
Incremental Learning from Unbalanced Data

Michael Muhlbaier Apostolos Topalis Robi Polikar
Department of Electrical and

Computer Engineering Computer Engineering Computer Engineering
Rowan University Rowan University Rowan University

Glassboro, NJ 08028 USA Glassboro, NJ 08028 USA
E-Mail: m.muhlbaier@ieee.org E-Mail: a.topalis@ieee.org E-Mail: polikar@rowan.edu

Department of Electrical and Department of Electrical and

Glassboro, NJ 08028 USA

Abstract- An ensemble based algorithm, LearnU.MT2,
is introduced as an enhanced alternative to our previously
reported incremental learning algorithm, Learn++. Both al-
gorithms are capable of incrementally learning novel infor-
mation from new datasets that consecutively become avail-
able, without requiring access to the previously seen data. In
this contribution, we describe LearnH.MT2 which specifi-
cally targets incrementally learning from distinctly unbal-
anced data, where the amount of data that become available
varies significantly from one database to the next. The prob-
lem of unbalanced data within the context of incremental
learning is discussed first, followed by a description of the
proposed solution. Initial, yet promising results indicate con-
siderable improvement on the generalization performance
and the stability of the algorithm.

I. INTRODUCTION

We have previously introduced Learn-, an incre-
mental learning algorithm designed lo learn novel infor-
mation content from an additional set(s) of data that be-
come available after a classifier has already been trained
with the original data. Applications that require learning
under such settings arise often in practice: it is not un-
usual for data to become available through several data
collection sessions, which may be several months or years
apart from each other. Such scenarios require a classifica-
tion system to be incrementally updated - as new data be-
come available - where the classifier needs to learn the
novel information content without forgetting the previ-
ously acquired knowledge. Grossberg showed that this
problem faces the stability-plasticity dilemma [11: stabil-
ity allows a classifier to retain the acquired knowledge,
whereas plasticity allows a classifier to acquire new
knowledge. Unfortunately, these two properties are typi-
cally at odds with each: the more stable a classifier the
less plastic it is, and vise versa. For example, the multi-
layer perceptron (MLP) and radial basis function net-
works - ubiquitously used in real-world applications - are
very stable classifiers and hence unable to learn incre-
mentally from new data. The approach typically taken in-
volves discarding the existing classifier, combining the
old and new data, and retraining the classifier using the
combined data. Discarding the existing classifier, how-

ever, causes the previously learned information to be lost,
a phenomenon known as catastrophic forgetting [2]. Fur-
thermore, this approach is not even feasible, if the origi-
nal dataset is no longer available.

Learn++ was proposed as an incremental learning al-
gorithm that exhibits a fine balance across the stability -
plasticity spectrum: it is capable of learning from new
data, while substantially retaining previous knowledge
and without requiring access to the previously used data,
even when the new dataset includes instances kom previ-
ously unseen classes [3]. The algorithm, inspired by
AdaBoost, takes advantage of the synergistic learning
ability of an ensemble of classifiers. Unlike AdaBoost,
which seeks to improve the generalization performance of
a weak classifier [4], Learn++ aims to incrementally learn
the newly available information. More specifically, each
classifier generated by Learn- is trained on a subset of
the current training dataset. The instances of each subset
are drawn according to an iteratively updated distribution
that is strategically biased towards those instances that
carry novel information. The relative performance of each
classifier on its training data then determines its voting
weight to be used in weighted majority voting [SI, where
the ensemble chooses the class that receives the highest
total vote from individual classifiers. As new data become
available, Learn++ generates additional classifiers, until
the ensemble learns the novel information. Since no clas-
sifier is discarded, previously acquired knowledge is not
lost.

11. UNBALANCEDDATA

While Learn++ works rather well on a broad spectrum
of applications [6], there is room for improvement. First,
determining when the algorithm should stop is tricky, as
the performance of Learn++ starts deteriorating aAer a
certain number of classifiers are generated. One may be
suspicious of overfitting, which can be reduced by using a
validation dataset to determine when the algorithm should
stop. However, we believe that the problem is not just
overfitting, since the performance deterioration appears
when - and only when - the algorithm is run on addi-

0-7803-8359-1/04/$20.00 02004 IEEE 1057

mailto:m.muhlbaier@ieee.org
mailto:a.topalis@ieee.org
mailto:polikar@rowan.edu

tional datasets. No significant performance deterioration
is observed while Learn++ is generating its first set of
classifiers with the original data. We suspect that the
problem is - at least in part - due to unbalanced data.

