∈ (0, 1). This problem is solved by estimating
a decision function f which is positive on R and negative elsewhere.

f(x) > 0 if x ∈ R and f(x) < 0 if x ∈ R (1)

A non linear function Φ : X → F maps vector x from the input vector space
X endowed with an inner product to a Hilbert space F termed feature space.
In this new space, the training vectors follow an underlying distribution P’,
and the problem is to determine a region R’ of F that captures most of this
probability mass distribution. In other words the region R’ corresponds to the
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part of the feature space where most of the data vectors lie. To separate as many
as possible of the mapped vectors from the origin in feature space F we construct
a hyperplane H(w, ρ) in a feature space F defined by

H(w, ρ) : 〈x, Φ(x)〉 − ρ (2)

with w the weight vector and ρ the offset, as illustrated in Fig 1.
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Fig. 1. Schematic 2D overview of a one-class SVM classifier with an RBF kernel. In
the feature space, the vectors are located on a hypersphere. The hyperplane H(w, ρ)
separates the training vectors from the rest of the surface of the hypersphere.

The maximum margin from the origin is found by solving the following
quadratic optimization problem.

Minimize
1
2
〈w,w〉 − 1

νn

n∑

i=1

ξi (3)

subject to 〈w, Φ(w)〉 ≥ ρ − ξi, ∀i ξi ≥ 0 (4)

where ξi are so-called slack variables that penalize the objective function but
allow some of the points to be on the wrong side of the hyperplane, i.e. located
between the origin and H(w, ρ) as depicted in Fig.1. ν ∈ (0, 1) is a parameter
that controls the trade off between maximizing the distance from the origin and
containing most of the data in the region created by the hyperplane. It is proved
in [16] that ν is an upper bound on the fraction of outliers i.e. training errors,
and also a lower bound on the fraction of support vectors.

Let (α1, α2, . . . , αn) be n non negative Lagrange multipliers associated with
the constraints, the solution to the problem is equivalent to the solution of the
Wolfe dual [11] problem:
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Maximize
1
2
αiαj〈Φ(xi), Φ(xi)〉 (5)

subject to 0 ≤ αi ≤ 1
νn

,

n∑

i=1

αi = 1 (6)

the solution for w is
∑n

i=1 Φ(xi) where 0 ≤ αi ≤ 1
νn and the corresponding

decision function is :

f(xj) = sgn

(
n∑

i=1

αi〈Φ(xi), Φ(xj)〉 − ρ

)
(7)

All training data vectors xi for which f(xi) ≤ 0 are called support vectors
(SVs); these are the only vectors for which αi �= 0. SVs are divided in two sets
: the margin SVs, for which f(xi) = 0, and the non-margin SVs, for which
f(xi) < 0. Notice that in (5) only inner products between data are considered;
for certain particular maps F , there is no need to actually compute Φ(xi) and
Φ(xj); the inner product can be derived directly from xi and xj by means of the
so-called ”kernel trick”. A kernel K is a symmetric function that fulfills Mercer’s
[18, 9] conditions. The main property of functions satisfying these conditions is
that they implicitly define a mapping from X to a Hilbert space F such that

K(xi,xj) = 〈Φ(xi), Φ(xj)〉 (8)

and thus can be used in algorithms using inner products. Accordingly, the hyper-
plane (2) in feature space F becomes a non linear function in the input space X .

f(x) = sgn(
n∑

i=1

αiK(xi,x) − ρ) (9)

There are many admissible choices for the kernel function K(xi,xj). The most
widely used in one-class SVMs is the Gaussian Radial Basis Function RBF kernel:

K(xi,xj) = exp−‖xi−xj‖2/2σ2
(10)

where σ is a parameter which controls the width of the kernel function around
xi. Since 〈Φ(xi), Φ(xi)〉 = K(xi,xi) = exp0 = 1 with an RBF kernel, the train-
ing data in F lie on a region on the surface of a hypersphere centered at the
origin of X with radius 1 as depicted in Fig. 1. Finally one has the decision
function of Eq. (9) with ρ =

∑n
i=1 αiK(xi,xj) for any xj such that αi satisfies

0 < αj < 1
νn which defines the contour of the region R in input space by cutting

the hypersurface defined by the weighted addition of SVM kernels at a given
altitude ρ.

