
ORIGINAL ARTICLE

A data reduction approach for resolving the imbalanced data issue
in functional genomics

Kihoon Yoon Æ Stephen Kwek

Received: 1 December 2006 / Accepted: 21 December 2006 / Published online: 15 March 2007

� Springer-Verlag London Limited 2007

Abstract Learning from imbalanced data occurs

frequently in many machine learning applications. One

positive example to thousands of negative instances is

common in scientific applications. Unfortunately, tradi-

tional machine learning techniques often treat rare in-

stances as noise. One popular approach for this difficulty is

to resample the training data. However, this results in high

false positive predictions. Hence, we propose preprocess-

ing training data by partitioning them into clusters. This

greatly reduces the imbalance between minority and

majority instances in each cluster. For moderate imbalance

ratio, our technique gives better prediction accuracy than

other resampling method. For extreme imbalance ratio, this

technique serves as a good filter that reduces the amount of

imbalance so that traditional classification techniques can be

deployed. More importantly, we have successfully applied

our techniques to splice site prediction and protein subcel-

lular localization problem, with significant improvements

over previous predictors.

Keywords Data reduction � Clustering �
Imbalanced data � Neural network

1 Introduction

Recent technological advances enable biologists to collect

huge amount of genomic data by using automated DNA

sequencers, microarrays that generate gene expression

information of an entire organism, and other high

throughput techniques. These data contain valuable infor-

mation that may lead to treatments of complex disease and

improve our quality of life. Although, in principle, machine

learning techniques can serve as indispensable tools for

analyzing genomic data, some surveys indicated that the

results are far from ideal [1]. In many genomic applica-

tions, we are faced with the challenging issue of extremely

high imbalanced data where we may see one positive in-

stance (e.g. splice site) only after having seen thousands of

negative instances. Henceforth, we refer to the minority

class as the target class throughout the rest of the paper,

with the assumption that there is only one minority class of

interest. In a typical imbalanced data problem, it is more

important to correctly classify the minority class. For

example, in the area of computer security, most traces in

computer system logs are normal non-malicious usage, but

it is more important to be able to detect the rare occasional

intrusion attempts. Hence training data for building an

automatic intrusion detection system is highly imbalanced

and false-negative mistakes tend to be more costly.

One of the popular treatments of such imbalance is to

resample the training data to obtain a more balanced

number of majority and minority instances. Such resam-

pling method makes the problem more tractable and yields

good accuracy on the test instances. Unfortunately, as the

classifiers are constructed using the resampled data that has

a distribution quite different from the actual real-world

imbalance distribution, their actual prediction accuracy can

be far worse than the cross-validated accuracy based on the

K. Yoon (&) � S. Kwek

Department of Computer Science,

University of Texas at San Antonio,

San Antonio, TX 78249, USA

e-mail: kyoon@cs.utsa.edu

S. Kwek

e-mail: kwek@cs.utsa.edu

123

Neural Comput & Applic (2007) 16:295–306

DOI 10.1007/s00521-007-0089-7

resampled data. It is worth to note that the imbalanced

dataset problem may actually arise from two different

problems [2, 3]. The first is the problem of interclass

imbalance where the distribution of class labels varies

widely. The second problem is within-class (also called

intraclass) imbalance. Within-class imbalance may occur

when the members of a class are not distributed in a uni-

modal distribution. When resampling techniques are ap-

plied to fix the imbalance dataset problem, within-class

imbalance is often ignored. In fact, resampling techniques

may worsen within-class imbalance [2].

To remedy this problem, we proposed an ensemble

sampling technique based on a new supervised clustering

algorithm. Our technique partitions the training instances

into clusters with high majority class purity. We observed

that many of the clusters consist of only majority instances.

This allows us to identify regions in the instance space that

probably do not contain any minority training instances.

Thus, we only need to construct predictive model for the

other regions with lower imbalance ratio (and hence lower

in-class imbalance).

More importantly, unlike traditional undersampling

method, we used all the majority instances so there is no

information loss. We studied the performance of our pro-

posed technique using data sets from the UCI depository

[4]. Many learning techniques (e.g. Error Correcting Out-

put Codes, one-vs-all and all pairs voting) for multi-class

problems involve the conversion of multi-class problem to

a collection of binary class problems. The binary class

version also tends to suffer from the data imbalance

problem. Since this work will help to improve such multi-

class prediction problems, we converted some of the multi-

class data to binary-class data using one class against all

the remaining classes. Our imbalance reduction algorithm

performs better than the results from a standard machine

learning technique with reduced data sets.

