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Abstract-Classification is an important and well-known
technique in the field of machine learning, and the training data
will significantly influence the classification accuracy. However,
the training data in real-world applications often are imbalanced
class distribution. It is important to select the suitable training
data for classification in the imbalanced class distribution
problem. In this paper, we propose a cluster-based sampling
approach for selecting the representative data as training data to
improve the classification accuracy and investigate the effect of
under-sampling methods in the imbalanced class distribution
problem. In the experiments, we evaluate the performances for
our cluster-based sampling approach and the other sampling
methods in the previous studies.

I. INTRODUCTION

Classification Analysis [4, 6, 10] is a well-studied technique in
data mining and machine learning domains. Due to the
forecasting characteristic of classification, it has been used in a
lot of real applications, such as flow-away customers and credit
card fraud detections in finance corporations. Classification
analysis can produce a class predicting system (or called a
classifier) by analyzing the properties of a dataset with classes.
The classifier can make class forecasts on new samples with
unknown class labels. For example, a medical officer can use
medical predicting system to predict if a patient have drug
allergy or not. A dataset with given class can be used to be a
training dataset, and a classifier must be trained by a training
dataset to have the capability for class prediction.

The classification techniques usually assume that the
training samples are uniformly-distributed between different
classes. A classifier performs well when the classification
technique is applied to a dataset evenly distributed among
different classes. However, many datasets in real applications
involve imbalanced class distribution problem [1, 2, 11, 13, 14,
19]. The imbalanced class distribution problem occurs while
there are much more samples in one class than the other class
in a training dataset. In an imbalanced dataset, the majority
class has a large percent of all the samples, while the samples
in minority class just occupy a small part of all the samples. In
this case, a classifier usually tends to predict that samples have
the majority class and completely ignore the minority class.

Many applications such as fraud detection, intrusion
prevention, risk management, medical research often have the
imbalanced class distribution problem. For example, a bank
would like to construct a classifier to predict that whether the
customers will have fiduciary loans in the future or not. The
number of customers who have had fiduciary loans is only two
percent of all customers. If a fiduciary loan classifier predicts
that all the customers never have fiduciary loans, it will have a

quite high accuracy as 98 percent. However, the classifier can
not find the target people who will have fiduciary loans within
all customers. Therefore, if a classifier can make correct
prediction on the minority class efficiently, it will be useful to
help corporations make a proper policy and save a lot of cost.
In this paper, we study the effects of under-sampling [19] on
the neural network technique and propose some new under-
sampling methods based on clustering, such that the influence
of imbalanced class distribution can be decreased and the
accuracy of predicting the minority class can be increased.

II. RELATED WORK

Since many real applications have the imbalanced class
distribution problem, researchers have proposed several
methods to solve this problem. These methods try to solve the
class distribution problem both at the algorithmic level and data
level. At the algorithmic level, developed methods include
cost-sensitive learning [7, 8, 18] and recognition-based learning
[3, 15].

Cost-sensitive learning approach assumes the
misclassification costs are known in a classification problem. A
cost-sensitive classifier tries to learn more characteristics of
samples with the minority class by setting a high cost to the
misclassification of a minority class sample. However,
misclassification costs are often unknown and a cost-sensitive
classifier may result in overfitting training. To ensure learning
the characteristics of whole samples with the minority class,
the recognition-based learning approach attempts to overfit by
one-class (minority class) learning. One-class learning is more
suitable than two-class approaches under certain conditions
such like very imbalanced data and high dimensional noisy
feature space [8].

