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Abstract—An imbalanced training data set can pose serious problems for many real-world data mining tasks that employ SVMs to

conduct supervised learning. In this paper, we propose a kernel-boundary-alignment algorithm, which considers THE training data

imbalance as prior information to augment SVMs to improve class-prediction accuracy. Using a simple example, we first show that

SVMs can suffer from high incidences of false negatives when the training instances of the target class are heavily outnumbered by the

training instances of a nontarget class. The remedy we propose is to adjust the class boundary by modifying the kernel matrix,

according to the imbalanced data distribution. Through theoretical analysis backed by empirical study, we show that our kernel-

boundary-alignment algorithm works effectively on several data sets.

Index Terms—Imbalanced-data training, support vector machines, supervised classification.
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1 INTRODUCTION

INmany data mining tasks, finding rare objects or events is
of primary interest [25]. Some examples include identify-

ing fraudulent credit card transactions [11], diagnosing
medical diseases, and recognizing suspicious activities in
surveillance videos [28]. The task of finding rare objects or
events is usually formulated as a supervised learning
problem. Training instances are collected for both target
and nontarget events and, then, a classifier is trained on the
collected data to predict future instances. Researchers in the
data mining community have been using Support Vector
Machines (SVMs) as the learning algorithm since SVMs
have strong theoretical foundations and excellent empirical
successes in many pattern-recognition applications such as
handwriting recognition [23], image retrieval [22], and text
classification [14]. However, for rare-object detection and
event mining, when the training instances of the target class
are significantly outnumbered by the other training
instances, the class-boundary learned by SVMs can be
severely skewed toward the target class. As a result, the
false-negative rate can be excessively high in identifying
important target objects (e.g., a surveillance event or a
disease-causing agent) and can result in catastrophic
consequences.

Skewed class boundary is a subtle but serious problem

that arises from using an SVM classifier—in fact, from using

any classifier—for real-world problems with imbalanced

training data. To understand the nature of the problem, let

us consider it in a binary classification setting (positive

versus negative). We know that the Bayesian framework

estimates the posterior probability using the class condi-

tional and the prior [12]. When the training data are highly

imbalanced, the results naturally tend to favor the majority
class. Hence, when ambiguity arises in classifying a
particular sample because of similar class-conditional
densities for the two classes, the Bayesian framework will
rely on the large class prior favoring the majority class to
break the tie. Consequently, the decision boundary will
skew toward the minority class.

To illustrate this skew problem graphically, Fig. 1 shows
a 2D checkerboard example. The checkerboard divides a
200� 200 square into four quadrants. The top-left and
bottom-right quadrants are occupied by negative (majority)
instances, but the top-right and bottom-left quadrants
contain only positive (minority) instances. The lines
between the classes represent the “ideal” boundary that
separates the two classes. In the rest of this paper, we will
use positive when referring to minority instances and
negative when referring to majority instances.

Fig. 2 exhibits the boundary distortion between the two
left quadrants in the checkerboard under two different
negative/positive training data ratios, where a black dot
with a circle represents a support vector, and its radius
represents the weight value �i of the support vector. The
bigger the circle, the larger the �i. Fig. 2a shows the SVM
class boundary when the ratio of the number of negative
instances (in the quadrant above) to the number of positive
instances (in the quadrant below) is 10 : 1. Fig. 2b shows the
boundary when the ratio increases to 10; 000 : 1. The
boundary in Fig. 2b is much more skewed toward the
positive quadrant than the boundary in Fig. 2a, thus causing
a higher incidence of false negatives.

Although, in a theoretical sense, the Bayesian framework
gives the optimal results (in terms of the smallest average
error rate), we must be careful in applying it to real-world
applications. In a real-world application such as security
surveillance or disease diagnosis, the risk (or consequence)
of mispredicting a positive event (a false negative) far
outweighs that of mispredicting a negative event (a false
positive). It is well-known that, in a binary classification
problem, Bayesian risks are defined as:
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Rð�pjxÞ ¼ �ppP ð!pjxÞ þ �pnP ð!njxÞ
Rð�njxÞ ¼ �npP ð!pjxÞ þ �nnP ð!njxÞ;

where p refers to the positive events and n to the negative,

�np refers to the risk (or cost) of a false negative, and �pn

refers to the risk of a false positive. The decisions about

which action (�p or �n) to take—or which action has a

smaller risk—are affected not just by the event likelihood

(which directly influences the misclassification error), but

also by the risk of mispredictions (�np and �pn).
How can we factor risk into SVMs to compensate for the

effect caused by P ð!njxÞ >> P ð!pjxÞ? Examining the class

prediction function of SVMs,

sgn fðxÞ ¼
Xn
i¼1

yi�iKðx;xiÞ þ b

 !
; ð1Þ

we see that three parameters can affect the decision

outcome: b, �i, and K. Our theoretical analysis, backed up

by empirical study, will show that the only effective method

for improving SVMs is through adaptively modifying K

based on the training data distribution. To modify K, we

propose in this paper the kernel-boundary-alignment (KBA)

algorithm, which addresses the imbalanced training data

problem in three complementary ways:

1. Improving class separation. KBA increases intraclass
similarity and decreases interclass similarity through
changing the similarity scores in the kernel matrix.
Therefore, instances in the same class are better

clustered in the feature space F away from those in
the other classes.