An interesting problem in the incremental learning set-
ting is the issue of unbalanced data, which we define as
the discrepancy in the cardinaliq of each dataset used in
incremental learning. If one dataset has substantially more
data than the other, this can unfairly bias the ensemble
decision towards the data with the lower cardinality. This
is because, the voting weights of each classifier is deter-
mined solely by its performance on its respective training
data. Even though the cardinality of a given dataset may
he small, the classifier may perform well on its own lim-
ited training dataset, and therefore receive a high voting
weight. This classifier is most likely to perform poorly -
relative to other classifiers generated with larger cardinal-
ity data - on the unseen instances, since it was trained on
limited data.

In the absence of any other information, and under the
generally valid assumptions that (i) no instance is re-
peated and (ii) the noise distribution remains relatively
unchanged among datasets, it is reasonable to believe that
the dataset that has more instances carries more informa-
tion. Classifiers generated with such data should therefore
be weighted more heavily.

It is not unusual to see major discrepancies in the car-
dinalities of datasets that subsequently become available.
Consequently, in any ensemble based learning algorithm
that employs a classifier combination scheme, the cardi-
nality of each dataset should he taken into consideration.

An unbalanced data need not he caused simply due to
discrepancy among dataset cardinalities, hut may also be
due to relative cardinalities of individual classes within
the training data, a quantity often described as class prior

es. While class priors appear conspicuously
within the Bayesian setting, they are not as heavily util-
ized in many other algorithms. Commonly used ensemble
combination schemes, such as voting, sum or product
based combination, often do not take class priors into
consideration [7,8]. Bibliography on ensemble systems,
incremental learning approaches, and their applications
can be found in and within the references of [3, 6 - 151.

In this contribution, we propose a set of modifications
to address both aspects of unbalanced data described
above. We present the algorithm and some preliminary
results on two benchmark database and one real world
classification problem. While, the approach is described
specifically for Lean++, it is nevertheless quite general
and can be easily adapted to any ensemble based algo-
rithm.

!

I

I

11. LEARNff.MT2

The primaly novelty in Leam++.MT2 is the way by
which the voting weights are determined. Leam++.MTZ
attempts to addresses the unbalanced data problem by
keeping track of the number of instances from each class
with which each classifier is trained. Similar to Learnt+,
each classifier is first given a weight based on its per-
formance on its own training data; however, this weight is
later adjusted according to its class conditional weight
faclor. For each classifier, this is the ratio of instances
from a particular class used for training that classifier, to
the number of instances from that class used for training
all classifiers thus far within the ensemble. The pseu-
docode of the entire algorithm is given in Figure 1.

For each dataset (ak) that becomes available, the in-
puts to the algorithm are (i) a sequence of m training data
instances xi along with their correct labels y; , (ii) a classi-
fication algorithm Baseclassifier, and (iii) an integer Tk
specifying the maximum number of classifiers to he gen-
erated during the kIh training session. For the first data-
base (k=l), a data distribution (0,) - from which training
instances will be drawn - is initialized to be uniform,
making the probability of any instance being selected
equal. The number of instances from each class
CE { 1, ..., C} in Dl is stored in N,. If k > l then a distrihu-
tion initialization sequence re-initializes the data distribu-
tion (the IF block in Figure 1). The variable eNc holds the
current value of N , which is then updated as the sum of
all class-c instances contained in D, through Dk.

The algorithm then adds Tk classifiers to the ensemble
starting at f=eTk+l where eTk is the number of classifiers
that currently exist in the ensemble. For each iteration I,
the instance distribution, D,, from the previous iteration is
first normalized (step 1). A hypothesis (classifier), h,, is
generated by training on a subset of Dk that is drawn from
D, (step 2). The error, E,, of h, is then calculated; if E,> %,
the algorithm deems the current classifier h, to be too
weak, discards it, and retums to step 2, otherwise, calcu-
lates the normalized performancep, (step 3).