Encouraged by the result, we proceed to test our algo-

rithm on real-world datasets that are highly imbalanced. To

this end, we selected two functional genomic problems,

namely splice site prediction and protein subcellular

localization (PSL) problems. Briefly, in the splice site

prediction problem, a gene can be viewed as a sequence of

four letters (nucleotides) A, G, T and C. Each gene consists

of alternating segments of intron and exon regions (see

Fig. 1). During the transcription process, the introns are

spliced out and discarded while the exons are concatenated

to form the messenger RNA (mRNA). As the name sug-

gests, splice site prediction problem is to determine where

splicing occurs. For human genome, the imbalance ratio of

splice sites to non-splice sites is extremely high, possibly

one to many thousands. Hence, splice site prediction is a

very important problem as it is the first step toward a

reliable automated gene finding system. The mature mRNA

after splicing goes through a translation process to produce

protein. The protein is then transported to its designated

subcellular location to perform its function or interact with

other proteins. This information provides valuable clues to

the function of proteins and their interactions. The PSL

problem is to determine a destination or possibly multiple

destinations of protein. As there are probably more than ten

major locations, it is a multi-class problem. Like other

multi-class problems, the number of instances for each

destination is not equal. For example, mitochondrion has

very few known proteins whereas cytoplasm and cell

membrane proteins are abundant. Upon close inspection,

we find that PSL predictors tend to severely under-classify

the minority class for the sake of achieving higher overall

accuracy. Our proposed approach minimizes this problem

significantly.

2 Related work

Most learning algorithms for constructing classifiers tend to

focus on obtaining high accuracy on the observed labeled

training data [5]. To further aggravate this difficulty,

Fig. 1 Illustration of a general

gene structure and genetic

information flow in eukaryotic

cell

296 Neural Comput & Applic (2007) 16:295–306

123

almost all algorithms tend to follow the Occam’s razor

principle [6] (or related minimum description length MDL

principle) where there is a preference toward simple

hypothesis [7]. Short decision trees and neural networks

with small weights are preferred [8]. The underlying

assumption here is that events (instances) that occur

infrequently are considered as noise. This further dis-

criminates against the minority class so as to achieve high

overall prediction accuracy. For highly imbalance data, the

classifiers constructed using these algorithms predict the

negative class all the time and achieve almost 100%

accuracy! This is nonsensical for applications in functional

genomics (and computer security) where the aim is to de-

tect minority instances within a certain reasonable toler-

ance of false positive mistakes.

There are two approaches of dealing with imbalanced

data sets. The first approach is the use of cost sensitive

learning by modifying the classifier. The second method is

to modify the prior probabilities of the majority and

minority class in the training set by changing the number

of instances. In particular, undersampling refers to the

process of decreasing the number of instances in the

majority class while oversampling is the process of

increasing the number of instances in the minority class.

Such resampling has several advantages over modifying

the classification algorithm and cost sensitive learning. As

showed in a previous work [2], a modified classification

algorithm that is tailored to a specific application may not

be applicable to a wide variety of problems. It is better

to design a method that can handle a general class of

learning problems with highly imbalanced data. Thus,

resampling is a simple and attractive alternative to mod-

ifying the classification algorithm and cost sensitive

learning. Various approaches [2, 3, 9–20] have been

proposed to tackle the challenge posed by the imbalance

ratio problem. These approaches fall into two different

categories [21], namely weighting or resampling based

methods. Weighting methods either assign heavier weights

to the minority training instances or penalties for mis-

classifications of minority instances [13–15]. The other

way is to preprocess training data to minimize discrepancy

between class sizes. Oversampling [16] the minority class

and undersampling [17, 18] the majority class are the data

level approaches. Ling and Li [19] combined oversam-

pling and undersampling methods but did not achieve

significant improvement in the ‘‘lift index’’ metric. Both

methods effectively change the training distribution to one

that no longer resembles the original (highly imbalance)

distribution, resulting in overfitting. Estabrooks et al. [20]

constructed an ensemble of classifiers based on under-

sampling and oversampling approaches. Given a test in-

stance, they then select for each approach, those classifers

that have good fitness value and combine their predictions.

Other related works similar to resampling approaches

are to focus on solving small disjuncts problem within each

class [3]. Japkowicz [2] claims that the cause for standard

classifiers in imbalanced data sets is due to small disjuncts

(within-class imbalance). Our experiments confirm this

hypothesis.

Indeed, we have identified two factors that characterize

the difficult of learning with imbalanced data. The first is

the complexity of the target concept’s boundary. A linear

boundary is easier to learn than a boundary described by a

high-degree polynomial. Generally, high boundary com-

plexity requires more instances near the boundary to give a

good boundary approximation. The problem with under-

sampling is that the resulting sample may have too few

‘majority’ instances near the boundary to approximate the

boundary well. This is especially so when a large portion of

the majority instances are far from the boundary. In this

case, using standard undersampling technique will result in

a balanced sample that does not have enough boundary

majority instances to tightly constrain the approximation.

In fact, strong boundary complexity can even impede

learning without severe class imbalance. The other factor is

whether the majority instances form dense clusters. If the

majority instances can be clustered into a few dense clus-

ters then we say the majority instances have low in-class

complexity. If the majority instances are widely dispersed

which do not form natural clusters then they are said to

have high in-class complexity. In a classification problem,

classes with high in-class complexities are more difficult to

label correctly than those with low in-class complexities.