2. Safeguarding overfitting. To avoid overfitting, KBA
uses the existing support vectors to guide its
boundary-alignment procedure.

3. Improving imbalanced ratio. By properly adjusting the
similarity scores between majority instances, KBA
can reduce the number of support vectors on the
majority side and, hence, improve the imbalanced
support-vector ratio.

Our experimental results on both UCI and real-world
image/video data sets show the kernel-boundary-align-
ment algorithm to be effective in correcting a skewed
boundary caused by imbalanced training data.

The rest of this paper is organized as follows: Section 2
discusses related work. In Section 3, we describe the kernel-
boundary-alignment algorithm for addressing the imbal-
anced training-data problem. Section 4 presents the setup
and the results of our empirical studies. We offer our
concluding remarks in Section 5.

2 RELATED WORK

Approaches for addressing the imbalanced training data
problem can be divided into two main categories: the data
processing approach and the algorithmic approach. The data
processing approach can be further subdivided into two
methods: undersample the majority class or oversample the
minority class. The one-sided selection proposed by Kubat
and Matwin [17] is a representative undersampling ap-
proach which removes noisy, borderline, and redundant
majority training instances. However, these steps typically
can remove only a small fraction of the majority instances, so
they might not be very helpful in a scenario with a majority-
to-minority ratio of more than 100 : 1 (which is becoming
common in many emerging pattern-recognition applica-
tions). Multiclassifier training [6] and Bagging [3] are two
other undersampling methods. These methods do not deal
with noisy and borderline data directly, but use a large
ensemble of subclassifiers to reduce prediction variance.

Oversampling [7], [26] is the opposite of the under-
sampling approach. It duplicates or interpolates minority
instances in the hope of reducing the imbalance. The
oversampling approach can be considered as a “phantom-
transduction” method. It assumes the neighborhood of a
positive instance to be still positive and the instances
between two positive instances positive. The validity of
assumptions like these, however, can be data-dependent.

The algorithmic approach, which is traditionally1 ortho-
gonal to the data-processing approach, is the focus of this
paper. Nugroho et al. [20] suggest combining a competitive
learning network and a multilayer perceptron as a solution
for the class imbalance problem. Cardie and Howe [5], [10],
[17] modify the decision-tree generator to improve its
learning performance on imbalanced data sets. For SVMs,
few attempts [16], [19], [24], [29] have dealt with the
imbalanced training-data problem. Basically, all of those
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Fig. 1. Checkerboard experiment.

Fig. 2. Boundaries of different imbalanced ratios. We use a Gaussian

RBF kernel for training. For better illustration, we zoom into the area

around the ideal boundary (y = 100) between left two quadrants. Only

support vectors are shown in the figures. (a) 10:1. (b) 10,000:1.

1. Although our algorithmic approach focuses on aligning the class
boundary, it can effectively remove redundant majority instances as a
by-product.



aim to incorporate into the SVMs the prior knowledge of the
risk factors of false negatives and false positives. Karakou-
las and Taylor [16] propose an approach to modify the bias
(or parameter b) in the class prediction function (1). Lin et al.
[19], [24], [29] use different predefined penalty constants
(based on some prior knowledge) for different classes of
data. The effectiveness of this method is limited since the
Karush Kuhn Tucker (KKT) conditions [18] use the penalty
constants as the upper bounds, rather than the lower
bounds, of misclassification costs. Moreover, the KKT
condition

Pn
i¼1 �iyi ¼ 0 imposes an equal total influence

from the positive and negative support vectors. The
increases in some �is at the positive side will inadvertently
increase some �is at the negative side to satisfy the
constraint. These constraints can make the increase of Cþ

on minority instances ineffective. (Validation is presented in
Section 4.)

Another algorithmic approach to improve the SVMs for
imbalanced training is to modify the employed kernel
function K or kernel matrix2 K. In kernel-based methods,
such as SVMs, the kernel K represents a pairwise similarity
measurement among the data. Because of the central role of
the kernel, a poor K will lead to a poor performance of the
employed classifier [8], [21]. Our prior work ACT [27] falls
into this category by modifying the K using (quasi)
conformal transformation so as to change the spatial
resolution around the class boundary. However, ACT
works only when data have a fixed-dimensional vector-
space representation since the algorithm relies on informa-
tion in the input space. The kernel-boundary alignment
algorithm (KBA) that we propose in this paper is a more
general approach, which does not require the data to have a
vector-space representation. This relaxation is important so
that we can deal with a large class of sequence data (motion
trajectories, DNA sequences, sensor-network data, etc.),
which may have a different length. Furthermore, KBA
provides greater flexibility in adjusting the class boundary.
(We present details in Section 3.2).

Recently, several kernel alignment algorithms [8], [15]
have been proposed in the Machine Learning community to
learn a kernel function or a kernel matrix from the training
data. The motivation behind these methods is that a good
kernel should be data dependent and a systematic method
for learning a good kernel from the data is useful. All these
methods are based on the notion of the kernel target
alignment proposed by Cristianini et al. [8]. The alignment
score is used for measuring the quality of a given kernel
matrix. To address the imbalanced training data problem,
Kandola and Shawe-Taylor [15] propose an extension to
kernel-target alignment by giving the alignment targets of
1
nþ to the positive instances and � 1

n� to the negative
instances. (We use nþ and n� to denote the number of
minority and majority instances, respectively.) Unfortu-
nately, when nþ

n� is small (when nþ does not remain
Oðnþ þ n�Þ), the concentration property upon which that
kernel-target alignment relies may no longer hold. In other
words, the proposed method can deal only with uneven
data that are not very uneven. Our proposed KBA algorithm

is based on maximizing the separation margin of the SVMs
and is more effective in its solution.