A class conditional weight factor (w , , ~) is created for
each classifier, which is proportional to its classification
performance on the entire training data 9, (including the
portion unused during its training) and the number of
class c instances on which the classifier was trained (step
4). The weighted majority voting algorithm is called to
obtain the composite hypothesis, H,, of the ensemble (step
5). H, represents the ensemble decision of the first f hy-
potheses generated thus far. The error of the composite
hypothesis, E, is then computed and normalized (step 6).
The instance distribution D, is finally updated according
to the performance of H, (step 7) such that the weights of
instances correctly classified by H, are reduced and those
that are misclassified are effectively increased.

1058

put: For each datasetBkof cardinalityek, k=1,2 ,.... K
' Sequence of mk instances S=[(x,,y,),. . .,(xmhymd] with label

he # of class-c instances in Dk
, Weak learning algorithm Baseclassifier.
' Integer Th, specifying the number of iterations.
Q for k=I,2, ..., K
nitialie D l (i) = l l m k , eTI = O i=l, ..., mk,setNc=ekc
'F k > l , Go to Step 5, evaluate current ensemble on new data

set IUh update D, and current # of classifiers eTk = I

y; E Y, = {I. ..., C) . Let

k-1

j = l
k

Update eN, N, and N,= qc
j = l

,el ,..., erk, c=l, ..., C Update = w ~ , ~ - eNc
Nc

Do iort=eTk + I , eTk +2, . . . , eTk +Tk

1. Set Df = D,/ZD,(i) so that D, is a distribution.

2. Call Baseclassifier providing it with a subset (dk) of IUk

3. Obtain a hypothesis h, : X 3 Y, and compute the error

m

i=l

randomly chosen according to D,.

E, = Z W)
i : h , (q) # y !

If E, > %, discard h, and go to step 2. Otherwise, compute
the normalized performance p f = 1 - 2&, , 0 5 pt 5 1 .

4. Compute the class specific weight as
W l , c = p r - , C = l nc, c

N c
where nc is the number of class-c instances in dx

5 . Call weighted majority voting to obtain the composite
hypothesis H , (x i) = argmax C w I , ,

r:h,(x,)=c
6. Compute the error of the composite hypothesis

4 = C4(i)
i:H,(x,)*y,

7. Set B,=E,'(I-E,), O<B,<l, and update the instance weights:

:all weighted majority voting to obtain the final hypothesis.

Fig. 1. Algorithm Lcam++.MTZ

This distribution update rule, based on the perform-
ance of the ensemble, ensures that the algorithm pick and
be trained on instances that are difficult, not yet learned,
or not previously seen by the ensemble. The algorithm
achieves incremental learning, because novel instances
introduced by a new dataset are precisely those that are
difficult, not yet learned or not yet seen instances.

111. SIMULATION RESULTS

Leam++.MT2 has been tested on several databases.
For brevity, we present results on two benchmark data-
bases obtained from UCI [16], and one real-world appli-
cation on identifying one of five volatile organic com-
pounds based on chemical sensor data. Base classifiers
were all single layer MLPs, normally incapable of leam-
ing incrementally, with 1 2 4 0 nodes and an error goal of
0.025 - 0.05. In each case the data distributions were de-
signed to simulate unbalanced data. Performance of
Leam++ on balanced data, can be found in [3,6]. The
number of classifiers created in an ensemble can either be
predetermined based on prior experience, or determined
by cross validation. In this work, a preset number was de-
termined, as explained below, to facilitate the comparison
between Learn++ and Leam++.MT2.

A . Wine Recognilion Daiabase

The Wine Recognition database features 3 classes
(vineyards in Italy) with 13 attributes (alkalinity, acidity,
etc.). The database was split into two training and a test
set. The data distribution is given in Table I, which is de-
liberately set to be mildly unbalanced with respect to car-
dinalities. Each algorithm was allowed to create a total of
20 classifiers (IO on each dataset). This process was re-
peated 10 times on both algorithms to compare their gen-
eralization performance on the test data. The averaged
results over 10 runs are shown in Figure 2 and Table 11.
Figure 2 depicts the generalization performance of each
algorithm as new classifiers are added to the ensemble,
whereas Table 11 shows the final generalization perform-
ance after each training session (TS).

