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ABSTRACT

There are many practical applications where learning from
single class examples is either, the only possible solution,
or has a distinct performance advantage. The first case oc-
curs when obtaining examples of a second class is difficult,
e.g., classifying sites of “interest” based on web accesses.
The second situation is exemplified by the gene knock-out
experiments for understanding Aryl Hydrocarbon Receptor
signalling pathway that provided the data for the second
task of the KDD 2002 Cup, where minority one-class SVMs
significantly outperform models learnt using examples from
both classes.

This paper explores the limits of supervised learning of a
two class discrimination from data with heavily unbalanced
class proportions. We focus on the case of supervised learn-
ing with support vector machines. We consider the impact of
both sampling and weighting imbalance compensation tech-
niques and then extend the balancing to extreme situations
when one of the classes is ignored completely and the learn-
ing is accomplished using examples from a single class.
Our investigation with the data for KDD 2002 Cup as well
as text benchmarks such as Reuters Newswire shows that
there is a consistent pattern of performance differences be-
tween one and two-class learning for all SVMs investigated,
and these patterns persist even with aggressive dimension-
ality reduction through automated feature selection. Using
insight gained from the above analysis, we generate synthetic
data showing similar pattern of performance.

1. INTRODUCTION

A standard recipe for two class discrimination is to take ex-
amples from both classes, then generate a model for discrim-
inating them. This approach is so entrenched in machine
learning that practitioners often will not consider data un-
less it contains examples of both classes. Moreover, many
machine learning algorithms, such as decision trees, naive
Bayes or multilayer perceptron, do not function unless the
training data includes examples from two classes. However,
there are many applications where obtaining examples of a
second class is difficult, e.g., classifying sites of “interest”
to a web surfer where the sole information that is available
are the positive examples or sites that are of interest to the
user. In such a case, learning from examples of one class is
the only possible solution.

In addition, there are situations when the data has heav-
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ily unbalanced representatives of the two classes of interest,
e.g., fraud detection and information filtering. A supervised
algorithm applied to such a problem has to implement some
form of balancing. In some situations, it may be beneficial
to design re-balancing even more radically than warranted
by unequal proportions, and ignore the large pool of neg-
ative examples and learn from positive examples only. A
real life learning problem that has benefited from such an
approach is the second task of the KDD Cup 2002 [6], where
the winning submission learnt using just the positive exam-
ples which consisted of < 3% of the training data [16].
This paper explores the limits of two-class learning and anal-
yses situations when this discrimination learning may break
down. We focus on supervised learning with support vector
machines (Section 3) and investigate two forms of imbalance
compensation techniques (Section 4). Our experiments with
two real world collections, namely, the KDD 2002 Cup data
and the Reuters Newswire benchmark, show that in some
real life learning problems, SVMs do benefit from extreme
re-balancing, i.e., ignoring all of the majority class examples
(Section 6). We investigate this surprising result with a sys-
tematic study using synthetic data (Section 7). This study
coupled with our earlier experiments with real world data
sets leads us to conclude that data with a certain combina-
tion of properties, e.g., the presence of label noise, sparsity
of features and low proportion of minority class, lends itself
to better performance with one-class learners (Section 8).

2. RELATED RESEARCH

The problem of discrimination of unbalanced classes is en-
countered in a large number of real life applications of ma-
chine learning, e.g., detection of oil spills in satellite radar
images [17], information retrieval and filtering [18], fraud
detection [3] and biological domains [6; 16]. Many solu-
tions have been proposed to address the imbalance problem
including sampling and weighting examples, cf. [14] for a
thorough survey. Typically, these methods focus on cases
when the imbalance ratio of minority to majority class is
around 10:90. For instance, in [3], though the number of
fraudulent cases is much lower than 1% in the raw data, the
actual data used in learning is pre-filtered so that the ratio
of minority to majority class is 20:80; in [4] where more ex-
treme imbalance ratios are considered, tens of thousands of
training examples were used in input spaces of unspecified
dimensionality (most likely of order of tens to hundreds of
attributes). In contrast, in this paper, we focus on extreme
imbalance in very high dimensional input spaces, where at
the learning stage the minority class consists of around 1-3%
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of the data and the learning sample size is much below the
dimensionality of the input space exceeding 10,000 features.
In this context, we explore different sampling strategies. In
particular, we extend the sampling to situations when one
of the classes is ignored completely and learning is accom-
plished using examples from a single class only.