3 KERNEL BOUNDARY ALIGNMENT

Let us consider a two-class classification problem with

training data set X train ¼ fxi; yigni¼1, where xi 2 <m and

y 2 f�1;þ1g. The basic idea of kernel methods is to map

X from its input space I to a feature space F , where the

data can be separated by applying a linear procedure [23].

The attractiveness of kernel methods is that the mapping

from I to F can be performed efficiently through the

inner product defined in F , or Kðxi;xjÞ ¼ �ðxiÞT�ðxjÞ.
Common choices for kernels are polynomial functions

Kðxi;xjÞ ¼ ðxi � xj þ 1Þp and Gaussian radial basis func-

tions (RBF) Kðxi;xjÞ ¼ exp �kxi�xjk2
2�2

� �
.

More generally, Kðxi;xjÞ can be considered as a
similarity measure between instances xi and xj. (Theoretical
justifications are presented in [21].) For instance, when an
Gaussian RBF function is employed, the value of Kðxi;xjÞ
ranges from 0 to 1, where Kðxi;xjÞ ¼ 0 when xi and xj are
infinitely far away (dissimilar) in input space and
Kðxi;xjÞ ¼ 1 when xi and xj are infinitely close (almost
identical). Thus, the choice of a good kernel is equivalent to
the choice of a good distance function for measuring
similarity.

To tackle the imbalanced training data set problem, we
propose to modify the kernel by considering the imbal-
anced data distribution as the prior information. There are
two approaches to modify the kernel. The first approach is
to modify the kernel function K directly in input space I .
The second approach is to modify the kernel matrix K
generated by a kernel function (for vector data) or a
similarity measurement (for nonvector data) on the training
set X in feature space F . The first approach relies on the
data information in I and, hence, the fixed-dimensional
input space must exist. However, the second approach to
modify the kernel matrix in F can bypass this limitation by
only relying on the mapped data information in the feature
space. Indeed, as long as the resulting kernel matrix K
maintains the positive (semi) definite property, the mod-
ification is mathematically valid.

In the remainder of this section, we first summarize ACT
[27], our prior function-modification approach, to set up the
context for discussing KBA. (KBA must obey the theoretical
justification on which ACT is explicitly founded.) We then
propose the kernel-boundary-alignment (KBA) algorithm.
This algorithm generalizes the work of ACT, by modifying
the kernel matrix in F , to deal with data that have a fixed-
dimensional vector-space representation and also data that
do not (e.g., sequence data). At the end of Section 3, we will
discuss the differences between KBA and ACT and, in
particular, the additional flexibility that KBA enjoys in
adjusting similarity measures. Table 1 lists key notations
used in this section.

3.1 Conformally Transforming Kernel K

Kernel-based methods, such as SVMs, introduce a mapping
function � which embeds the I into a high-dimensional F
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2. Given a kernel functionK and a set of instances X train ¼ fxi; yigni¼1, the
kernel matrix (Gram matrix) is the matrix of all possible inner-products of
pairs from Xtrain, K ¼ ðkijÞ ¼ Kðxi;xjÞ.



as a curved Riemannian manifold S where the mapped data

reside [4]. A Riemannian metric gijðxÞ is then defined for S,
which is associated with the kernel function Kðx;x0Þ by

gijðxÞ ¼
@2Kðx;x0Þ
@xi@x

0
j

 !
x0¼x

: ð2Þ

The metric gij shows how a local area around x in I is

magnified in F under the mapping of �. The idea of

conformal transformation in SVMs is to enlarge the margin

by increasing the magnification factor gijðxÞ along the

boundary (represented by support vectors) and to decrease

it around the other points. This could be implemented by a

conformal transformation3 of the related kernel Kðx;x0Þ,
according to (2), so that the spatial relationship between the

data would not be affected too much [1]. Such a (quasi)

conformal transformation can be depicted as

~KKðx;x0Þ ¼ DðxÞDðx0ÞKðx;x0Þ: ð3Þ
In (3), DðxÞ is a properly defined positive (quasi)

conformal function. DðxÞ should be chosen in such a way
that the new Riemannian metric ~ggijðxÞ, associated with the
new kernel function ~KKðx;x0Þ, has larger values near the
decision boundary. Furthermore, to deal with the skew of
the class boundary caused by imbalanced classes, we
magnify ~ggijðxÞ more in the boundary area close to the
minority class. In [27], we demonstrate that an RBF distance
function such as

DðxÞ ¼
X
k2SV

exp � jx� xkj
�2k

� �
ð4Þ

is a good choice for DðxÞ.
In (4), we can see that if �2k s are fixed (equal) for all

support vectors xks, DðxÞ would be very dependent on the
density of support vectors in the neighborhood of x. To
alleviate this problem, we adaptively tune �2k according to
the spatial distribution of support vectors in F . This goal
can be achieved by the following equation:

�2k ¼

AVGi2fk�ðxiÞ��ðxkÞk2<M; yi 6¼ykg k�ðxiÞ � �ðxkÞk2
� �

:
ð5Þ

In the above equation, the average on the right-hand side
comprises all support vectors in �ðxkÞ’s neighborhood
within a radius of M but having a different class label. If we
choose a large M, such as the maximum distance
k�ðxiÞ � �ðxkÞk2, we might not be able to achieve the local
spatial distribution of the support vectors in the neighbor-
hood of �ðxÞ. On the contrary, if we choose a small M, we
might not be able to find enough support vectors in �ðxkÞ’s
neighborhood for density calculation. To alleviate this
problem, ACT automatically calculates M as the average
distance of support vectors that are nearest and farthest
from �ðxkÞ. Setting �2k in this way takes into consideration
the spatial distribution of the support vectors in F .
Moreover, since ACT aims to further increase the margin
of SVMs, in (5), we only take into account the support
vectors which have different class labels with �ðxkÞ while
computing �2k . With this method, we could expect to achieve
higher magnification around the margin area, compared to
the method of counting the support vectors without the
constraint yi 6¼ yk.

Although the mapping � is unknown, we can use the
kernel trick to calculate the distance in F :

k�ðxiÞ � �ðxkÞk2

¼ Kðxi;xiÞ þKðxk;xkÞ � 2 �Kðxi;xkÞ:
ð6Þ

Substituting (6) into (5), we can then calculate the �2k for
each support vector, which can adaptively reflect the spatial
distribution of the support vector in F , not in I .

When the training data set is very imbalanced, the

class boundary tends to be skewed toward the minority

class in the input space I . We hope that the new metric

~ggijðxÞ would further magnify the area far away from a

minority support vector xi so that the boundary imbal-

ance could be alleviated. Our algorithm thus assigns a

multiplier for the �2k in (5) to reflect the boundary skew in

DðxÞ. We tune ~��2k as �p�
2
k if xk is a minority support

vector; otherwise, we tune it as �n�
2
k . Examining (4), we

can see that DðxÞ is a monotonically increasing function

of �2k . To increase the metric ~ggijðxÞ in an area which is not

very close to the support vector xk, it would be better to

choose a larger �p for the �2k of a minority support vector.

For a majority support vector, we can choose a smaller

�n, so as to minimize influence on the class boundary. We

empirically demonstrate that �p and �n are proportional to

the skew of support vectors, or �p as O jSV�j
jSVþj

� �
, and �n as

O jSVþj
jSV�j

� �
, where jSVþj and jSV�j denote the number of

minority and majority support vectors, respectively.

(Please refer to [27] for more details on the theoretical

justification of ACT.)

3.2 Modifying Kernel Matrix K

For data that do not have a fixed-dimensional vector-space
representation (e.g., sequence data), it may not be feasible to
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TABLE 1
Notations Used in ACT and KBA

3. Usually, it is difficult to find a totally-conformal mapping function to
transform the kernel. As suggested in [1], we can choose a quasi-conformal
mapping function for kernel transformation.



transform kernel functionK conformally directly in a vector
space. In this situation, KBAmodifies kernel matrixK based
on the training-data distribution in F . Kernel matrix K
encodes all pairwise-similarity information between the
instances in the training data set. Hence, modifying the
kernel matrix transforms the kernel function indirectly.
(Notice that KBA is certainly applicable to data that do have a
vector-space representation, since K ¼ kxx0 ¼ Kðx;x0Þð Þ.)
Now, because a training instance x might not be a vector,
we introduce a more general term, support instance,4 to
denote x if its embedded point viaK is a support vector inF .

In the following sections, we will first propose a data-
dependent way to estimate the “ideal” class boundary in F
(Section 3.2.1). We then choose a feasible conformal function
DðxÞ, which can assign a larger spatial resolution along the
estimated “ideal” boundary in F (Section 3.2.2). Finally, we
present KBA’s iterative training procedure (Section 3.2.3).

3.2.1 Estimation of Boundary

Performing transformation on K or K aims to magnify the
spatial resolution along the decision boundary, thereby
improving the class separation. According to the work of
[1], [27], maximal magnification should be performed along
the class boundary. Unfortunately, locating the class
boundary in input space I is difficult [1]. (When the data
do not have a fixed-dimensional vector-space representa-
tion, locating the class boundary in I is impossible.)
Instead, KBA locates the class boundary in feature space
F through interpolation. In F , the class boundary learned
from the training data is the center hyperplane in the
margin. When the training data set is balanced, the center
hyperplane approximates the “ideal” boundary well. How-
ever, when the training data set is imbalanced, the decision
boundary is skewed toward the minority class. To
compensate for this skew, KBA gives the maximal magni-
fication to an interpolated boundary between the center
hyperplane and the hyperplane formed by the majority
support instances in F .