TABLE I. DATA DISTRIBUTION FOR WINE DATABASE

I Vineyard3 I 18 I I 0 I 20 I

0751 ' ' I * ' j I
0 2 4 6 8 10 12 I4 16 I 0 a0

Number d Clarnfierr
Fig. 2. Simulation RcsulU on the Wine Database

1059

TABLE 11. SI~~ULATION RESULTS ON WINE DATABASE

Al#orifhm I TS, I TS, I Sfd. Dev
Leamtc I 88% I <P4% I 2.9%

1.6% Leam++.MTZ I 88% I <P9% I
We note that after initial training, the performance of

each algorithm is identical, however, Leamtt-.MTZ out-
performs its predecessor after the addition of the second
training dataset, with a significant reduction in the stan-
dard deviation of the results. We also note the previously
mentioned phenomenon of deteriorating performance of
Learn++ after 12 classifiers, whereas the performance of
new algorithm levels off and stays constant. Therefore, a
precise termination point is no longer an issue of signifi-
cant concem. The differences in the generalization per-
formance between the two algorithms will be addressed
below within the context of a more diverse distribution
problem.

B. Optical Character Recognilion Database

The optical character recognition (OCR) database
features 10 classes (digits 0 - 9) with 64 attributes. The
database was split to create two training and a test dataset,
whose distribution can be seen in Table III. Each algo-
rithm was allowed to create 30 classifiers. The data dis-
tribution was deliberately made severely unbalanced, spe-
cifically designed to test the algorithms’ ability to leam
under such harsh scenarios. Results from this simulation
are shown in Figure 3 and Table IV, which are formatted
similar to those in section A . All performance percent-
ages are again calculated from an average of 10 inde-
pendent trials.

TABLE 111 DATA D~STRIBUTION FOR THE OCR DATABASE

380
380 112

TABLE IV SIMULATION RESULTS ON OCR DATABASE

A/.orifhm I TSi I TSz I Std Dev.
Learn- I 94% I 92% I 0.9%

Leam++.MT2 I 94% I 95% I 0.6%

5 10 15 a 2 5 a

Fig. 3. Simulstion Rcsults on the OCR Database

0 75;

Number oiCI8srdero

Several interesting observations can he made from
these results. First, based on data distribution, one would
reasonably agree that the vast majority of discriminatory
information is contained in the first dataset, with the sec-
ond dataset possibly introducing incremental amount of
novel information. It is therefore not surprising that both
algorithms reached 90% range after the first training. Sec-
ond, it is also reasonable to argue that classifiers trained
on the first dataset should create better representative de-
cision boundaries compared to classifiers trained with the
second dataset, and therefore should intuitively be given
higher weights. Learn+ which does not take this into
consideration gives equal weight (based solely on training
performances) to all classifiers, which makes its overall
performance more biased towards the second set. Since
the second set is not as representative of the overall data,
the algorithm’s performance declines during this session.
LeamH.MT2, however, does take this disproportionality
of the datasets into consideration, and is consequently
able to retain, even modestly improve by 3%, its
knowledge.

C. Volatile Organic Compound Recognilion Database

The Volatile Organic Compound (VOC) database
consists of 5 classes (toluene, xylene, hectane, octane and
ketone) with 6 attributes coming from six (quartz crystal
microbalance type) chemical gas sensors. The dataset was
divided into two training and a test dataset. The distribu-
tion of the data is given in Table V, where both dataset
cardinalities and the class priors were unbalanced. Both
algorithms were incrementally trained with the two suh-
sequent training datasets, and each was allowed to gener-
ate up to 30 classifiers. Simulation results, average of 10
independent trials, are shown in Figure 4 and Table VI.

1060

TABLE V. DATA DISTRIBUTION FOR VOC DATABASE

Octane
X lene 50 8 22
Toluene 80 10 22

0 5 10 15 W 25
0.75 I

Number ofClars$sir
I

Fig. 4. Simulation Results on lhc VOC Database

TABLE VI. SIMULATION RESULTS ON VOC DATABASE
Alprithm I TS, I TS, I SrdDev.

Learn* I 89% I 86% I 2.1%
Leamti.MT2 I 88% I 89% I 1.9%

The results from Figure 4 and Table VI illustrate a
performance characteristic similar to those on the previ-
ous databases. As it would be expected based on the data
distribution, Learnt+.MT2 shows a slight increase in
generalization performance during the second training
session, while the performance of its predecessor starts
declining after 15 classifiers.