The possibility of single class learning with support vector
machines (SVM) has been noticed previously. In particular,
[23] have suggested a method of adapting the SVM method-
ology to one-class learning by treating the origin as the only
member of the second class. This methodology has been
used for image retrieval [5] and for document classification
[19]. In both cases, modelling is performed using examples
from the positive class only, and the one-class models per-
form reasonably, although much worse than the two-class
models learnt using examples from both classes. In con-
trast, in this paper, we show that for certain problems such
as the gene knock-out experiments for understanding Aryl
Hydrocarbon Receptor (AHR) signalling pathway, minority
one-class SVMs significantly outperform models learnt using
examples from both classes. We investigate this peculiar be-
haviour through a thorough analysis of the AHR data and
text benchmarks such as Reuters Newswire data.

3. SUPPORI VECTOR MACHINES

In this section we recall basic concepts of kernel machines
in a form suitable for this paper. Given a training sequence
(zi,ys) of binary n-vectors z; € {0,1}" CR™ and bipolar
labels y; € {+1} for ¢ = 1,...,m. The case of prime in-
terest here is when the target class, labelled +1, is much
smaller than the background class (labelled —1), consisting
of a minute fraction, & 1 — 3%, of the data. Our aim is to
find a “good” discriminating function f : {0,1}" — R that
scores the target class instances higher than the background
class instances. The solution will be given in a form of a
kernel machine

fl@) = fl @) +b:="_ Bik(z,2:) +b (1)

i=1

where k : R®" xR" — R is a kernel function of one of the
forms specified below and 3;,b € R are parameters to be
defined for the given training set as the minimiser of the
regularised risk of the form as follows.

(B, 0) = 78117 + D Coud(L = wi(f7 (i) +1)),  (2)

i=1

where C11,C-1 > 0 are class dependent regularisation con-
stants, ¢ : R — R} is a convex loss function penalising devi-
ations of scores from allocated labels and || . || is a norm as
specified below. Now we specify variations of the regularised
risk (2) leading to two different cases of kernel machines used
in this paper.

e hSVM": For the (homogeneous) support vector ma-
chine with linear penalty, we use the norm,

IF7 0% = Z BiBik(xi, ;) +b° (3)
i,j=1
and the “hinge loss” ¢(#) := max(0,6), 6 € R [7; 24;
25];
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e hSV M?: For the (homogeneous) support vector ma-
chine with quadratic penalty [7] we use norm (3) and
the squared hinge loss ¢(6) := (max(0, §))* for 6 € R;

If the kernel k satisfies the Mercer theorem assumptions [7;
24; 25] then for the minimiser of (2) we have 3; = y;ay,
where a; > 0fori=1,..,m.

In our investigations we shall be using the popular polyno-
mial kernel

Ke,a') = (@-2)" = (3 &)’

for z = (&) and 2’ = (¢;) from {0,1}" and degreed = 1,2,3
and 4.

Note that hSVM" and hSV M? implement classifiers that
correspond to separation of the data (z;, ;) := (®(x;),1,y:) €
RY xRx{=£1} by a hyperplane in the extended feature space
passing through the (0,0) € RVxR, ® : R* — RY is a feature
mapping of the observation space R™ into an appropriate Eu-
clidean space RY (the features space). In particular such a
solution is provided also if all data points belong to a single
class, i.e. if y; = const.

The geometrical meaning of the solution (2) can be most
clearly illustrated in the limiting case of “hard margin”, i.e.
C — oo. In such a case, the optimal solution of (2) corre-
sponds to the direction of the shortest vector to the convex
shell spanned by all vectors y;z; € RN xR, i =1,..., m.

4. RE-BALANCING OF THE DATA

We investigate two forms of imbalance compensation in this
paper.