Maloof [22] showed that if there are big differences in the

in-class complexities among classes, then the standard

classifiers might not be optimized. In this scenario, the

problem is actually ‘the imbalance of the class sparseness’

rather than the imbalanced data problem.

3 Proposed approach

The intuition behind our approach is to filter out regions in

the instance space that we believe to consist of almost

entirely of majority instances and hence allow us to focus

on the remaining space. This allows us to reduce the

imbalance ratio and hence make the learning task more

tractable. Since minority instances are scarce, it is very

crucial that any imbalance reduction procedure should not

eliminate a minority instance from the original data. The

idea is to find as many pure clusters of majority instances

as possible that do not contain any minority instance or at

most very few minority instances. Particularly, we look for

majority instances that are far away from the target

boundary (and hence reduce the amount of imbalance) so

that we can concentrate on distinguishing the more difficult

Neural Comput & Applic (2007) 16:295–306 297

123

boundary instances. Thus, the key here is to find clusters

that consist purely (or almost purely) of majority instances.

Therefore, we developed a supervised clustering algorithm

with class purity maximization function.

3.1 Effect of the dense majority instance clusters

A classifier that trains on the entire data set will encounter

lots of negative (majority) instances close to the ideal

boundary, simply because they are the majority class. This

pushes the decision boundary toward the minority positive

instances [5, 23]. When the ratio between majority and

minority becomes larger, a classifier might treat minority

instances as noisy (Fig. 2a). Figure 2b shows the decision

boundary shifting after undersampling. Area between ideal

and shifted decision boundary is responsible for false

positive predictions. Unlike various undersampling tech-

niques, clustering will split majority instances based on

their distribution into meaningful clusters (Fig. 3). The

instances in a good cluster, by definition, tend to lie in a

tight region [24]. In this case, a classifier can find a deci-

sion boundary that favors more on minority class even

though the number of majority instances is much higher.

Another good characteristic is that the decision boundary

of each classifier is dramatically different from each other.

A negative instance that is wrongly classified as positive by

a classifier may be corrected by the other classifiers with

different decision boundary.

3.2 Overview

Our CPM algorithm selects a pair of minority and

majority instances as centers as described in Algorithm 1

in Sect. 3.3. The instances are partitioned into two subsets

according to their nearest centers. This process is repeated

recursively for each of the two subsets until we can no

longer form two clusters or no child cluster yielding

higher class purity than its parent cluster. A collection of

Fig. 2 Illustration of

imbalanced data and

undersampling: a imbalanced

data set—decision boundary is

shifted toward minority class;

b after undersampling—

decision boundary moves to

majority class. The solid line
refers an ideal decision boundary

and the dashed line indicates an

actual decision boundary

estimated by a learning algorithm

Fig. 3 Effect of small and

dense subsets—give more space

to minority class. Any instances

placed between relaxed decision

boundary and minority

instances will be predicted

as a minority class

298 Neural Comput & Applic (2007) 16:295–306

123

samples is then constructed by adding all minority in-

stances to each non-pure cluster, and an ANN is built for

each sample.

Figure 4 illustrates the overall imbalance reduction and

classification procedure. During the training step, training

instances are split into two child clusters. Instances

belonging to each child cluster is then evaluated for further

split. As the result of the series of clustering, the leaves in

the cluster tree contain either pure majority or non-pure

(mixed with minority and majority instances). Since it is

unavoidable that the dispersion of minority instances

throughout non-pure clusters, we add all minority instances

into non-pure clusters without any duplicate. Thus, each

non-pure cluster consists of entire minority and reduced

number of majority instances. A classifier trained on these

non-pure cluster data sets tends to make minority predic-

tion more frequently than the classifier with undersampled

data. However, the decision boundary of each classifier

trained on non-pure clusters is quite different from the

others and this diversity can help to correct false-positive

prediction as illustrated in Fig. 4. With a given unlabeled

test instance, we first run through the imbalance reduction

process (i.e. CPM) to estimate the best possible cluster that

it might belong. If the instance belongs to a pure majority

instance cluster, we simply label it as a majority instance.

Only those instances belonging to a non-pure cluster is

passed on to a group of ANNs which decides the class of

the given instance.

3.3 Class purity maximization (CPM) clustering

The CPM algorithm is shown in Fig. 5. The algorithm at-

tempts to find a pair of centers, one from the minority class

while the second from the majority class. Using these

centers, we partition all the instances into two clusters Ch1

and Ch2. If either of the clusters has majority class purity

higher than its parent’s majority class purity (PPurity) then

we have found the centers for subclusters. Here, the purity

of a set of instances is simply the ratio between the number

of majority instances over the total number of instances. It

then recursively partitions each of these clusters into sub-

clusters (in Line 26 and 27). Thus, it forms hierarchical

clusters. If the purity cannot be improved, then we stop the

recursion (Line 2). Another stopping criterion is the num-

ber of instances in a given cluster. This is to avoid the

extreme case of having singleton clusters which always

have a purity of 1. The cluster size limit used for the

experiment is the number of minority instances in the

training data. A pair of centroid searching is done when

the pair meets the selection criteria (Line 2–4). The center

selection procedure is illustrated in Fig. 6. The choice of

the distance measure used is the Euclidean distance.