At the data level, methods include multi-classifier
committee [9, 16], and re-sampling [2, 3, 5, 7, 12, 19]
approaches. Multi-classifier committee approach [9, 16] makes
use of all information on a training dataset. Assume in a
training dataset, MA is the sample set with majority class, and
MI is the other set with minority class. Multi-classifier
committee approach divides the samples with majority class
(i.e. MA) randomly into several subsets, and then takes every
subset and all the samples with minority class (i.e. MI) as
training dataset, respectively. The number of the subsets
depends on the ratio of MA's size to MI's size. For example,
suppose in a dataset, the size of MA is 48 (samples) and the
size of MI is 2 (samples). If we think the best ratio of MA's
size to MI's size is 1:1 in a training dataset, then the number of
training subsets will be 48/2-24. Each of these 24 subsets
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contains MI and a subset of MA that both sizes are 2, and the
ratio of them is exactly 1:1.

After training these training datasets separately, several
classifiers are available as committees. Multi-classifier
committee approach uses all the classifiers to predict a sample
and decides the final class to it by the prediction results of the
classifiers. Voting is one simple method for making a final
class decision to a sample, in which a minimum threshold is set
up. If the number of classifiers that predict the same class "C"
for a sample exceeds the minimum threshold, then the final
class prediction of this sample will be "C". Though multi-
classifier committee approach does not abandon any sample
from MA, it may be inefficient in the training time for all the
committees and can not ensure the quality of every committee.
Further selection of the committees will make the predictions
more correct and more efficient.

As for re-sampling approach, it can be distinguished into
over-sampling approach [3, 5, 12] and under-sampling
approach [2, 19]. The over-sampling approach increases the
number of minority class samples to reduce the degree of
imbalanced distribution. One of the famous over-sampling
approaches is SMOTE [3]. SMOTE produces synthetic
minority class samples by selecting some of the nearest
minority neighbors of a minority sample which is named S, and
generates new minority class samples along the lines between S
and each nearest minority neighbor. SMOTE beats the random
over-sampling approaches by its informed properties, and
reduce the imbalanced class distribution without causing
overfitting. However, SMOTE blindly generate synthetic
minority class samples without considering majority class
samples and may cause overgeneralization.

On the other hand, since there are much more samples of
one class than the other class in the imbalanced class
distribution problem, under-sampling approach is supposed to
reduce the number of samples with the majority class. Assume
in a training dataset, MA is the sample set with the majority
class, and MI is the other set which has the minority class.
Hence, an under-sampling approach is to decrease the skewed
distribution of MA and MI by lowering the size of MA.
Generally, the performances of over-sampling approaches are
worse than that of under-sampling approaches [7].

One simple method of under-sampling is to select a subset
ofMA randomly and then combine them with MI as a training
set, which is called random under-sampling approach. Several
advanced researches are proposed to make the selective
samples more representative. The under-sampling approach
based on distance [2] uses distinct modes: the nearest, the
farthest, the average nearest, and the average farthest distances
between MI and MA, as four standards to select the
representative samples from MA. For every minority class
sample in the dataset, the first method "nearest" calculates the
distances between all majority class samples and the minority
class samples, and selects k majority class samples which have
the smallest distances to the minority class sample. If there are
n minority class samples in the dataset, the "nearest" method
would finally select kx n majority class samples (k . 1).
However, some samples within the selected majority class
samples might duplicate.

Similar to the "nearest" method, the "farthest" method
selects the majority class samples which have the farthest
distances to each minority class samples. For every majority
class samples in the dataset, the third method "average nearest"
calculates the average distance between one majority class
sample and all minority class samples. This method selects the
majority class samples which have the smallest average
distances. The last method "average farthest" is similar to the
"average nearest" method; it selects the majority class samples
which have the farthest average distances with all the minority
class samples. The above under-sampling approaches based on
distance in [2] spend a lot of time selecting the majority class
samples in the large dataset, and they are not efficient in real
applications.

In 2003, J. Zhang and I. Mani [19] presented the compared
results within four informed under-sampling approaches and
random under-sampling approach. The first method
"NearMiss-i" selects the majority class samples which are
close to some minority class samples. In this method, majority
class samples are selected while their average distances to three
closest minority class samples are the smallest. The second
method "NearMiss-2" selects the majority class samples while
their average distances to three farthest minority class samples
are the smallest. The third method "NearMiss-3" take out a
given number of the closest majority class samples for each
minority class sample. Finally, the fourth method "Most
distant" selects the majority class samples whose average
distances to the three closest minority class samples are the
largest. The final experimental results in [19] showed that the
NearMiss-2 method and random under-sampling method
perform the best.

