
A Short Study on the Use of Genetic 2-Tuples Tuning for Fuzzy Rule Based
Classification Systems in Imbalanced Data-Sets

Alberto Fernández
Dept. of Computer Science and A.I.

University of Granada, Spain
alberto@decsai.ugr.es

Marı́a José del Jesus
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Abstract

In this work our aim is to increase the performance of
Fuzzy Rule Based Classifications Systems in the framework
of imbalanced data-sets by means of the application of a ge-
netic tuning step. We focus on the imbalanced data-set pro-
blem since it appears in many real application areas and,
for this reason, it has become a relevant topic in the area
of machine learning. This problem occurs when the number
of examples that represents one of the concepts of interest
(usually the most important) is much lower than that of the
remaining ones.

We want to adapt the 2-tuples based genetic tuning ap-
proach to classification problems and to study the positive
synergy between this method and the Chi et al.’s fuzzy lear-
ning method, which is a basic approach in order to build the
initial Knowledge Base.

The experimental results show the improvement achieved
by the 2-tuples based genetic tuning over the Fuzzy Rule
Based Classification System in all types of imbalanced data,
obtaining a better behaviour than the basic approach.

1 Introduction

Fuzzy Rule Based Classification Systems (FRBCSs) are
a very useful tool in the ambit of Machine Learning, since
they provide a very interpretable model for the end user
[10]. There are many real applications in which the FRBCS
have been employed, including anomaly intrusion detec-
tion, medicine or image processing. In most of these areas
the data used is highly skewed, i.e. the number of instances
of one class is much lower than the instances of the other

classes. This situation is known as the imbalanced data-set
problem, and it has been recently identified as one impor-
tant problem in data mining [5].

Our previous work on the topic [8] showed the good
behaviour obtained by FRBCSs in the ambit of imbalanced
data-sets, by means of the application of a preprocessing
step in order to balance the training data before the rule ge-
neration phase via a re-sampling procedure. We determined
the robustness of this methodology specially when increa-
sing the imbalance degree, achieving better performance
than the C4.5 decision tree in highly imbalanced data-sets.

Our aim in this work is to increase the global perfor-
mance of FRBCSs applying a genetic optimization of the
Data Base membership functions (MFs) by means of a
new linguistic rule representation model that was proposed
in [1]. This model is based on the linguistic 2-tuples repre-
sentation [9], and allows the lateral displacement of a label
considering an unique parameter.

We will use for our experimental study a basic lear-
ning algorithm proposed by Chi et al. [6], that extends the
well-known Wang and Mendel method to classification pro-
blems. Furthermore, as we mentioned before, it is necessary
to apply a re-sampling procedure to prepare the training data
for the learning process. Specifically, following the conclu-
sions obtained in [8], we will employ the “Synthetic Mino-
rity Over-sampling Technique” (SMOTE) [4].

The rest of this work is organized as follows. In Section
2, we present the imbalanced data-set problem, describing
the preprocessing technique used in our work, the SMOTE
algorithm, and discussing the evaluation metric we have
employed. In Section 3, we briefly describe the FRBCSs
and we present the fuzzy rule learning methodology used
in this study. Next, Section 4 introduces the 2-tuples tu-
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ning approach and the evolutionary algorithm that tunes the
FRBCS. In Section 5, we include our experimental analysis
in imbalanced data-sets with different degrees of imbalance,
where we compare the FRBCS with 2-tuples based genetic
tuning with the basic FRBCS approach. Finally, in Section
6, some concluding remarks are pointed out.

2 Imbalanced Data-Sets in Classification

The problem of imbalanced data-sets in classification oc-
curs when the data used is highly skewed, i.e. the number
of instances of one class is much lower than the instances of
the other classes. This situation has been recently identified
as one important problem in data mining [5], because it is
implicit in most real world applications, including telecom-
munications, finance, biology, and medicine.

We focus on the two class imbalanced data-sets, where
there is only one positive and one negative class. We con-
sider the positive class as the one with the lowest number
of examples and the negative class the one with the highest
number of examples. Furthermore, in this work we use the
imbalance ratio (IR) [11], defined as the ratio of the number
of instances of the majority class and the minority class, to
organize the different data-sets according to their IR.