Although the results are not shown here, exhaustive

centroid pair searching gives slightly better results. Fig-

ure 7 shows the partition procedure and purity measure

used for this clustering. CPM is quite different from other

unsupervised clustering algorithms, in the sense that CPM

uses the class labels to decide how to partition the in-

stances. CPM does not estimate the parameters of the

mixture of Gaussian distributions.

3.4 Weighted voting for final decision

The predictions from ANNs trained on non-pure clusters

are weighted according to their instance distributions. Each

non-pure cluster is assigned a cluster weight which is the

fraction between the number of instances in the cluster

(Cni) and total number of instances in non-pure clusters

(Tn) from training data. Thus, the weight of a non-pure

cluster i;Wclusteri
is expressed as

Fig. 4 Overall procedure for

imbalance reduction and final

decision is made by simple

weighted voting among ANNs

trained on non-pure clusters

Neural Comput & Applic (2007) 16:295–306 299

123

Wclusteri
¼ 1þ Cni

Tn
: ð1Þ

In addition to the cluster weight, each non-pure cluster

also has class weights. The number of minority and

majority instances in each non-pure cluster is counted be-

fore adding all minority instances into the cluster. The ratio

between the number of instances of a class (Nmt) and total

number of instances in the cluster (Cn) is the class weight,

Wclasst
where 0 < t £ k and k is the number of classes.

Wclasst
¼ 1þ Nmt

Cn
: ð2Þ

The additive term in both Eq. (1) and (2) is used to avoid

very small final prediction value. Wclasst
considers number

of minority or majority instances in a non-pure cluster t.

Thus, each cluster holds two Wclasst
ðWclassmin

;Wclassmaj
Þ

values for binary-class problems.

As illustrated in Fig. 8, if an unlabeled test instance

belongs to one of the non-pure clusters then we will use the

Fig. 6 The center selection

procedure

Fig. 5 The class purity

maximization (CPM) clustering

algorithm

300 Neural Comput & Applic (2007) 16:295–306

123

ANNs to predict its label. The prediction score pi from a

non-pure cluster i is weighted as follows. If pi is a majority

prediction from cluster i which is denoted as pimaj
; then

CPimaj
¼ ðpimaj

�Wclassmaj
ÞWclusteri

: For a minority prediction

of pimin
;CPimin

¼ ðpimin
�Wclassmin

ÞWclusteri
: The final deci-

sion (FPred) is made by taking max between sum of CPi for

majority and minority predictions.

FPred ¼ max
X

i

CPimaj
;
X

j

CPjmin

 !
ð3Þ

4 Experiments

In Table 1, the data sets used for our experiments are

listed with a brief description. Except for the splice site

and PSL data sets, all data sets were obtained from UCI

Repository for Machine Learning [4]. All UCI data sets

were converted to binary class problems to make their

imbalance ratio as high as possible. Some of the UCI

data sets, like hepatitis, balance-scale, page-blocks and

primary-tumor, have very few instances. Due to the

small number of minority instances in these data sets, we

used fivefold cross validation. All the data sets were

examined 30 times to avoid an extreme result by

choosing worst instances in random resampling proce-

dure. We applied resampling method to each training set

until 20% of the data in the training set consists of the

minority class. For the splice site and PSL data, we

constructed two different imbalance ratio data sets from

each. Thus, the imbalance ratio of our data sets ranges

from 2 to 400.

4.1 Learning techniques

In this section we provide detailed descriptions of the key

learning techniques used in our experiments.

Fig. 7 The partition procedure

Fig. 8 The illustration of

prediction procedure

Neural Comput & Applic (2007) 16:295–306 301

123

4.1.1 Base classifier

Our base classifier is an implementation of ‘Multilayer-

Perceptron’, an ANN [25], in Weka machine learning suit

[26]. The ANN used here is a two-layer sigmoid neural

network with backpropagation rule [27]. The number of

hidden nodes, Hn is set to the following default value used

in Weka:

Hn ¼
An þ Cn

2
; ð4Þ

where An is the number of attributes and Cn is the number

of classes. The number of output nodes equals to Cn. All

the option values are set to the default values used in Weka

version 3–4. Learning rate and momentum are 0.3 and 0.2,

respectively. Maximum number of iterations is set to 500.

Figure 9 shows a simplified view of an ANN.