III. OUR APPROACH

In this section, we present our cluster-based under-sampling
approach. Our approach first clusters all the training samples
into some clusters. The main idea is that there are different
clusters in a dataset, and each cluster seems to have distinct
characteristics. If a cluster has more majority class samples and
less minority class samples, it will behave like the majority
class samples. On the other hand, if a cluster has more minority
class samples and less majority class samples, it doesn't hold
the characteristics of the majority class samples and behaves
more like the minority class samples. Therefore, our approach
selects a suitable number of majority class samples from each
cluster by considering the ratio of the number of majority class
samples to the number of minority class samples in the cluster.

Assume that the number of samples in the class-imbalanced
dataset is N, which includes majority class samples (MA) and
minority class samples (MI). The size of the dataset is the
number of the samples in this dataset. The size of MA is
represented as SizemA, and Sizem is the number of samples in
MI. In the class-imbalanced dataset, SizeMA is far larger than
Sizem. For our under-sampling method SBC (under-Sampling
Based on Clustering), we first cluster all samples in the dataset
into K clusters. In the experiments, we will study the
performances for the under-sampling methods on different
number of clusters. The number of majority class samples and
the number of minority class samples in the ith cluster
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(1 <i . K) are SizeMA and Sizei , respectively. Therefore,
the ratio of the number of majority class samples to the number
of minority class samples in the ith cluster is Size' / Size',.
Suppose the ratio of SizeMA to SizeM, in the training dataset is
set to be m: 1. The number of selected majority class samples in
the ith cluster is shown in expression (1):

Size}A

i=liSize'mKize SiAe>
(1)

In expression (1), mx Sizemr is the total number of
selected majority class samples that we suppose to have in the

final training dataset. Is1zeMA is the total ratio of the
i=l Size'm

number of majority class samples to the number of minority
class samples in all clusters. Expression (1) determines that
more majority class samples would be selected in the cluster
which behaves more like the majority class samples. In other
words, SSizeiA is larger while the ith cluster has more
majority class samples and less minority class samples. If there
is no minority class samples in the ith cluster, then the number
of minority class samples in the ith cluster (i.e., SizeMl ) is
regarded as one, that is, we assume that there is at least one
minority class sample in a cluster. After determining the
number of majority class samples which are selected in the ith
cluster (1. iK) by using expression (1), we randomly choose
majority class samples in the ith cluster. The total number of
selected majority class samples is about mx SizeMi after
merging all the selected majority class samples in each cluster.
Finally, we combine the whole minority class samples with the
selected majority class samples to construct a new training
dataset. The ratio of SizeMA to SizeMi is about m: 1 in the new
training dataset. Table 1 shows the steps for our cluster-based
under-sampling method SBC.

Table 1. The structure ofSBC

Step 1. Determine the ratio of SiZeMA to SizeMI in the
training dataset.

Step2. Cluster all the samples in the dataset into some
clusters.

Step3. Determine the number of selected majority
class samples in each cluster by using
expression (1), and then randomly select the
majority class samples in each cluster.

Step4. Combine the selected majority class samples
and all the minority class samples to obtain the
training dataset.

For example, assume that an imbalanced class distribution
dataset has totally 1100 samples. The size ofMA is 1000 and
the size of MI is 100. In this example, we cluster this dataset
into three clusters. Table 2 shows the number of majority class

samples SizelA, the number of minority class samples

Size'1, and the ratio of Size'A to Size'1 for the ith cluster.