2.3 Accuracy Improvement

The accuracy of the one-class classifier can be improved by enhancing the res-
olution in the support vector region boundaries. One way to reach this goal is
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via a conformal transformation1 of the kernel. This approach has been described
in the context of binary SVMs classifier by [2, 3], but the basic principle is also
applicable to the one-class SVM. From a geometrical point of view the mapped
data lie on a surface S in F with the same dimensionality as the input space
X [6]. In the case of an RBF kernel function, the associated surface S in F can
be considered as a Riemannian manifold [5] and a Riemannian metric thereby
induced and expressed in the closed form in terms of the kernel [6, 2, 3]. A Rie-
mannian metric, also called tensor, is a function which computes the intrinsic
distance measured along the surface S itself between any two points lying on it.
Its components can be viewed as multiplication factors which must be placed in
front of the differential displacements dxi in X to compute the distance ds of an
element dz in F in a generalized Pythagorean theorem,

ds2 =
∑

i,j

gijdxidxj (11)

where gij is the induced metric, and the surface S is parametrized by the xi.
Let x be a point in X and z it corresponding mapping by Φ in F . Letting dx
represent a small but finite displacement, we have

ds2 = ‖dz‖2 = ‖Φ(x + dx) − Φ(x)‖2

= K(x + dx,x + dx) − 2K(x,x + dx) + K(x,x)

=
∑

i,j

(
∂2K(x,y)

∂xi∂yj

)

y=x

dxidxj

From Eq. 11 we see that the Riemannian metric induced on S can be defined as

gij =
(

∂2K(x, z)
∂xi∂yj

)

y=x

(12)

Note how a local area around x in X is magnified in F under the mapping Φ(x).
The principle of conformal mapping is to increase the metric gij(x) around the
boundary and to reduce it everywhere else. To do this the non linear mapping
Φ is modified in such a way that gij(x) is enlarged around the boundary. This
can be done by introducing a conformal transformation of the kernel [2, 3],

K̃(x,y) = c(x)c(y)K(x,y) (13)

where c(x) is a defined positive function. The modified kernel satisfies the Mercer
positivity condition [9]. From Eq. 12, we obtain the new Riemannian metric g̃ij

g̃ij = c(x)2gij(x) + ci(x)cj(x) + 2ci(x)c(x)Ki(x,x) (14)

where Ki(x,x) = ∂K(x,y)/∂xi|x=y and ci(x) = ∂c(x)/∂xi. For the Gaussian
RBF kernel the last term is zero.
1 A transformation that preserves the magnitude and orientation of the angle between

any two curves intersecting at a given point is conformal at that point. A transfor-
mation is called conformal in a domain D if it is conformal at every point in D.
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To expand the spatial resolution in the margin of a support vector c(x) should
be chosen in a way such that the metric g̃ij(x) has greater values around the
decision boundary. However, in practice, we do not know where the boundary
is, so an initial estimate is done by prior training of one-class SVMs.
A possible conformal transformal transformation c(x) is

c(x) =
∑

i∈ŜV

α̂ie
−‖x−x̂i‖2

2τ2 (15)

where ŜV is the set of margin support vectors, α̂i is a positive number repre-
senting the contribution of the ith support vector, xi is the ith support vector
and τ is a free parameter; .̂ refers to a one-class SVM previously trained on the
same dataset.

3 Application to Nosocomial Infection Detection

We tested the performance of one-class SVMs with a conformal kernel on a
medical problem, the detection of nosomial infections. A nosocomial infection
(from the Greek word nosokomeion for hospital) is an infection that develops
during hospitalization whereas it was not present nor incubating at the time
of the admission. Usually, a disease is considered a nosocomial infection if it
develops 48 hours after admission.