Fig. 3 illustrates how the interpolation procedure works.
Let �ðxþÞ and �ðx�Þ denote a minority support instance
and a majority support instance, respectively. A boundary
instance �ðxbÞ on the “ideal” boundary should reside
between the center hyperplane (the thick line in the middle
of Fig. 3) and the majority support-instance hyperplane (the
dash line on the right-hand side of the figure). We can thus

estimate the location of �ðxbÞ by interpolating the positions
of �ðxþÞ and �ðx�Þ as follows:

�ðxbÞ ¼ ð1� �Þ�ðxþÞ þ ��ðx�Þ; 1
2
� � � 1: ð7Þ

When the training data set is balanced, � is 1
2 and �ðxbÞ lies

on the center hyperplane (e.g., point B1 in the figure). In this
balanced case, the estimated “ideal” boundary coincides
with the learned boundary. When the training data set is
imbalanced, however, we need to adjust � to estimate the
“ideal” boundary. The key research question to answer is:
“How to determine � in a data-dependent way?”

We propose a cost function to measure the loss caused by
false negatives and false positives when different values of �
are introduced. We then choose the � which can achieve the
minimal cost. Let Xþ

mis denote the set of the misclassified
minority test-instances and X�

mis the set of the misclassified
majority test-instances. We define the cost functional Cð�Þ for
any scalar decreasing loss functions cpð�Þ and cnð�Þ as follows:

Cð�Þ ¼
XjXþ

misj

i¼1

cp yif
0ðxiÞð Þ þ

XjX�
misj

i¼1

cn yif
0ðxiÞð Þ;

where f 0ðxiÞ ¼ fðxiÞ þ �; 0 � � � 1:

ð8Þ

In the equation above, fðxiÞ is the SVM predication score
for test instance xi, � is the offset of the interpolated
boundary from the center hyperplane, as shown in Fig. 3,
and yif

0ðxiÞ is the associated margin in F for instance xi

with respect to the interpolated class boundary. The loss
functions cpð�Þ and cnð�Þ are used to penalize the misclassi-
fied5 minorities (false negative) and majorities (false
positive), respectively. Each loss function, cpð�Þ or cnð�Þ,
can be chosen as any scalar decreasing function of the
margin yif

0ðxiÞ according to the prior knowledge. When no
prior knowledge is available, usually, we can choose the
exponential loss function as cpð�Þ and the log-likelihood loss
function as cnð�Þ, i.e,

cpðyif 0ðxiÞÞ ¼ expð�yif
0ðxiÞÞ;

cnðyif 0ðxiÞÞ ¼ lnð1þ expð�yif
0ðxiÞÞÞ:

The justification of choosing them as the loss functions
comes from boosting [13], where the exponential loss
criterion concentrates much more influence (exponentially)
on observations with large negative margins (yif

0ðxiÞ < 0),
and the log-likelihood loss concentrates relatively less
influence (linearly) on such observations. Since KBA aims
to concentrate on false negatives, we use the exponential
loss as cpð�Þ and the log-likelihood loss as cnð�Þ. Notice that,
since both exponential and log-likelihood loss functions are
convex [13], our cost formulation in (8) is also convex with
respect to �.

The optimal �� is then chosen by minimizing the total
loss induced by all test instances falling into the margin
of SVMs,

�� ¼ argmin
�

Cð�Þ; 0 � � � 1:

The optimal �� can be calculated from @Cð�Þ
@� ¼ 0 and

truncated between 0 and 1. The above optimization
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4. In the KBA algorithm, if x is a support instance, we call both x and its
embedded support vector via K in F support instance.

5. In KBA, we only consider the misclassified test instances among the
margin so as to reduce the influence from the outliers. Their SVM scores
fðxÞ range from �1 to þ1.

Fig. 3. Estimate boundary instances in F .



procedure involves with only one unknown variable �. It
can thus be efficiently solved using many numerical
analysis methods such as the conjugate gradient algorithm.

After the optimal position �� of the interpolated
boundary is calculated, we can obtain � in (7) as follows:

� ¼ 1þ ��

2
:

3.2.2 Selection of DðxÞ
After interpolating a boundary in the margin, we then
magnify the spatial resolution along the boundary by
modifying the Riemannian metric gijðxÞ according to (2)
and (3). When given a prior kernel, gijðxÞ is determined by
the conformal function DðxÞ. As what we discussed in
Section 3.1, a goodDðxÞ function should be larger when x is
closer to the boundary in F so as to achieve a larger spatial
resolution around the boundary. According to this criteria,
we choose DðxÞ as a set of Gaussian functions:

DðxÞ ¼ 1

jX�
b j
X
xb2X�

b

exp �k�ðxÞ � �ðxbÞk2

�2b

 !
; ð9Þ

where �2b is a parameter controlling the magnitude of each
exponential function inDðxÞ. For a given instance x,DðxÞ is
calculated as the average of all exponential functions, each
of which is related with one interpolated boundary instance
�ðxbÞ in X�

b set. In addition, k�ðxÞ � �ðxbÞk2 is calculated
via the kernel trick as follows:

k�ðxÞ � �ðxbÞk2

¼ k�ðxÞ � ð1� �Þ�ðxþÞ � ��ðx�Þk2

¼ kxx þ ð1� �Þ2kxþxþ þ �2kx�x� � 2ð1� �Þkxxþ

� 2�kxx� þ 2�ð1� �Þkxþx� ;

ð10Þ

where kxx0 is from the kernel matrix K. When the instance x
is an unseen test instance, kxx0 is computed using the
predefined similarity measurement which generates the
kernel matrix K.

According to [1], [21], we have the following corollary to
guarantee the kernel transformation induced by DðxÞ, as
defined in (9), performs a mathematically valid conformal
transformation.