4.1.2 Undersampling

A straightforward approach of circumventing the data

imbalance problem is to sample a smaller set of majority

instances while retaining all the minority instances. This

has an advantage for genomic applications where the

number of majority instances is huge whereby reducing

the training data also reduces the training time and makes

the learning problem tractable. However, undersampling

may results in lost of valuable information from the dis-

carded instances. For our experiments, we used random

undersampling for simplicity. Majority class instances

were randomly removed until the imbalance ratio reaches

the desired level. All undersampled data sets for this paper

have imbalance ratios range from 1 to 4. One of the po-

tential problems associated with undersampling technique

is that we may discard instances that are very informative.

Despite this possible limitation, random undersampling is

very popular and often effective approach to deal with

imbalanced data.

4.1.3 Oversampling

Another approach to dealing with the imbalanced data

problem is to increase the number of minority class in-

stances by oversampling them. The advantage of over-

sampling is that there is no information loss since there is

no discarded instance. However, the minority instances are

over-represented in our training set. Further, as we increase

the training set, the computational cost also increases. This

could result in some problems with large data sets, like

those in genomic analysis application, to be intractable.

There is no conclusive study with regard to whether un-

dersampling or oversampling is better in classification

accuracy. The strength of these two methods depends on

both the characteristics of the data and the classification

algorithms used. For our experiment, we oversample the

minority instances until the training data has an imbalance

ratio of less than 4.

4.2 Performance measure

The general performance measure, (estimated) test error, is

not a good metric for imbalanced data. For many important

bioinformatics or computer security applications, the

minority instances may be less than 1% of the entire data.

By simply predicting according to the majority class, we

can achieve more than 99% accuracy. Clearly such pre-

dictor is not useful at all. For applications with high

imbalance ratio, we frequently want to recall as many

minority instances as possible. Further, we want to be

precise so that when we predict an unlabeled instance to be

minority class instance, there is a good chance that we are

Table 1 The list of data sets used for the experiments

Data sets Imbalance

(maj/min)

Minority

instances

Majority

instances

Total

instances

Hepatitis 3.8 32 123 155

Balance-scale 11.7 44 518 562

Hypothyroid 12.0 262 3,132 3,394

Page-blocks 138.3 46 6,360 6,406

Pima-indian-diabetes 1.9 241 450 691

Primary-tumor 13.1 25 315 339

Segment 6.0 297 1,782 2,079

Sick 15.3 208 3,187 3,395

Splice site 1 100.0 300 30,000 30,300

Splice site 2 400.0 100 40,000 40,100

PSL1 20.0 45 900 945

PSL2 40.0 45 1,800 1,845

Fig. 9 A simplified view of an artificial neural network

302 Neural Comput & Applic (2007) 16:295–306

123

right. These two goals are often contradictory goals and we

need to strike a compromise. We use F-measure to measure

the overall performance (as the compromise between recall

and precision) of the algorithms studied. The exact defi-

nitions of the recall (R) and, precision (P) were first

introduced in the information retrieval community. Recall

is defined as

R ¼ CP

TP
ð5Þ

where CP is the number of instances that are correctly

predicted as positive and TP is the number of actual

positive instances. Precision is defined as

P ¼ CP

PP
ð6Þ

where PP is total number instances predicted as positive.

F-measure is defined as

F ¼ 2� R� P

Rþ P

� �
ð7Þ

which is a harmonic mean between recall and precision.

F-measure becomes zero if either R or P is zero. It becomes

1 when both R and P are 1. Fivefold cross validation was

used to estimate R and P for this paper.