4.1 SampleBalancing

This method “re-balances” data by neglecting some exam-
ples from the training set. It selects m’ and m/, examples
out of the total m_ and m4 examples from the negative and
the positive label classes in the training set, respectively.
The regularisation constant is the same for all instances,
ie, C; =C > 0 for all 1. Inlthis case we will be reporting

the class proportion ratio Z—‘ : :—: directly. In particu-
lar, the proportion ratios 1:0, 1:1 and 0:1 represent the case
of 1-class learner using all of the negative examples, 2-class
learner using all training examples, and 1-class learner using
all of the positive examples, respectively.

This form of sample balancing is a generalisation of the tech-
niques used in [9], where all minority cases are used while
the majority cases are sampled so as to take into account
the relative cost of mis-classification of the two classes. In
this specialised MajorityOnly sampling, since all minority
cases are used, i.e. m/, = m4, we can use a single number
to describe the proportion ratio uniquely. We shall call this
number B_,; := m_ /my, the class mizture ratio, and it
varies from 0 to T := m_/my. The value B_,; = 0 is the
case when only minority class examples are used (equivalent
to the proportion ratio 1:0) and B_,; = T represents the
situation when all training instances are used (equivalent to
the proportion ratio 1:1).

The sample balancing has speed advantages since a smaller
number of examples are actually used for training, hence it
has been used in most of our experiments.
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4.2 Weight Balancing

In this case all training examples are used, but we use dif-
ferent values of the regularisation constants for the minority
and majority class data:

o - {(1 +B)C/2my  if yi = +1,

(1-B)C/2m_ ify; = —1, (4)

fori=1,...,m, where C > 0 and —1 < B < 1is a parameter
called a balance factor. In the above formulae, the denom-
inators do compensate for unequal class proportions in the
training set while the parameter B introduces an additional
compensation. For instance, the case of “balanced propor-
tions” achieved for B = 0 discounts the majority class by the
ratio of the two class sizes in training, :—J_r Further discount-
ing of the majority class occurs in the range 0 < B < +1,
with B = +1 representing the case of learning from posi-
tive examples only. Similarly, learning from negative class
only is achieved for B = —1, with discounting of positive
examples in the range —1 < B < 0.

4.3 BalancingModes

When balancing the data, we consider two modes: similarity
detector which learns a discriminator based predominantly
on positive examples (e.g., B_,. = 0, B = 1), and novelty
detector which is trained using primarily negative examples
or majority class examples (e.g., B_,y >> 1, B~ —1). In
practice both modes have applications. For instance, clas-
sification of web-sites “attractiveness” based on history of
user’s activities is an application where negative examples
(i.e. the sites of no interest) are difficult to obtain. On the
other hand, for network intrusion detection, we have few (if
any) examples of the target class we want to identify, i.e. of
successful intrusion episodes.

5. EXPERIMENTAL SETUP

In our experiments, we first pre-process the data in a man-
ner appropriate for the data set, and create a sparse matrix
representing the data set. For the textual data set, this ma-
trix is the word presence matrix while for the AHR data this
is some property of the gene associated with that instance.

5.1 RealWorld Data Collections

AHR-data. Our primary corpus is the AHR-data set which
is the combined training and test data sets used for task 2
of KDD Cup 2002. The data set is based on experiments
by Guang Yao and Chris Bradfield of McArdle Laboratory
for Cancer Research, University of Wisconsin. These ex-
periments aimed at identification of yeast genes that, when
knocked out, cause a significant change in the level of activ-
ity of the Aryl Hydrocarbon Receptor signalling pathway,
cf. [6] for more details. Each training instance is labelled
with one of three class labels: “nc”, “control”, or “change”.
Each of the 4507 instances in the data set is described by
a variety of information that characterises the gene associ-
ated with the instance, e.g., associated abstracts from sci-
entific articles, genes whose encoded proteins physically in-
teract with one another, information about the subcellular
localisation and functional classes of the proteins encoded
by various genes. For the experiments described in this
paper, we convert all of the information from the differ-
ent files to a sparse matrix containing 18330 features [16].
Following the KDD Cup requirements we experiment with
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three tasks: change-task discriminating “change” class in-
stances from the rest, control-task discriminating “control”
class instances from the rest and either-task discriminating
instances in either “change” or “control” classes from the
rest, i.e. “nc”. The class sizes vary considerably with 57
instances of “change” 70 instances of “control” and the rest
4380 instances labelled “nc”.