The University Hospital of Geneva (HUG) has been performing yearly preva-
lence studies to detect and monitor nosocomial infections since 1994 [13]. Their
methodology is as follows: the investigators visit every ward of the HUG over a
period of approximately three weeks. All patients hospitalized for 48 hours or
more at the time of the study are included. Medical records, kardex, X-ray and
microbiology reports are reviewed, and additional information is eventually ob-
tained by interviewing nurses or physicians in charge. Collected variables include
demographic characteristics, admission date, admission diagnosis, comorbidities,
McCabe score, type of admission, provenance, hospitalization ward, functional
status, previous surgery, previous intensive care unit (ICU) stay, exposure to an-
tibiotics, antacid and immunosuppressive drugs and invasive devices, laboratory
values, temperature, date and site of infection, fulfilled criteria for infection.

The resulting dataset consisted of 688 patient records and 83 variables. With
the help of hospital experts on nosocomial infections, we filtered out spurious
records as well as irrelevant and redundant variables, reducing the data to 683
cases and 49 variables. The major difficulty inherent in the data (as in many
medical diagnostic applications) is the highly skewed class distribution. Out of
683 patients, only 75 (11% of the total) were infected and 608 were not. This
application was thus an excellent testbed for assessing the efficacy of one-class
SVMs with a conformal kernel in the presence of data imbalance.
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4 Experimentation

4.1 Evaluation Strategy

The experimental goal was to assess the impact of a conformal kernel on the
the ability of one-class SVMs to cope with imbalanced datasets. To train one-
class SVM classifiers we used an RBF kernel (Eq. (10)) and experimented with
different values for the parameters ν and σ. Generalization error was estimated
using 5-fold cross-validation (10-fold cross-validation would have resulted in an
extremely small number of infected test cases per fold). The complete dataset
was randomly partitioned into five subsets. On each iteration, one subset (com-
prising 20% of the data samples) was held out as a test set and the remaining
four (80% of the data) were concatenated into a training set. The training sets
consisted only of non infected patients whereas the test sets contained both
infected and non infected patients according to the original class distribution.
Error rates estimated on the test sets were then averaged over the five iterations.
The following strategy was followed for conformal mapping:

1. Train one-class SVM with the primary RBF kernel K to get the SVs. Then
change the kernel K according to Eq. 13,15.

2. Train one-class SVM with the modified kernel K̃.
3. Apply the above two steps (1. and 2.) until the best performances is attained.

For Eq. 15 we took τ = σ/
√

n which is the optimal value reported in [3].

4.2 Results

Table 1 summarizes performance results for one-class SVMs. It shows the best
results obtained by training classifiers using different parameter configurations
on non infected cases only. The last three columns show results based on three
performance metrics. Accuracy is the percentage of correctly classified cases,
sensitivity is the number of true positives over all positive cases, while specificity
is the number of true negatives over all negative cases. Clearly, for both RBF and
conformal kernels, highest sensitivity is attained when σ is very small: the system

Table 1. Performance of one-class SVMs for different parameter settings using (1) an
RBF Gaussian kernel and (2) a conformal kernel.

One-class SVM ν σ Accuracy % Sensitivity % Specificity %

0.05 10−4 74.6 92.6 43.73
0.05 0.10 75.49 80.60 65.60

RBF kernel 0.2 10−4 75.69 79.28 68.27
0.2 0.10 74.36 74.67 72.27

0.05 10−4 75.6 93.4 43.15
0.05 0.1 76.65 82.35 64.1

Conformal kernel 0.2 10−4 77.3 81.1 69.7
0.2 0.06 76.25 79.1 69.2
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Table 2. Best performance of four SVM-based approaches to class imbalance.

SVM Classifier Accuracy Sensitivity Specificity

Binary with symm. margin 89.6% 50.6% 94.4%
Binary with asymm. margin 74.4% 92% 72.2%
One-class with RBF kernel 74.6% 92.6% 43.73%
One-class with conformal kernel 75.6% 93.4% 43.15%

puts a Gaussian of narrow width around each data point and hence most of the
infected test cases are correctly recognized as abnormal. The price is that many
non infected cases are equally labelled abnormal, thus yielding low specificity.
Larger values of σ in the RBF kernel are required to achieve tight approximations
for the region R (non infected patients). Therefore the kernel parameter σ is
crucial in determining the balance between normality and abnormality as there
is no explicit penalty for false positive in one-class classification, contrary to the
two class formulation [7]. Since the goal of this study is to identify infected cases,
the solution retained is that which achieves maximal sensitivity.