5 Results and discussion

5.1 Performance comparisons among ANN with

original data set and with resampled data sets

The performance of an ANN with original data and with

resampling is summarized in Tables 2, 3 and 4. In gen-

eral, ANN with original data has the highest precision and

also shows that some data sets are not affected by the

Table 2 Performance of the

artificial neural network without

resampling; each performance

measure is obtained by running

data sets 30 times with fivefold

cross validation

The measurements are averaged

and expressed with standard

error of mean

Data sets ANN with original data set

R P F

Hepatitis 0.511 ± 0.011 0.536 ± 0.009 0.522 ± 0.009

Balance-scale 0.056 ± 0.016 0.217 ± 0.048 0.080 ± 0.020

Hypothyroid 0.492 ± 0.010 0.760 ± 0.020 0.589 ± 0.005

Page-blocks 0.575 ± 0.006 0.896 ± 0.009 0.699 ± 0.005

Pima-indians-diabetes 0.607 ± 0.006 0.654 ± 0.003 0.629 ± 0.003

Primary-tumor 0.783 ± 0.008 0.696 ± 0.009 0.735 ± 0.005

Segment 0.992 ± 0.001 0.986 ± 0.001 0.989 ± 0.001

Sick 0.987 ± 0.001 0.980 ± 0.001 0.984 ± 0.000

Splice site 1 0.684 ± 0.009 0.747 ± 0.012 0.713 ± 0.003

Splice site 2 0.321 ± 0.007 0.614 ± 0.016 0.422 ± 0.005

PSL1 0.387 ± 0.011 0.481 ± 0.013 0.426 ± 0.009

PSL2 0.026 ± 0.006 0.121 ± 0.020 0.040 ± 0.008

Table 3 Performance of the

artificial neural network with

undersampling; each

performance measure is

obtained by running data sets 30

times with fivefold cross

validation

The measurements are averaged

and expressed with standard

error of mean

Data sets ANN with undersampling

R P F

Hepatitis 0.564 ± 0.011 0.521 ± 0.007 0.540 ± 0.007

Balance-scale 0.462 ± 0.036 0.411 ± 0.018 0.427 ± 0.025

Hypothyroid 0.525 ± 0.008 0.511 ± 0.012 0.514 ± 0.005

Page-blocks 0.990 ± 0.004 0.324 ± 0.006 0.487 ± 0.007

Pima-indians-diabetes 0.721 ± 0.006 0.586 ± 0.004 0.646 ± 0.003

Primary-tumor 0.821 ± 0.008 0.539 ± 0.010 0.649 ± 0.008

Segment 0.992 ± 0.001 0.985 ± 0.001 0.988 ± 0.001

Sick 0.795 ± 0.005 0.634 ± 0.008 0.704 ± 0.004

Splice site 1 0.961 ± 0.002 0.234 ± 0.002 0.377 ± 0.002

Splice site 2 0.689 ± 0.006 0.038 ± 0.000 0.071 ± 0.001

PSL1 0.593 ± 0.011 0.287 ± 0.005 0.386 ± 0.006

PSL2 0.421 ± 0.013 0.089 ± 0.002 0.146 ± 0.004

Neural Comput & Applic (2007) 16:295–306 303

123

imbalance in the data sets, especially segment and Sick.

This suggests that these data sets are already in optimal

for learning process. Modification of such data distribu-

tion could yields to suboptimal performance as shown in

Tables 3 and 4. The performance of resampling tech-

niques with ANN seems data dependent. As expected,

undersampling method generally improves the recall rate

over original data or oversampling at the expense of the

precision rate. Interestingly, for the balance-scale data set,

undersampling worked much better although the imbal-

ance ratio is just 11.7 in contrast to the page-block data

set with the imbalance ratio of 138.3. Page-block data

shows significant improvement by oversampling method.

Oversampling generated much better F-measure compared

to undersampling (Table 4). In Table 5, resampling ap-

proaches, either undersampling or oversampling improves

F-measure 6 cases out of 12 data sets. For primary-tumor

and Sick data sets, ANN without resampling performs

better in terms of F-measure. Segment data set is not

affected by either resampling method. These indicate that

resampling techniques are data dependent. Further, for the

pima-Indians-diabetes data set, the performance of both

methods is worse than primary-tumor and even though it

has the lowest imbalance ratio of 1.9. This suggests

boundary and in-class complexity are at work, and

imbalance ratio itself does not always make the learning

problem difficult.

5.2 Performance comparisons among data reduction

scheme and ANNs with different resampling

methods

The performance of data reduction with a simple weighted

voting as shown in Table 6 is tend to be better than ANN

with or without resampling. Our proposed CPM method

improves the precision rate as shown in Table 6. The data

reduction technique performs better on 8 data sets out of

12. This suggests that CPM managed to find meaningful

clusters that can be used as filter to identify many majority

instances.

Table 4 Performance of the

artificial neural network with

oversampling; each

performance measure is

obtained by running data sets 30

times with fivefold cross

validation

The measurements are averaged

and expressed with standard

error of mean

Data sets ANN with oversampling

R P F

Hepatitis 0.541 ± 0.012 0.505 ± 0.011 0.521 ± 0.010

Balance-scale 0.405 ± 0.028 0.446 ± 0.013 0.415 ± 0.019

Hypothyroid 0.637 ± 0.008 0.763 ± 0.017 0.689 ± 0.007

Page-blocks 0.964 ± 0.005 0.691 ± 0.007 0.804 ± 0.005

Pima-indians-diabetes 0.766 ± 0.006 0.567 ± 0.002 0.651 ± 0.002

Primary-tumor 0.807 ± 0.006 0.674 ± 0.010 0.733 ± 0.007

Segment 0.997 ± 0.001 0.982 ± 0.001 0.989 ± 0.001

Sick 0.730 ± 0.009 0.727 ± 0.009 0.726 ± 0.004

Splice site 1 0.859 ± 0.003 0.497 ± 0.002 0.629 ± 0.002

Splice site 2 0.521 ± 0.008 0.082 ± 0.001 0.142 ± 0.001

PSL1 0.428 ± 0.016 0.408 ± 0.012 0.417 ± 0.013

PSL2 0.136 ± 0.011 0.119 ± 0.011 0.126 ± 0.010

Table 5 F-measure

comparisons among ANN

without and with resampling;