Reuters data. Our second corpus is the popular text min-
ing benchmark, Reuters-21578 news-wires. Here we used
a collection of 12902 documents (combined test and train-
ing sets of so called modApte split which is available from
http://www.research.att.com/lewis) which are categorised
into 115 overlapping categories. Each document in the col-
lection has been converted to a vector of 20,197 dimensional
word-presence feature space using a standard stop-list and
after stemming all of the words using a standard Porter
stemmer.

5.2 PerformanceMeasures

We have used AROC;, the Area under the Receiver Oper-
ating Characteristic (ROC) curve as our main performance
measure. In that, we follow the steps of KDD 2002 Cup,
but also, we see it as the natural metric of general goodness
of classifier (as corroborated below) capable of meaningful
results even if the target class is a tiny fraction of the data.
We recall that the ROC curve is a plot of the true positive
rate or precision, P(f(z;) > 6|y; = 1), against the false pos-
itive rate, P(f(z;) > 0ly; = —1), as a decision threshold 6 is
varied. The concept of ROC curve originates in signal de-
tection but these days it is widely used in many other areas,
including data mining, psychophysics and medical diagnosis
(cf. review [2; 10]). In the latter case, AROC is viewed as
a measure of general “goodness” of a test, formalised as a
predictive model f in our context, with a clear statistical
meaning as follows. AROC(f) is equal to the probability of
correctly answering the two-alternative-forced-choice prob-
lem: given two cases, one x; from the negative and the other
z; from the positive class, allocate scores in the right order,
ie. f(z:) < f(zj). Additional attraction of AROC as a
figure of merit is its direct link to the well researched area
of order statistics, via U-statistics and Wilcoxon-Whitney-
Mann test [1; 11].

There are some ambiguities in the case of AROC estimated
from a discrete set in the case of ties, i.e. when multiple
instances from different classes receive the same score. Fol-
lowing [1] we implement in this paper the definition

AROC(f) = P(f(z:) < f(zj)l —yi =y; = 1)
+0.5P(f(z:) = f(zj)| —ys =y; =1)

expressing AROC in terms of conditional probabilities.
The trivial uniform random predictor has AROC of 0.5,
while a perfect predictor has an AROC of 1.

‘We note that AROC is a metric that evaluates the classifier’s
performance across the entire range of decision thresholds
and is especially useful when the operating condition for the
classifier is unknown or the classifier is expected to be used
in situations with significantly different class distributions.
If the operating point is known, then point metrics such as
break-even point and F-measure are appropriate when the
target class is a tiny fraction of the data [15].
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Figure 1: Results for AHR-data, the either-task. We plot
mean AROC as a function of the regularisation constant
C for hSVM' (Figs. A & C) and hSVM?> (Figs. B &
D). We use two balancing techniques: MajorityOnly sample
balancing (Figs. A & B) and weight balancing (Figs. C& D).
Plots are shown for four different modes: (i) positive 1-class
(B-;+ = 0 and B = +1, solid line); (i) negative 1-class
(B = —1, dotted line); (44¢) balanced 2-class (B_,; =1 and
B = 0, dashed line); (iv) un-balanced 2-class (B_,; = T,
the dash-dot line).

6. EXPERIMENTS WITH REAL WORLD
DATA

For our experiments with the AHR-data and Reuters, we
have concentrated on the simplest linear kernel SVMs only.
There are three reason for such a choice: (¢) simplicity, (%)
from past experience, on Reuters data, non-linear kernels
improve performance only marginally [8; 21], and (ii¢) the
non-linear kernel case viewed from the feature space level
reduces to the linear one anyway [25].

For each experiment reported, 20 random splits of the data
into the training and test sets were implemented. These
splits were generated with stratified sampling (proportional
sampling without replacement) from the positive and the
negative classes in the pooled set. For the majority of exper-
iments, the sizes of the data split training:test were 50%:50%
for the Reuters data and 70%:30% for the AHR-data. Other
splits produce similar results and are not shown here for
brevity.

We first study the impact of regularisation constant C' on
SVM solutions, and choose a restricted range of C for further
experimentation. We then experiment with different forms
of balancing with these values of C.