D. Effect of Order of Presentation of Data

So far we have presented tests where the initial train-
ing session presented more information (instances) fol-
lowed by a second training session presenting fewer in-
stances. It is conceivable that a practical application
could call for the opposite scenario: a limited initial train-
ing data followed by large volumes of future training
data. This case should be considered not only for applica-
tion purposes, but also to test the algorithms robustness to
the order in which the data are presented. To simulate
such a scenario, the OCR database was used. The distri-
bution is similar to Table I11 except the datasets were in-
troduced in reverse order. In other words, Set 2 was used
in the first training session and Set 1 was used in the sec-
ond training session.

Generilization F'wfomenca. Areraged m r 10 Independent Trails
1 -

0.95 -

08s

5 0.8 -
r
c

Y

0.7 -

d 0 6 5 -

0.55.

0.5
5 (0 15 20 n 30

Number ofClas$lers

Fig. 5 . OCR Rcvcrse Dalascr Prcscntalion Results

TABLE VII. OCR REVERSE DATASET PRESENTATION FZSULTS
Alxorithhm I Ts, I TS, I Std. Dw.
Team* I X i % I 010% I 0 7% , __," , _.,"

Leam+t.MT:! I 88% I 94% I 0.6%

Twenty classifiers were allotted to each algorithm
during first training, and an additional ten during the sec-
ond. Everything else was kept the same. The results
shown in Figure 5 and Table VI1 are, as earlier, averages
of 10 independent trials.

These results show that even with the order of pres-
entation reversed, the final generalization performance of
both algorithms remains virtually the same, indicating
that both algorithms are independent of the order in which
datasets are presented. More interestingly, however, the
temporary dip in Learn.MT2 performance immediately as
the second set is introduced, ironically justifies the ap-
proach taken by this algorithm: Since the second dataset
introduces a large number of novel instances, the weight
of the 2 Is' classifier is considerably larger compared to
the now-lowered weights of the previously generated 20
classifiers. However, this one new classifier has only
been trained with a subset of the new training data, and
on its own has not yet learned the entire data. The en-
semble's decision, weighted heavily on this 21'' classifier,
momentarily lowers the generalization performance.
However, the generalization performance immediately re-
covers, and exceeds that of Learn++, as additional well-
trained classifiers are added to the ensemble.

Finally, while we have used MLPs as base classifiers,
both algorithms are in fact independent of the type of the
base classifier used. The classifier independence of
Learn++ was demonstrated and reported in [6] .

1061

IV. DISCUSSIONS ANI) CONCLUSIONS

In many applications that call for incremental lean-
ing of new information from consecutive datasets, an un-
balanced data distribution among the datasets can cause’
potentially significant performance degradation. This is
because, in the absence of any other information, all data-
sets are assumed to be equally informative, an assumption
that may not be valid. Such a xenario would then cause
an ensemble based algorithm lo give unjustifiably high
voting weights to poorly trained classifiers, hence the po-
tential performance degradation.

In this paper, we introduced Leam++.MT2, an en-
semble based algorithm specifically designed to handle
unbalanced data in incremental leaming settings. We have
shown that such an imbalance in data distributions, when
used to train an ensemble based classifier, does indeed
cause overfitting-like behavior where the generalization
performance decreases with additional classifiers. When
the same datasets were used to train the proposed algo-
rithm, however, this overfitting-like phenomenon was not
observed. In none of the unbalanced datasets we have
used to train LeamW.MT2, has the performance de-
graded with the introduction of new data or new classifi-
ers. On the contraly, we have nbserved typically modest,
but sometimes significant, performance improvement:

The novelty of the proposed approach is in its use of
class conditional weight factors in assigning voting
weights to the classifiers in the ensemble. Specifically,
for each classifier, this factor is the ratio of the number of
instances from a particular class used for training that
classifier, to the number of instances from that class used
for training all classifiers thus far in the ensemble. We
note that this factor takes both the cardinality of the data-
set as well as the class priors into consideration in assign-
ing the voting weights. The actual voting weights are
then determined as individual training performances of
the classifiers, adjusted by the class conditional weight
factors.