each performance measure is

obtained by running data sets 30

times with fivefold cross

validation

The measurements are averaged

and expressed with standard

error of mean. The number in

bold face indicate the best result

from three methods according to

F-measure

ANN Undersampling Oversampling

Hepatitis 0.522 ± 0.009 0.540 ± 0.007 0.521 ± 0.010

Balance-scale 0.080 ± 0.020 0.427 ± 0.025 0.415 ± 0.019

Hypothyroid 0.589 ± 0.005 0.514 ± 0.005 0.689 ± 0.007

Page-blocks 0.699 ± 0.005 0.487 ± 0.007 0.804 ± 0.005

Pima-indians-diabetes 0.629 ± 0.003 0.646 ± 0.003 0.651 ± 0.002

Primary-tumor 0.735 ± 0.005 0.649 ± 0.008 0.733 ± 0.007

Segment 0.989 ± 0.001 0.988 ± 0.001 0.989 ± 0.001

Sick 0.984 ± 0.000 0.704 ± 0.004 0.726 ± 0.004

Splice site 1 0.713 ± 0.003 0.377 ± 0.002 0.629 ± 0.002

Splice site 2 0.422 ± 0.005 0.071 ± 0.001 0.142 ± 0.001

PSL1 0.426 ± 0.009 0.386 ± 0.006 0.417 ± 0.013

PSL2 0.040 ± 0.008 0.146 ± 0.004 0.126 ± 0.010

304 Neural Comput & Applic (2007) 16:295–306

123

6 Conclusions

The results shown in Sect. 5 suggest that higher imbal-

ance ratio by itself may not dictate the difficulty of the

learning problem. Sometimes fairly balanced data such as

the hepatitis data set can be more difficult to learn than

highly imbalanced data such as page-blocks data. Clearly,

boundary and in-class complexity are the important fac-

tors that determine the problem’s difficulty. For example,

if a data set is linearly separable and noise level is very

low in the data, then the effect of imbalance ratio is

small. In that sense, the proposed CPM approach is to

reduce the imbalance ratio as well as in-class imbalance

as illustrated in Fig. 3. Conceptually, each tight cluster

from the majority class instances is more likely to be

separable from minority class instances since majority

class members in a cluster are distributed uniformly.

Hence, it is possible that CPM can lower interclass

imbalance as well as intraclass imbalance. More impor-

tantly, CPM can be implemented easily in a distributed

system as it is easily parallelizable. This allows us to

better handle very large data sets commonly found in

bioinformatics applications.

Using the highly customizable characteristic of our

predictor, we successfully applied our data reduction ap-

proach to an automated gene finding system, promoter

prediction, and transcription factor binding site prediction

as a good filter. It is possible to apply this approach to

many other genomic data such as ‘finding candidate genes

responsible for multigenic diseases’, ‘predictions of se-

quence signals associated with mRNA stability’, ‘Finding

point mutation on various cancer genes’ and other func-

tional genomics problems.

References

1. Ashurst J, Collins J (2003) Gene annotation: prediction and

testing. Ann Rev Genomics Human Genetics 4:69–88

2. Japkowicz N (2003) Class imbalances: are we focusing on the

right issue? Notes from the ICML workshop on learning from

imbalanced data sets II

3. Jo T, Japkowicz N (2004) Class imbalances versus small dis-

juncts. ACM SIGKDD Explorat 6(1):40–49

4. Blake C, Mertz C (1998) UCI repository of machine learning

databases

5. Provost F (2000) Machine learning from imbalanced data sets

101. Invited paper for the AAAI’2000 workshop on imbalanced

data sets.

6. Murphy PM, Pazzani MJ (1994) Exploring the decision forest: an

empirical investigation of Occam’s razor in decision tree induc-

tion. J Artif Intell Res 1:257–275

7. Mitchell T (1997) Machine learning. McGraw-Hill, New York

8. Mehta M, Rissanen J, Agrawal R (1995) MDL-based decision

tree pruning. In: Proceedings of the first international conference

on knowledge discovery and data mining, Menlo Park, CA.

AAAI Press, pp 216–221

9. Japkowicz N (2000) The class imbalance problem: significance

and strategies. In: Proceedings of the 2000 international con-

ference on artificial intelligence: special track on inductive

learning, Las Vegas, NV

10. Nickerson A, Japkowicz N, Millos E (2001) Using unsupervised

learning to guide resampling in imbalanced data sets. In:

Proceedings of the 8th international workshop on ai and statistics,

pp 261–265

11. Kotsiantis SB, Pintelas PE (2003) Mixture of expert agents for

handling imbalanced data sets. Ann Math Comput Teleinform

1(1):46–55

Table 6 Performance of the artificial neural network with resampled data and with data reduction approach; the numbers in bold face indicate

the best result from the two methods according to F-measure

Data sets Best results Data reduction (CPM)