In order to deal with the imbalanced data-set problem we
may apply internal approaches that create new algorithms or
modify existing ones to take this problem into consideration
[2] and external approaches that preprocess the data in order
to diminish the effect caused by their class imbalance [3].

In our previous work on this topic [8] we analyzed the
cooperation of some preprocessing methods with FRBCSs,
showing a good behaviour for the oversampling methods,
specially in the case of the SMOTE methodology [4]; accor-
ding to this, we will employ in this work this preprocessing
method.

In short, its main idea is to form new minority class
examples by interpolating between several minority class
examples that lie together. Thus, the overfitting problem is
avoided and causes the decision boundaries for the minority
class to spread further into the majority class space.

Regarding the empirical measure, instead of using accu-
racy, a more correct metric is considered. This is due to the
fact that accuracy can lead to erroneous conclusions, since
it doesn’t take into account the proportion of examples for
each class. Because of this, in this work we use the geome-
tric mean of the true rates [2], which can be defined as

GM =

√
TP

TP + FN
· TN

FP + TN
(1)

where TP ,TN ,FP and FN stand for True Positives, True
Negatives, False Positives and False Negatives respectively.
This metric attempts to maximize the accuracy of each one

of the two classes with a good balance. It is a performance
metric that links both objectives.

3 Fuzzy Rule Based Classification Systems
and Fuzzy Learning Method

FRBCSs are a very useful tool in the ambit of Machine
Learning, since they allow the inclusion of all the available
information in system modeling, both the one that comes
for expert knowledge and the one from empiric measures
and mathematical models, deriving on a very interpretable
model and therefore allowing the knowledge representation
to be understandable for the system users.

Any classification problem consists of m training pat-
terns xp = (xp1, . . . , xpn, yp), p = 1, 2, . . . ,m from M
classes where xpi is the ith attribute value (i = 1, 2, . . . , n)
of the p-th training pattern.

In this work we use fuzzy rules of the following form for
our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj
(2)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is
an n-dimensional pattern vector, Aji is an antecedent fuzzy
set, Cj is a class label, and RWj is the rule weight. We use
triangular MFs as antecedent fuzzy sets.

Fuzzy learning methods are the basis to build a FRBCS.
The algorithm used in this work is the method proposed in
[6], that we have called the Chi et al.’s rule generation.

To generate the fuzzy RB this FRBCSs design method
determines the relationship between the variables of the pro-
blem and establishes an association between the space of
the features and the space of the classes by means of the
following steps:

1. Establishment of the linguistic partitions. Once the do-
main of variation of each feature Ai is determined, the
fuzzy partitions are computed.

2. Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this is necessary:

2.1 To compute the matching degree μ(xp) of the
example to the different fuzzy regions using a
conjunction operator (usually modeled with a mi-
nimum or product T-norm).

2.2 To assign the example xp to the fuzzy region with
the greatest membership degree.

2.3 To generate a rule for the example, whose ante-
cedent is determined by the selected fuzzy region
and whose consequent is the label of class of the
example.

2.4 To compute the rule weight.
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We must remark that rules with the same antecedent can
be generated during the learning process. If they have the
same class in the consequent we just remove one of the du-
plicated rules, but if they have a different class only the rule
with the highest weight is kept in the RB.

4 Genetic Tuning of the Fuzzy Rule Based
Classification Systems

In this work we will employ the 2-tuples based gene-
tic tuning for classification problems, adapting the previous
work on the topic [1] in order to obtain good models of
FRBCSs to increase the performance of the initial Kno-
wledge Base (KB). In this approach a new rule represen-
tation model based on the linguistic 2-tuples representation
[9] is used. This representation allows the lateral displace-
ment of the labels considering only one parameter (slight
displacements to the left/right of the original MFs).

The symbolic translation of a linguistic term is a number
within the interval [-0.5, 0.5) that expresses the domain of
a label when it is moving between its two lateral labels. An
example is illustrated in Figure 1 where we show the sym-
bolic translation of a label represented by the pair (S2,-0.3)
together with the lateral displacement of the corresponding
MF.