The promising preliminary results suggest the pro-
posed approach has the following desirable properties: (i)
the algorithm is able to leam novel information content
from consecutive datasets, even when such datasets pro-
vides severely unbalanced data; (ii) the stability of the al-
gorithm (ability to retain previously acquired knowledge)
is improved, without any apparent loss in the plasticity
(the ability to acquire new knowledge), which places
Leam++.MT2 at a much desirable location on the stabil-
ity-plasticity spec!”; (iii) the algorithm is independent
of the order in which the datasets are presented; or which
base classifier is used; (iv) while the proposed approach
was developed for and implemented on Leam++, it is
fairly general and should benefit any ensemble combina-
tion procedure trained on unbalanced data.

Further optimization of the voting weights, evalua-
tion of the proposed approach on multiple datasets intro-
ducing additional classes, on other ensemble techniques,
as well as on a broader spectrum of applications are cur-
rently underway.

ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. ECS-
0239090, “CAREER. An Ensemble of Classifiers Ap-
proach for Incremental Leaming.”

REFERENCES

[I] S. Grossberg, “Nonlinear neural networks: principles, mecha-
nisms and architectures,” Neural Networks, vol. 1, no. I , pp.
17-61, 1988.
R. French, “Catastrophic forgetting in connectionist networks,”
Trends in Copilive Sciences, vol. 3, 110.4, pp. 128-135, 1999.
R. Polikar, L. Udpa, S. Udpa, V. Honavar, “Learn++: An in-
cremental learning algorithm for supervised neural networks,”
IEEE Trans. on Sys.. Man and Cyber. (C), vol. 31, no. 4, pp.
497-508,2001.
Y. Freund and R. Schapire, “A decision theoretic generaliza-
tion of on-line learning and an application to boosting,” Com-
puterandSystemSci., vol. 57,110. 1, pp. 119-139, 1997.
N. Littlestone and M. Warmuth, “Weighted majority algo-
rithm,” Information and Computation, vol. 108, pp. 212-261,
1994.

[6] R. Polikar, J. Byorick, el al., “Learn+ a classifier independent
incremental learning algorithm far supervised Neural Net-
works,” Proc. oflJCNN 2002, Honolulu, vol.2, pp. 1742-1747.
L.I. Kuncheva, “A theoretical study on six classifier fusion
strategies, ‘* IEEE Tronractions on Pottern Analysis and Mo-
chinelntelligence, vol. 24, no. 2, pp. 281-286, 2002.

[SI J. K i t h , M. Hatef, R.P. Duin, J. Matas, “On combining classi-
fiers,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 20, no.3, pp. 226-239, 1998.

[9] L. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Tram. on PAMI, vol. 12, no. IO, pp. 993-1001, 1990.

[IO] L. Breiman, “Combining predictors,” Combining Arrifieial Neu
rol Nets, A. Sharkey, ed., pp. 31-50, New York Springer
1999.

[I l l T. Ho, J. Hull, S. Srihari, “Decision combination in multiple
classifier systems,” IEEE Tram. PAM, vol. 16, no. I , pp. bb-
75, 1994.

[I21 J. Ghosh, “Multiclassifier systems: back to the future,” 3dlnt.
Work on Mult. Clossfier Sys., LNCS (J. Kitler & F. Roli,
e&), vol. 2364, p. 1-15, New York Springer, 2002.

j13] T. Windean and F. Roli (eds), In Proc. 4rhInt. Workshop on
Multiple Clarsifier Systems (MCS2003), LNCS, vol. 2709,
New York, Springer, 2002.

[I41 L.I. Kuncheva, “Switching between selection and fusion in
combining classifiers: an experiment,” IEEE Tram. on Sys.,
Man andcyber., vol. 32(B), no. 2, pp. 146-156,2002,

[I51 T.G. Dienerich, “Ensemble methods in machine learning,”
Proc. I” Inf. %hop on Mu/tiplc Clarsfier Systems, LNCS ,
I. Kitler, F. Roli, ed., vol. 1857, pp.1-15, New York, Springer.
2000.

ing Databases at Imine, CA: Available:
h t t p : l l ~ ~ ! r ~ ~ . i c s . u c i . e d ~ ’ . - m l e ~ ~ l ~ ~ L R ~ p ” s i l o ~ . h t m l .

[2]

131

[4]

[5]

[7]

[I61 C.L. Blake and C.J. Merz, UCI Repositoty of Machine Leam-

1062