F R P F

Hepatitis 0.540 ± 0.007 0.624 ± 0.001 0.612 ± 0.002 0.618 ± 0.001

Balance-scale 0.427 ± 0.025 0.685 ± 0.017 0.498 ± 0.018 0.577 ± 0.019

Hypothyroid 0.689 ± 0.007 0.513 ± 0.003 0.806 ± 0.001 0.627 ± 0.005

Page-blocks 0.804 ± 0.005 0.752 ± 0.005 0.611 ± 0.004 0.674 ± 0.003

Pima-indians-diabetes 0.651 ± 0.002 0.704 ± 0.012 0.641 ± 0.018 0.671 ± 0.007

Primary-tumor 0.735 ± 0.005 0.885 ± 0.003 0.659 ± 0.006 0.755 ± 0.002

Segment 0.989 ± 0.001 0.911 ± 0.002 0.849 ± 0.001 0.879 ± 0.001

Sick 0.984 ± 0.000 0.894 ± 0.004 0.653 ± 0.006 0.755 ± 0.002

Splice site 1 0.713 ± 0.003 0.891 ± 0.001 0.709 ± 0.002 0.789 ± 0.001

Splice site 2 0.422 ± 0.005 0.865 ± 0.002 0.438 ± 0.007 0.581 ± 0.001

PSL1 0.426 ± 0.009 0.727 ± 0.007 0.419 ± 0.012 0.532 ± 0.004

PSL2 0.146 ± 0.004 0.556 ± 0.018 0.233 ± 0.001 0.328 ± 0.003

Each performance measure is obtained by running data sets 30 times with fivefold cross validation. The measurements are averaged and

expressed with standard error of mean. The numbers in bold face indicate better results among the best result of the three methods and our

approach according to F-measure

Neural Comput & Applic (2007) 16:295–306 305

123

12. Kolcz A, Alspector J (2002) Asymmetric missing-data problems:

overcoming the lack of negative data in preference ranking.

Informat Retr 5(1):5–40

13. Akbani R, Kwek S, Japkowicz N (2004) Applying support vector

machines to imbalanced datasets. In: Proceedings of the 15th

European conference on machine learning (ECML), pp 39–50

14. Domingos P (1998) How to get a free lunch: a simple cost model

for machine learning applications. In: Proceedings of AAAI-98/

ICML98, workshop on the methodology of applying machine

learning, pp 1–7

15. Veropoulos K, Campbell C, Cristianini N (1999) Controlling the

sensitivity of support vector machines. In: Proceedings of the

international joint conference on AI, pp 55–60

16. Chawla N, Bowyer K, Hall L, Kegelmeyer W (2002) SMOTE:

synthetic minority over-sampling technique. J Artif Intell Res

16:321–357

17. Drummond C (2003) C4.5, Class imbalance, and cost sensitivity:

why undersampling beats over-sampling. In: ICML-KDD’2003

workshop: learning from imbalanced data sets

18. Kubat M, Matwin S (1997) Addressing the curse of imbalanced

training sets: one-sided selection. In: Proceedings of the 14th

international conference on machine learning

19. Ling C, Li C (1998) Data mining for direct marketing problems

and solutions. In: Proceedings of the fourth international

conference on knowledge discovery and data mining, New

York, NY

20. Estabrooks A, Jo T, Japkowicz N (2004) A multiple resampling

method for learning from imbalanced data sets. Comput Intell

20(1)

21. Abe N (2003) Sampling approaches to learning from imbalanced

datasets: active learning, cost sensitive learning and beyond. In:

ICML-KDD’2003 workshop: learning from imbalanced data sets

22. Maloof M (2003) Learning when data sets are imbalanced and

when costs are unequal and unknown. In: ICML-2003 workshop

on learning from imbalanced data sets II

23. Provost F, Fawcett T (2001) Robust classification for imprecise

environments. Mach Learn 42/3:203–231

24. Wu G, Chang E (2003) Class-boundary alignment for imbalanced

dataset learning. In: ICML 2003 workshop on learning from

imbalanced data sets II, Washington, DC

25. Wasserman P (1993) Advanced methods in neural computing.

Van Nostrand Reinhold

26. Witten I, Frank E (2000) Data mining: practical machine learning

tools with Java implementations. Morgan Kaufmann, San Fran-

cisco

27. Chauvin Y, Rumelhart D (1995) Backpropagation: theory,

architectures, and applications (edited collection). Lawrence

Erlbaum, Hillsdale

306 Neural Comput & Applic (2007) 16:295–306

123

	A data reduction approach for resolving the imbalanced data issue in functional genomics
	Abstract
	Introduction
	Related work
	Proposed approach
	Effect of the dense majority instance clusters
	Overview
	Class purity maximization (CPM) clustering
	Weighted voting for final decision

	Experiments
	Learning techniques
	Base classifier
	Undersampling
	Oversampling

	Performance measure

	Results and discussion
	Performance comparisons among ANN with original data set and with resampled data sets
	Performance comparisons among data reduction scheme and ANNs with different resampling methods

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