Figure 1. Lateral Displacement of a MF.
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There are two different possibilities as how to perform
the lateral tuning, the most interpretable one and the most
accurate one:

• Global Tuning of the Semantics (GTS). In this case,
the tuning is applied to the level of linguistic partition.
In this way, the pair (Xi, label) takes the same tuning
value in all the rules where it is considered.

• Local Tuning of the Rules (LTR). In this case, the tu-
ning is applied at the rule level. The pair (Xi, label)
is tuned in a different way for each rule, based on the
quality measures associated to the tuning method.

In order to apply the 2-tuples based genetic tuning, we
will consider the use of a specific genetic algorithm to de-
sign the proposed learning method, the CHC algorithm [7]

which presents a good trade-off between diversity and con-
vergence, being a good choice in problems with complex
search spaces.

This genetic model makes use of a mechanism of “Se-
lection of Populations”. M parents and their corresponding
offspring are put together to select the best M individuals
to take part of the next population (with M being the popu-
lation size). Furthermore, no mutation is applied during the
recombination phase, Instead, when the population conver-
ges or the search stops making progress, the population is
re-initialized.

The components needed to design this process are ex-
plained below. They are: coding scheme, initial gene pool,
chromosome evaluation, crossover operator (together with
an incest prevention) and restarting approach.

1. Coding Scheme: A real coding is considered. In the
case of the GTS the chromosome is represented by the
joint of the parameters of the fuzzy partitions, while
for the LTR is the joint of the rule parameters.

2. Chromosome Evaluation: The fitness function must be
in accordance with the framework of imbalanced data-
sets. Thus, we will use, as presented in Section 2, the
geometric mean of the true rates.

3. Initial Gene Pool: To make use of the available infor-
mation, the initial FRBCS is included in the population
as an initial solution. To do so, the initial pool is ob-
tained with the first individual having all genes with
value ‘0.0’, and the remaining individuals generated at
random in [-0.5, 0.5).

4. Crossover Operator: We consider the Parent Centric
BLX (PCBLX) operator, which is based on the BLX-
α. We consider the incest prevention mechanism in
order to apply the PCBLX operator. Two parents are
crossed if their hamming distance divided by 2 is above
a predetermined threshold, L. Since we consider a real
coding scheme, we have to transform each gene consi-
dering a Gray Code (binary code) with a fixed number
of bits per gene (BITSGENE). In this way, the th-
reshold value is initialized as:

L = (#Genes · BITSGENE)/4.0

where #Genes stands for the total length of the ch-
romosome. L is decremented by BITSGENE when
there are no new individuals in the next generation.

5. Restarting approach: When the threshold value L is
lower than zero, all the chromosomes are regenera-
ted at random within the interval [−0.5, 0.5). Furt-
hermore, the best global solution found is included in
the population to increase the convergence of the algo-
rithm.
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Table 1. Summary Description for Imbalanced Data-Sets
Data-set #Ex. #Atts. Class (min., maj.) %Class IR

Data-sets with Low Imbalance (1.5 to 3 IR)
Glass2 214 9 (build-window-non float-proc, remainder) (35.51, 64.49) 1.82
EcoliCP-IM 220 7 (im, cp) (35.00, 65.00) 1.86
Wisconsin 683 9 (malignant, benign) (35.00, 65.00) 1.86
Pima 768 8 (tested-positive, tested-negative) (34.84, 66.16) 1.90
Iris1 150 4 (Iris-Setosa, remainder) (33.33, 66.67) 2.00
Glass1 214 9 (build-window-float-proc, remainder) (32.71, 67.29) 2.06
Yeast2 1484 8 (NUC, remainder) (28.91, 71.09) 2.46
Vehicle2 846 18 (Saab, remainder) (28.37, 71.63) 2.52
Vehicle3 846 18 (bus,remainder) (28.37, 71.63) 2.52
Vehicle4 846 18 (Opel, remainder) (28.37, 71.63) 2.52
Haberman 306 3 (Die, Survive) (27.42, 73.58) 2.68