Table 2. Cluster descriptions

Cluster Number of Number of SizeMA / SizeMI
ID majority minority

class class
samples samples

1 500 10 500/10-50
2 300 50 300/50=6
3 200 40 200/40-5

Assume that the ratio of SizeMA to SizeMI in the training data
is set to be 1:1. In other words, there are about 100 selected
majority class samples and the whole 100 minority class
samples in this training dataset. The number of selected
majority class samples in each cluster can be calculated by
expression (1). Table 3 shows the number of selected majority
class samples in each cluster. We finally select the majority
class samples randomly from each cluster and combine them
with the minority class samples to form the new dataset.

Table 3. The number of selected majority class samples
in each cluster

Cluster ID The number of selected majority class samples
I I xlOOx 50 / (50+6+5) =82
2 1xlOOx 6 / (50+6+5) = 10
3 lxlOOx 5 / (50+6+5)= 8

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performances for our

proposed under-sampling approach on synthetic datasets. In the
following, we first describe the method of generating class
imbalanced datasets. And then we compare the classification
accuracies of our method for minority class with the other
methods by performing neural network classification algorithm
[17] on synthetic datasets. Finally, the classification accuracies
for minority class on real datasets by applying our proposed
method and the other methods are also evaluated.

A. Generation ofSynthetic Datasets

In this subsection, we present the synthetic dataset
generation method to simulate the real-world dataset. This
method is implemented with a user interface such that the
parameters can be set for generating the synthetic dataset from
the user interface, which is called synthetic dataset generator.

A synthetic dataset includes a set of attributes and each
sample in the dataset has a set of particular attribute values. In
real world, the samples in the same class should have similar
attribute values and the samples in different class should have
different characteristics. Even though the samples in the same
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class, these samples may have different characteristics and can
be clustered into some clusters. The samples in a cluster may
have the similar attribute values and may belong to different
classes. Besides, there may be some noises or exceptions in a
dataset, that is, some samples in one class may have the
similar attribute values with the samples in the other class or
may be not similar to any other samples with the same class.
According to the above observations, the following parameters
need to be set for generating the synthetic dataset: number of
samples, number of attributes and number of clusters.
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illustrated with Fig 2 in which some majority class samples (or
minority class samples) lie to the area of minority class
samples (or majority class samples). As for exceptional
samples, they distribute irregularly in a dataset. The samples
outside the clusters in Fig 3 are exceptional samples.

*0MA *OM
Clusterl

U Exceptional Sdmpl'e

Fig 3. Example for exceptional samples

Fig 1. The distribution of samples in a dataset

Because the samples in a cluster may belong to different
classes, in a cluster, the samples are separated into two groups:
the samples in one group are assigned a class and the samples
in the other group are assigned to the other class. The attribute
values for the samples are more similar to the samples in the
same group, because they are in the same cluster and the same
class. Fig 1 shows the distribution of samples in a dataset
which has three clusters inside.

C*MOJGrI$yCIGSSWYpt *Mw*rIcP.s0mpi

B. Evaluation Criteria
For our experiments, we use three criteria to evaluate the

classification accuracy for minority class: the precision rate P,
the recall rate R, and the F-measure for minority class. The
precision rate for minority class is the correct-classified
percentage of samples which are predicted as minority class by
the classifier. The recall rate for minority class is the correct-
classified percentage of all the minority class samples
Generally, for a classifier, if the precision rate is high, then the
recall rate will be low, that is, the two criteria are trade-off. We
cannot use one of the two criteria to evaluate the performance
of a classifier. Hence, the precision rate and recall rate are
combined to form another criterion F-measure, which is shown
in expression (2).