In a previous study on the same nosocomial dataset [7], we investigated a
support vector algorithm in which asymmetrical margins are tuned to improve
recognition of rare positive cases. Table 2 compares the best performance mea-
sures obtained in previous and the latest experiments. Classical binary SVMs
with a symmetrical margin attain a baseline sensitivity 50.6%; with the use
of asymmetrical margins, sensitivity jumps to 92%. This is further improved
by one-class SVMs with an RBF kernel (92.6%) and with a conformal kernel
(93.4%). Note however that this progress in sensitivity comes at the cost of a
corresponding decrease in specificity.

5 Conclusion and Future Work

We proposed one-class SVMs with a conformal kernel as a novel way of handling
class imbalance in classification tasks. We showed that this approach achieves
higher sensitivity than all SVM models previously applied to this problem. How-
ever, the price paid in terms of loss in specificity is quite exhorbitant, and domain
experts must decide if the high recognition rate is worth the cost of treating false
positive cases. From this point of view, asymmetrical-margin SVMs might prove
preferable in that they maintain a more reasonable sensitivity-specificity trade-
off. In the near future, we intend to prospectively validate the classification model
obtained by performing in parallel a standard prevalence survey. Overall we feel
that one-class SVMs with a conformal kernel are a promising approach to the
detection of nosocomial infections and can become a reliable component of an
infection control system.
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858 Gilles Cohen, Mélanie Hilario, and Christian Pellegrini

References

1. K. Ali, S. Manganaris, and R. Srikant. Partial classification using association rules.
In Proc. 3rd International Conference on Knowledge Discovery in Databases and
Data Mining, 1997.

2. S. Amari and S. Wu. Improving support vector machine classifiers by modifying
kernel functions. Neural Networks, 12(6):783–789, 1999.

3. S. Amari and S. Wu. An information-geometrical method for improving the per-
formance of support vector machine classifiers. In ICANN99, pages 85–90, 1999.

4. C. Bishop. Novelty detection and neural network validation. IEEE Proceedings on
Vision, Image and Signal Processing, 141(4):217–222, 1994.

5. W.M. Boothby. An introduction to differential manifolds and Riemannian geome-
try. Academic Press, Orlando, 1986.

6. C. Burges. Geometry and invariance in kernel based methods. In MIT Press,
editor, Adv. in kernel methods: Support vector learning, 1999.

7. G. Cohen, M. Hilario, H. Sax, and S. Hugonnet. Asymmetrical margin approach
to surveillance of nosocomial infections using support vector classification. In In-
telligent Data Analysis in Medicine and Pharmacology, 2003.

8. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273–
297, September 1995.

9. N. Cristianini and Taylor J.S. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

10. P. Domingos. A general method for making classifiers cost-sensitive. In Proc. 5th
International Conference on Knowledge Discovery and Data Mining, pages 155–
164, 1999.

11. R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, 1987.
12. G. G. French, A. F. Cheng, S. L. Wong, and S. Donnan. Repeated prevalence

surveys for monitoring effectiveness of hospital infection control. Lancet, 2:1021–
23, 1983.

13. S. Harbarth, Ch. Ruef, P. Francioli, A. Widmer, D. Pittet, and Swiss-Noso Net-
work. Nosocomial infections in Swiss university hospitals: a multi-centre survey
and review of the published experience. Schweiz Med Wochenschr, 129:1521–28,
1999.

14. N. Japkowicz. The class imbalance problem: A systematic study. Intelligent Data
Analysis Journal, 6(5), 2002.

15. M. Kubat and S. Matwin. Addressing the curse of imbalanced data sets: One-
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