Data-sets with Medium Imbalance (3 to 9 IR)
GlassNW 214 9 (non-window glass, remainder) (23.83, 76.17) 3.19
Vehicle1 846 18 (van,remainder) (23.64, 76.36) 3.23
Ecoli2 336 7 (im, remainder) (22.92, 77.08) 3.36
New-thyroid3 215 5 (hypo,remainder) (16.89, 83.11) 4.92
New-thyroid2 215 5 (hyper,remainder) (16.28, 83.72) 5.14
Ecoli3 336 7 (pp, remainder) (15.48, 84.52) 5.46
Segment1 2308 19 (brickface, remainder) (14.26, 85.74) 6.01
Glass7 214 9 (headlamps, remainder) (13.55, 86.45) 6.38
Yeast4 1484 8 (ME3, remainder) (10.98, 89.02) 8.11
Ecoli4 336 7 (iMU, remainder) (10.88, 89.12) 8.19
Page-blocks 5472 10 (remainder, text) (10.23, 89.77) 8.77

Data-sets with High Imbalance (higher than 9 IR)
Vowel0 988 13 (hid, remainder) (9.01, 90.99) 10.10
Glass3 214 9 (Ve-win-float-proc, remainder) (8.78, 91.22) 10.39
Ecoli5 336 7 (om, remainder) (6.74, 93.26) 13.84
Glass5 214 9 (containers, remainder) (6.07, 93.93) 15.47
Abalone9-18 731 8 (18, 9) (5.65, 94.25) 16.68
Glass6 214 9 (tableware, remainder) (4.20, 95.80) 22.81
YeastCYT-POX 482 8 (POX,CYT) (4.15, 95.85) 23.10
Yeast5 1484 8 (ME2, remainder) (3.43, 96.57) 28.41
Yeast6 1484 8 (ME1, remainder) (2.96, 97.04) 32.78
Yeast7 1484 8 (EXC, remainder) (2.49, 97.51) 39.16
Abalone19 4174 8 (19, remainder) (0.77, 99.23) 128.87

5 Experimental Study

In this study, our intention is to show the improvement
achieved in FRBCSs by applying a 2-tuples genetic tuning
approach. Thus, we will compare the performance of the
FRBCS, both for the basic scheme and with 2-tuples genetic
tuning, performing a global comparison employing a large
amount of imbalanced data-sets.

Specifically, we have considered thirty three data-sets
from UCI with different IR, as shown in Table 1, where we
denote the number of examples (#Ex.), number of attributes
(#Atts.), class name of each class (minority and majority),
class attribute distribution and IR. This table is in ascen-
dance order according to the IR. Data-sets with more than
two classes have been modified by taking one against the
others or by contrasting one class with another.

In order to reduce the effect of imbalance, we will em-
ploy the SMOTE preprocessing method [4] for all our ex-
periments, considering only the 1-nearest neighbour to ge-
nerate the synthetic samples, and balancing both classes to
the 50% distribution.

In the remaining of this section, we will first present the
experimental framework and all the parameters employed
in this study and then we will show the results and all the

statistical study for the FRBCS approach with the 2-tuples
based genetic tuning.

5.1 Experimental Set-Up

To develop the different experiments we consider a 5-
folder cross-validation model, i.e., 5 random partitions of
data with a 20%, and the combination of 4 of them (80%) as
training and the remaining one as test. For each data-set we
consider the average results of the five partitions. Further-
more, Wilcoxon’s Signed-Ranks Test [12] is used for statis-
tical comparison of our empirical results. In all cases the
level of confidence (α) will be set at 0.05.

We will employ the following configuration for the
FRBCS: product T-norm as conjunction operator, together
with the Penalized Certainty Factor approach for the rule
weight and FRM of the winning rule. We have selected this
FRBCS model as it achieved a good performance in our pre-
vious study on imbalanced data-sets [8]. Because it is not
clear what level of granularity must be employed for the Chi
FRBCS, we will use both 3 and 5 labels per variable.

Finally, we indicate the values that have been considered
for the parameters of the genetic tuning:

• Population Size: 50 individuals.
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• Number of evaluations: 5,000 ·number of variables.
• Bits per gene (Gray codification): 30 bits.