2xPxR
MI's F-measure -

P+R
(2)

Fig 2. Example for disordered samples

In order to make the synthetic datasets more like real
datasets, the noisy data are necessary. The synthetic datasets
have two kinds of noisy data: disordered samples and
exceptional samples. A dataset which does not have any noisy
data is like the one in Fig 1. The disordered samples are

In the following, we use the three criteria discussed above
to evaluate the performance of our method SBC by comparing
our method with the other methods AT, RT, and NearMiss-2.
The method AT uses all samples as the training dataset and
does not select samples. RT is the most common-used random
under-sampling method and it selects the majority class
samples randomly. The last method NearMiss-2 is proposed by
J. Zhang and I. Mani [19], which has been discussed in section
2. The two methods RT and NearMiss-2 have the better
performance than the other proposed methods in [19]. In the
following experiments, the classifiers are constructed by using
the artificial neural network technique in IBMIntelligent Miner
for Data V8. 1, and the k-means clustering algorithm is used for
our methods. In our experiments, the clustering algorithm
would not influence the performance for our method.

C. Experimental Results on Synthetic Datasets
For each generated synthetic dataset, the number of

samples is set to 10000, the number of numerical attributes and
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categorical attributes are set to 5, respectively. The dataset DSi
means that the dataset potentially can be separated into i
clusters, and our methods also cluster the dataset DSi into i
clusters. Moreover, a dataset DSi with j% exceptional samples
and k% disordered samples is represented as DSiEjDk. If there
is no disordered sample in the synthetic dataset, the dataset is
represented as DSiEjDN.

Fig 4 shows the MI's F-measures for our method and the
other methods on datasets DS4E1ODN and DS4ElOD20. The
ratio of the number of majority class samples to the number of
minority class samples is 9 to 1 in the two datasets for this
experiment. In Fig 4, the method AT has the highest MI's F-
measure in DS4E1 ODN because AT puts all the samples in the
dataset into training and there is no disordered samples and just
few exceptional samples in the dataset. The data distribution
and characteristics can be completely represented from all the
samples if there is no noise in the dataset. Hence, the classifier
on DS4E1ODN has the best classification accuracy when the
method AT is applied. However, the method AT has to put all
the samples into training, which is very time-consuming. Our
method SBC and RTjust need to put 20 percent of all samples
into training since the ratio of SizemA to SizeMI is set to be 1: 1,
and the MI's F-measures are above 80%. The method AT on
dataset DS4El0D20 becomes worst and the classification
accuracy is below 10%, because the dataset includes some
noises, that is, 10% exceptional samples and 20% disordered
samples for all the samples and all the noises are put into
training. The classification accuracy for our method SBC and
RT are significantly better than AT, since some noises can be
ignored by applying SBC and RT. In this experiment, the
performance of classification by using SBC and RT are better
than the other methods.

I E DS4E1 ODN O DS4E IOD20 l
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Fig 4. The effect of disordered samples

and RT are better than other methods and our method SBC
outperforms RTin most cases.

Fig 5. MI's F-measure for each method on the datasets with
10% exceptional samples and 20% disordered samples

V. CONCLUSIONS
In a classification task, the effect of imbalanced class

distribution problem is often ignored. Many studies focused on
improving the classification accuracy but did not consider the
imbalanced class distribution problem. Hence, the classifiers
which are constructed by these studies lose the ability to
correctly predict the correct decision class for the minority
class samples in the datasets which the number of majority
class samples are much greater than the number of minority
class samples. Many real applications, like rarely-seen disease
investigation, credit card fraud detection, and internet intrusion
detection always involve the imbalanced class distribution
problem. It is hard to make right predictions on the customers
or patients who that we are interested in.

In this study, we propose cluster-based under-sampling
approach to solve the imbalanced class distribution problem by
using backpropagation neural network. The other two under-
sampling methods, Random selection and NearMiss-2, are used
to be compared with our method in our performance studies. In
the experiments, our method SBC has better prediction
accuracy and stability than other methods. SBC not only has
high classification accuracy on predicting the minority class
samples but also has fast execution time.
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Fig 5 shows the performances of our method and the other
methods on datasets DSiElOD20, in which i is from 2 to 16. In
these synthetic datasets, the ratio of the number of majority
class samples to the number of minority class samples is 9 to 1.
In Fig 5, we can see that the classification accuracy for SBC
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