6.1 Impact of Regularisation Constant

We plot in Figure 1 mean AROC (with standard devia-
tion bars) as a function of C for the two linear kernel ma-
chines: hSVM! (Figures 1A and 1C) and hSVM? (Fig-
ures 1B and 1D). We use two balancing techniques: Ma-
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jorityOnly sample balancing (Figures 1A and 1B) and the
weight balancing (Figures 1C and 1D). For this test, we fo-
cus on the either-task for the AHR-data, and means are com-
puted over 20 random splits of the pooled set into 70%:30%,
learning:test. Plots are shown for four different modes: ()
positive I-class (B_;y = 0 and B = +1, solid line); (i7)
negative 1-class (B = —1, dotted line); (43¢) balanced 2-class
(B_;4+ = 1and B = 0, dashed line); (iv) un-balanced 2-class
(B-;+ = T, the dash-dot line).

An inspection of plots brings a number of interesting obser-
vations:

e The AROC values for the positive one-class classifier is
consistently above that for the two-class classifier for
all values of C, and this is irrespective of the machine
that is used for training.

e The performance of the positive one-class learner is not
sensitive to the value of C, although the performance is
slightly better at higher values of C (the “hard margin”
case).

e As expected, the performance of the negative one-class
learner is consistently worse than both the positive
one-class and the balanced and un-balanced two-class
learners for the two machines, performing worse than
random for all values of C*.

e There are differences in performance based on whether
sample or weight balancing is used particularly for
the balanced two-class learner, and weight-balanced
two-class learners (dashed line in Figures 1C and 1D)
perform significantly worse than sample-balanced two-
class learners (dashed line in Figures 1A and 1B). The
performance of sample-balanced two-class learners is
close to random for all but very low values of C, while
that of weight-balanced two-class learners is closer to
the negative one-class learner.

e There are noticeable differences between the perfor-
mance of different SVMs (e.g. the differences between
unbalanced two-class hSV M' and hSV M? represented
by the dash-dot lines in Figures 1B and 1D). However,
observations (1)-(4) hold for both classifiers over the
whole range of values for the regularisation constant.

6.2 Experimentswith SampleBalancing

The sample balancing has an obvious advantage in speed
since in training we use only a part of the data set. For
this reason it has been used in our main experiments requir-
ing multiple generations of SVMs. For the results reported
in this section we have used several class proportion ratios
starting from 0 : 1 (100% of positive class and 0% of nega-
tive class), through 1 : 1 (100% of examples of both classes)
to 1: 0 (0% positive and 100% of negative examples). In
experiments we have used all three categories of the AHR-
data as described above and selected four Reuters categories:
“earn”, “grain”, “interest” and “corn”.

Figure 2 presents the averages and standard deviations of

test set AROC for different values of class proportion ratio
m

m
el m:. Plots are shown for four Reuters categories and

Tn fact, for RSV M!, a better classifier may be obtained by
using the negative one-class learner and inverting the labels
than by using any other ASV M" learner!
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Figure 2: Average AROC =+ standard deviation of test set
as a function of the proportion ratio Z—: : Z—i € {0:1, 0.2:1,
0.4:1, 0.6:1, 0.8:1, 1:1, 1:0.8, 1:0.6, 1:0.4, 1:0.2, 1:0}. Results
are presented for hSV M? trained for four Reuters categories

and three AHR-tasks for hSV M? trained with sample bal-
ancing method (Section 4).

the three categories of the AHR dataset. Due to space con-
siderations, results are shown only for the hSV M? classifier.
The results for the Reuters dataset are as expected, with
positive and negative examples on their own providing suf-
ficient information to perform better than random predic-
tor (Figure 2(a)). However, both are outperformed by the
two-class model even if the model includes only 20% of the
other class data. Further, the AROC with 2-class learners is
close to 1 for all categories indicating that this categorisation
problem is reasonably easy to learn.

The AROC for the AHR dataset, on the other hand, has
a maximum mean value of around 0.64 for all three cate-
gories (Figure 2(b)). For all three categories, the AROC
starts off at the highest point when positive examples alone
are used, and then drops as negative examples are added,
indicating that the knowledge of negative examples in this
problem is detrimental to learning. Further, the standard
deviations are the lowest when only positive examples are
used. Once again, the balanced two-class learner performs
close to a random classifier (mean AROC = 0.5). The neg-
ative one-class learner performs much worse than random
(mean AROC = 0.4), in effect, providing better discrimina-
tion than balanced two-class learner (cf. footnote 1).