5.2 Analysis of the 2-Tuples Based Gene-
tic Tuning on Fuzzy Rule Based Clas-
sification Systems

As we said previously, our aim is to emphasize the ne-
cessity in the use of the 2-tuples based genetic tuning to im-
prove the FRBCS performance by means of the comparison
of the results obtained by the Chi et al.’s method.

Experimental results are shown in Table 2, where we
show by columns the two different approaches considered,
that is, the Chi et al.’s algorithm with 3 and 5 labels, no-
ted as Chi-3 and Chi-5 respectively. In addition, there are
three different results for each method: the first row con-
tains the results when applying the basic scheme (Base) and
the second and third rows contains the results for the global
and local 2-tuples based genetic tuning, named as GTS and
LTR.

Table 2. Summary results table for the
FRBCSs comparison in imbalanced data-sets

Approach Chi-3 Chi-5
GMT r GMT st GMT r GMT st

Base 84.95 ± 1.48 80.48 ± 6.24 90.24 ± 0.94 79.57 ± 6.00
GTS 92.70 ± 1.01 83.77 ± 6.84 94.56 ± 1.05 78.76 ± 7.97
LTR 94.33 ± 1.08 83.77 ± 7.32 96.24 ± 0.85 80.26 ± 6.98

For the FRBCSs analysis we must select which granula-
rity is preferred for the Chi method, wether 3 or 5 labels.
For this purpose Table 3 presents a Wilcoxon’s test where
we compare the results for each approach (with the two ty-
pes of genetic tuning) using the two different number of
fuzzy partitions.

Table 3. Wilcoxon’s test to compare Chi using
different granularity levels. R+ corresponds
to 3 labels and R− to 5 labels

Comparison R+ R− Hypothesis (α = 0.05) p-value
Chi-3-GTS vs. Chi-5-GTS 522.5 38.5 Rejected for Chi-3-GTS 0.000
Chi-3-LTR vs. Chi-5-LTR 471.0 90.0 Rejected for Chi-3-LTR 0.001

The main conclusion obtained in this table is that when
we choose 5 labels per variable, we get a high over-fitting
for the 2-tuples based genetic tuning and, in this case, the
choice of a lower level of granularity allows the achieve-
ment of better results.

We must emphasize that our work was focused on deter-
mining the positive behaviour of the 2-tuples based genetic
tuning for FRBCS in the field of imbalanced data-sets. We
show in Table 4 the complete results for the Chi et al.’s fuzzy

method with 3 labels per variable, which has been the selec-
ted approach for this study. In this table we can see that in
most cases the 2-tuples based genetic tuning obtains better
results in performance than the basic FRBCS.

This study is analyzed by a Wilcoxon Test (Table 5),
where we show that the 2-tuples tuning improves the beha-
viour of the simple KB, both in the global and local ap-
proaches. Therefore, we stress the goodness of the 2-tuples
methodology for the tuning of the MF in imbalanced data-
sets, both for the whole rule set (global approach) and for
each fuzzy rule (local approach).

Table 5. Wilcoxon’s Test to compare the sim-
ple FRBCS approaches (R+) with the use of
2-tuples based genetic tuning (R−)

Comparison R+ R− Hypothesis (α = 0.05) p-value
Chi-3 vs. Chi-3-GTS 99.5 461.5 Rejected for Chi-3-GTS 0.001
Chi-3 vs. Chi-3-LTR 100.5 460.5 Rejected for Chi-3-LTR 0.001

Finally, comparing both tuning approaches (GTS and
LTR) neither of them is better in performance, so initially
there is no argument to support which one is preferable.
Nevertheless, since the GTS works at the Data Base level,
the global interpretability of the final FRBCS is maintained
and, in this case, it achieves a good trade-off between accu-
racy and interpretability.

6 Conclusions

In this work we have adapted the 2-tuples based genetic
tuning to classification problems with imbalanced data-sets,
in order to increase the performance of simple FRBCSs.

Our empirical and statistical results have supported
our aim and thus, we have shown that the genetic tuning
improves the behaviour of the FRBCS in imbalanced
data-sets. Thus, we can conclude that the tuning step is a
necessity, since it helps FRBCSs to obtain better results in
this scenario.
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