Corollary 1. The function DðxÞ defined in (9) gives a valid
conformal transformation on feature space F induced by the
predefined kernel matrix K.

Proof. Please see Appendix A. tu

In KBA, we adaptively choose �2b in a data-dependent
way as

�2b ¼ AVGi2fDist2ðxi;xbÞ<M Dist2ðxi;xbÞ
� �

; ð11Þ

where the neighborhood range M is a constant. We choose
the thresholdM as the margin6 value of SVMs. The distance

Dist2ðxi;xbÞ between two interpolated boundary instances

xi and xb is k�ðxiÞ � �ðxbÞk2 and can be computed using (7)

and (10). Notice that we do not need to scale �2b as in

Section 3.1 for dealing with the imbalanced training-data

problem, since we have considered this factor when

interpolating the class boundary and selecting DðxÞ.
Compared to (5) in ACT, (11) does not include the constraint

yi 6¼ yb since the interpolated boundary instance �ðxbÞ does
not have a label attribute.

We believe that our adjusted interpolation procedure

and selection of DðxÞ enjoy two benefits:

1. Improved class-prediction accuracy. In the imbalanced
situation, most of misclassified minority instances
fall into the margin area between the center hyper-
plane and the majority support-vector hyperplane.
By maximizing the spatial resolution in this area, we
expect to move those ambiguous instances as far
away from the decision boundary as possible, so as
to improve class-prediction accuracy.

2. Improved imbalance ratio. Since the majority support
instances are located nearer the interpolated bound-
ary than the minority support instances (12 � � � 1 in
(7)), by choosing a proper form of DðxÞ as in (9), we
can increase the degree of similarity between
majority support instances and make them close
each other in feature space after kernel transforma-
tion. This increase can lead to a reduction of the
number of majority support instances and, hence,
improve the imbalanced support-instance ratio.

3.2.3 Retraining

After choosing DðxÞ, KBA modifies the given kernel matrix

K ¼ ðkijÞ in the following way:

~kkij ¼ DðxiÞ �DðxjÞ � kij: ð12Þ

The new kernel matrix ~KK after modification is then put back
into the regular SVMs algorithm for retraining. We have the
following corollary, supported by the work of [21], to
guarantee that the new kernel matrix after transformation in
(12) is a valid kernel matrix.

Corollary 2. When given a positive (semi) definite kernel matrix

K, the kernel transformation defined in (12) results in a new

kernel matrix ~KK which is also positive (semi) definite.

Proof. Please see Appendix B. tu

Fig. 4 summarizes the KBA algorithm. We apply KBA on
the training data set Xtrain for several iterations or until the
imbalanced support-instance ratio cannot be further de-
creased. In each iteration, KBA adaptively calculates �2b for
each interpolated boundary instance (steps 8 to 10), based on
the distribution in F . Then, KBA updates the training data
setXtrain using the support-instance set (step 11).Why dowe
use the support-instance set as the training data in the next
iteration? We do so because the decision boundary of SVMs
will not change if we just use the support-instance set for
retraining [23]. One benefit of doing so is that we can reduce
the computational cost of training and we can also reduce
the ratio of the majority-over-minority support-instances.
Finally, KBA updates the kernel matrix and performs
retraining on Xtrain (steps 16 to 18).
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6. In ACT, we use the locations of support vectors to approximate the
decision boundary. Empirically, we found that selecting different Ms for
different support vectors works better than using a fixed M, though it
incurs higher computational cost. In KBA, we approximate the “ideal”
boundary by a set of interpolated boundary instances xbs. Since xbs are
already located on the decision boundary, our empirical study showed that
KBA is not very sensitive to M. We thus fix M as the margin value of SVMs
in KBA.



4 EXPERIMENTAL RESULTS

Our empirical study examined the effectiveness of the

kernel-boundary-alignment algorithm in two aspects:

1. Vector-space evaluation. We compared KBAwith other
algorithms for imbalanced-data learning. We used
six UCI data sets and an image data set to conduct
this evaluation. (We present the data sets shortly.)

2. Nonvector-space evaluation. We evaluated the effec-
tiveness of KBA on a set of video surveillance data,
which are represented as spatio-temporal sequences
that do not have a vector-space representation.

In our experiments, we used C-SVMs as our yardstick to
measure how other methods perform. We employed
Laplacian kernels of the form expð��jx� x0jÞ as Kðx;x0Þ
of C-SVMs. Then, we used the following procedure: The
data set was randomly split into training and test subsets
generated in a certain ratio which was empirically chosen to
be optimal on each data set for the regular C-SVMs.
Hyperparameters (C and �) of Kðx;x0Þ were obtained for
each run using 7-fold crossvalidation. All training, valida-
tion, and test subsets were sampled in a stratified manner
ensuring each of them had the same negative/positive ratio
[17]. We repeated this procedure seven times, computed
average class-prediction accuracy, and compared the
results. For ACT and KBA, we chose the maximum running
iterations T as 5. The detailed choices of parameters are
presented in Sections 4.1.1 and 4.1.2.

4.1 Vector-Space Evaluation

For this evaluation, we used six UCI data sets and a
116-category image data set. The six UCI data sets we
experimented with are abalone (19), car (3), segmentation (1),
yeast (5), glass (7), and euthyroid (1). The class-label in the
parentheses indicates the target class we chose. Table 2
shows the characteristics of these six data sets organized
according to their negative-to-positive training-instance
ratios. The top three data sets (segmentation, glass, and
euthyroid) are not-too-imbalanced. The middle two (car
and yeast) are mildly imbalanced. The bottom data set
(abalone) is the most imbalanced (the ratio is about 130 : 1).

The image data set contains 20K images in 116 categories
collected from the Corel Image CDs.7 Each image is
represented by a vector of 144 dimensions including color,
texture, and shape features [22]. To perform class predic-
tion, we employed the one-per-class (OPC) ensemble [9],
which trains 116 classifiers, each of which predicts the class
membership for one class. The class prediction on a testing
instance is decided by voting among the 116 classifiers.

4.1.1 Results on UCI Benchmark Data Sets

Tables 2 and 3 report the experimental results with the
sixUCI data sets. In addition to conducting experimentswith
SVMs, ACT, and KBA, we also implemented and tested one
popular minority-oversampling strategy SMOTE [7]. We
used the L2-norm RBF function forDðxÞ in ACT. In each run,
the training and test subsets were generated in the ratio 6 : 1.
For SMOTE,8 the minority class was oversampled at
200 percent, 400 percent, and 1,000 percent for each of
three groups of UCI data sets in Table 2, respectively.

We report in Table 2 using the Kubat’s g-means metric
defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ � a�

p
, where aþ and a� are positive (the
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Fig. 4. The KBA algorithm.

7. We exclude from our testbed those categories that cannot be classified
automatically, such as “industry,” “Rome,” and “Boston.” (for example, the
Boston category contains various subjects, e.g., architectures, landscapes,
and people, of Boston.)

8. For the data sets in Table 2 from top to bottom, for SMOTE, the
optimal � was 0:002, 0:003, 0:085, 0:3, 0:5, and 0:084, respectively. For SVMs,
ACT, and KBA, the optimal � was 0:004, 0:003, 0:08, 0:3, 0:5, and 0:086,
respectively. All optimal Cs were 1; 000.



target class) and negative testing accuracy, respectively [17].
Means and standard deviations of the experimental results
are both reported in the table. In all of the six data sets, KBA
achieves the highest or ties for the highest accuracy. (The
best results are marked in bold.) When the data is very
imbalanced (the last row abalone of Table 2), both SVMs
and SMOTE cannot make accurate predictions. KBA
achieves 57.8 percent mean class-prediction accuracy (in
g-means) and shows 5.9 percentile points improvement
over ACT.

We also report in Table 3 using AUC [2] defined as the
area under an ROC curve to compare the four strategies on
the six UCI data sets. Means and standard deviations of the
AUC scores are reported in the table. For readability, we
report AUCs as percentages between 0 percent and
100 percent, instead of between 0 and 1. Again,KBA achieves
the highest mean AUCs in all six UCI data sets. Compared to
ACT, KBA generated better results especially for the last data
sets (yeast and abalone), with 1:4 and 7:2 percentile points
improvement, respectively. Such gains bear out the flex-
ibility and superiority of KBA working in feature space F .
Statistically, the higher AUCs from KBAmeans that our KBA
algorithmwill favor in classifying a positive (target) instance
with a higher probability than other algorithms and, hence,
could well tackle the imbalanced training data set problem.

Finally, we report in Table 4 the total training time of
each method. The time is reported in seconds by averaging
seven runs of training on different subsets of the training
data. All experiments were done on a Pentium III 1GHZ
workstation with 1GB DRAM. Compared to SVMs and
SMOTE, both ACT and KBA took longer time to train. This
was because some computational costs were spent on
modifying the kernel of SVMs in a data-dependent way to
deal with the imbalanced-training problem. However, we
can see that, for ACT, the training time increases only
linearly compared to SVMs. For euthyroid and abalone,
which have the largest number of training instances among
the six UCI data sets, ACT’s training time is about 12 and
9 times longer than that of SVMs. For all six data sets, the
average increase in training time is about seven times. In
addition, compared to ACT, KBA takes shorter time to train.

For the six UCI data sets, KBA’s average training time is
16.1 percent shorter than ACTs. This is expected, since KBA
only used the support-instance set from the last iteration as
the new training set in the current iteration, as described in
Section 3.2.

4.1.2 Results on 20K Image Data Set

The image data set is more imbalanced than the UCI data

sets. We first set aside 4K images to be used as the test

subset; the remaining 16K images were used for training

and validation. We compared five schemes: SVMs, BM (the

boundary movement method by changing the parameter b

in C-SVMs), BP (the biased penalty method of assigning

different C to penalize different class in C-SVMs), ACT, and

KBA. (The details of BM and BP have been presented in

Section 2.) Notice that, in this experiment, we used the

L1-norm RBF function for DðxÞ in ACT, since the L1-norm

RBF works best for the image data set [22].
Table 5 presents the prediction accuracy for 12 represen-

tative categories out of 116, sorted by their imbalance ratios.

KBA improves the accuracy over SVMs by 5:3, 5:9, and 15:5

percentile points on the three subgroup data sets, respec-

tively. KBA achieves the best prediction accuracy for seven

out of 12 categories among all schemes (markedby bold font).

BM is inferior to SVMs for almost all categories. Finally, BP

outperforms SVMs, but only slightly. (We have predicted

BP’s ineffectiveness, due to the KKT conditions, in Section 2.)

Remark. From Table 5, we can see that, on this challenging
data set of several diversified classes, the results of all
algorithms, including KBA, are not stellar (class-predica-
tion accuracy is less than 50 percent for almost all
classes). This low accuracy is caused partly by a large
number of classes (116), and partly by not-so-perfect
image-feature extraction. Nevertheless, a 50 percent
prediction accuracy is far better than that of a random
predication, which is 1=116 ¼ 0:86 percent.
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TABLE 2
Mean and Standard Deviation of g-Means Prediction Accuracy on UCI Data Sets

TABLE 3
Mean and Standard Deviation of AUCs (in %) on UCI Data Sets

TABLE 4
Training Time (in second) on UCI Data Sets



4.2 Nonvector-Space Evaluation

For our multicamera video-surveillance project, we re-
corded video data at a campus parking lot. We collected
trajectories depicting five motion patterns: circling (30 in-
stances), zigzag-pattern or M-pattern (22 instances), back-forth
(40 instances), go-straight (200 instances), and parking
(3,161 instances). We divided these events into benign and
suspicious categories and aimed to detect suspicious events
with high accuracy. The benign-event category consists of
patterns go-straight and parking, and the suspicious-event
category consists of the other three patterns.

For each experiment, we chose 60 percent of the data as
the training set, keeping the remaining 40 percent to use as
our testing data. We employed a sequence-alignment kernel
to compare similarity between two trajectories (see [28] for
details). Fig. 5a reports the sensitivities of using SVMs and
three methods of improving the SVMs. All three meth-
ods—BM, BP, and KPA—improve sensitivity. Among the
three, KBA achieves the largest magnitude of improvement
over SVMs, around 30 percentile points. Fig. 5b shows that
all methods maintain high specificity. We note that
BM method performs well for detecting M-pattern and
back-forth; however, it does not do well consistently over all
patterns. The performance of the BM method can be highly
dependent on the data distribution. Overall, BP does not
work effectively, which bears out our prediction in Section 2.

5 CONCLUSION

We have proposed the kernel-boundary-alignment algo-
rithm for tackling the imbalanced training data challenge.
Through theoretical justifications and empirical studies, we
show this method to be effective. We believe that kernel-
boundary alignment is attractive, not only because of its
accuracy, but also because it can be applied to learning both
vector data and sequence data (e.g., DNA sequences and
spatio-temporal patterns) through modifying the kernel
matrix directly. Future research includes studies on
formulating a robust way of incorporating prior knowledge
of the imbalanced data sets to estimate the “ideal”
boundary. Some prior work has been done in incorporating
the prior knowledge into the optimization formulation of
SVMs, such as [30]. However, the incorporation is usually
not robust and depends on the prediction rules of the prior
knowledge. We plan to research a more robust way and
apply it on KBA.

APPENDIX A

PROOF OF CONFORMAL TRANSFORMATION

Corollary 1. The function DðxÞ defined in (9) gives a valid

conformal transformation on feature space F induced by the

predefined kernel matrix K.

Proof. Suppose the mapped vector of an input instance x is

�ðxÞ before transformation and �ðxÞ after transforma-

tion. Equation (12) defines the kernel transformation in
~kkxx0 ¼ DðxÞDðx0Þkxx0 . Thus, the cosine value of the angle

between two mapped vectors �ðxÞ and �ðx0Þ can be

written as follows [21]:

cos ff �ðxÞ;�ðx0Þð Þð Þ ¼ < �ðxÞ;�ðx0Þ >
k�ðxÞk � k�ðx0Þk

¼ DðxÞDðx0Þkxx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞDðxÞkxx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx0ÞDðx0Þkx0x0

p
¼ kxx0ffiffiffiffiffiffiffi

kxx
p ffiffiffiffiffiffiffiffiffi

kx0x0
p

¼ cos ffð�ðxÞ;�ðx0ÞÞð Þ;

where we use the fact that DðxÞ defined in (9) is a

positive function. We can see that the kernel transforma-

tion by DðxÞ defined in (9) does not affect pairwise-

angles between the mapped data in feature space and,

hence, is a valid conformal transformation. tu
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TABLE 5
Image Data Set Prediction Accuracy

Fig. 5. Sensitivity versus specificity on the trajectory data set.



APPENDIX B

PROOF OF POSITIVE SEMIDEFINITENESS

Corollary 2. When given a positive (semi) definite kernel matrix

K, the kernel transformation defined in (12) results in a new

kernel matrix ~KK which is also positive (semi) definite.

Proof. Since DðxÞ is a scalar function, we have

DðxÞDðx0Þ ¼< DðxÞ; Dðx0Þ, which is a positive (semi)

definite (psd) kernel function, which is the so-called one-

rank kernel in [21]. Denoting d ¼ ðdiÞ as an n-dimen-

sional vector with di ¼ DðxiÞ, where n is the number of

training instances, we have a matrix ddT which is

associated with the psd function DðxÞDðx0Þ for the

training set Xtrain. Hence, ddT is a psd matrix. On the

other hand, (12) can be rewritten as

~KK ¼ ddT �K:

Since the prior kernel K is also psd, using the closure

property of kernels under tensor product � [21], the new

kernel matrix ~KK is a psd matrix and, hence, a valid kernel

matrix. tu
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