6.2.1 Impact of feature selection

In order to determine if the better performance of the single
class learner is due to the sparse high dimensional input
space, we explore the same KDD cup 2002 data, but this
time with aggressive dimensionality reduction of the input
space using automatic feature selection, or more precisely
feature ordering methods. The ordering is done via sorting
the features in decreasing order of scores calculated by one
of the following methods.

e DocFreq (Document frequency thresholding): This
method has its origins in information retrieval [22] and
is based on the notion that rare features are not infor-
mative for predicting classes. In this case the score of
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a feature is simply the number of instances where it is
equal to 1.

e ChiSqua (x?): The x? measures the lack of indepen-
dence between a feature and a class of interest. First,
for each feature and each class, i.e. y = %1, a score is
computed on the basis of the two-way contingency ta-
ble [26]. The final score for a feature is the maximum
of these class scores.

e MutInfo: (Mutual Information): This method priori-
tises the features of the basis of the joint and marginal
probabilities of their usage estimated from the train-
ing data [26]. The score allocated to jth feature is
calculated as follows:

. P(zij =1,yi=y)
P(zij =1)P(y:i = y)
where the joint and marginal probabilities are esti-

mated from the training set, i.e. with respect to index
i,1<i<m [26].

MutInfo(j) = max lo
y==x1

e InfGain: (Information gain): This is frequently em-
ployed as a term goodness measure in machine learn-
ing [20], and measures the number of bits of infor-
mation obtained for class prediction by knowing the
presence or absence of a term in an instance.

Given the worse than random performance of negative one-
class learners, for these experiments, we have used all of
the minority cases and sampled the majority cases at differ-
ent mixture ratios (MajorityOnly sample balancing). Fig-
ure 3 shows mean AROC (with standard deviation as an
envelope) as a function of the mixture ratio B_,, for dif-
ferent fractions of the original feature set (0.1%, 1%, 10%
and 50%). Results are shown for KDD either-task, for two
linear kernel machines: (A) hSVM?' and (B) hSVM?. For
both machines, results are presented for C = 100, although
results for C = 10 and C = 1000 show similar trends. Re-
sults are presented for the four different feature selection
methods listed above. The other feature selection methods
such as Idf-tf (inverse document frequency — term frequency)
and average discrimination scoring [22] showed similar be-
haviour.

As seen from Figure 3, all feature selection methods select
informative features that allow learning at some mixture
ratio. This is the case even at very low fraction of features
(0.1% or just 18 features) for all methods except MutInfo.
The poor performance of MutInfo at low fractions is not
surprising given that this measure is strongly influenced by
the marginal probability of terms and tends to favour rare
terms rather than common terms. Hence, at low fractions
most of the instances have all of their attributes set to 0, and
very little learning is accomplished. This is in contrast to
the performance of DocFreq which simply selects the most
common terms.

The drop in performance as negative class examples are
added is consistently visible for ASV M! (Figure 3(A)) and
hSV M? (Figure 3(B)). Interestingly, with RSV M?, DocFreq
and ChiSqua with just 18 features (first column, rows 1-2 of
Figure 3(B)), the unbalanced 2-class learner using all train-
ing examples performs surprisingly well indicating that fea-
ture selection can indeed combat the destructive influence
of the negative class examples.
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Figure 3: Mean AROC for the KDD subtask “either” as a function of the mixture ratio B_, . for four different fractions of the
original feature set (0.1%, 1%, 10% and 50%), for three linear kernel machines with C' = 100: (A) RSV M" and (B) hSV M2

B_,4=[0,0.01,0.1,0.5,1,5,10, T].

A: Change B: Control C: Either

Figure 4: Mean AROC with standard deviation envelope as
a function of balance factor B for the AHR dataset. We use
here hSV M? with C = 10.

6.3 Experimentswith Weight Balancing

In order to understand if the impact of negative examples
may be reduced using the balance factor B in Equation (4),
we investigate the performance of classifiers using weight
balancing as described in Section 4.

6.3.1 Testson AHR data

Figure 4 plots the mean and standard deviation of the test
set AROC as a function of the balance factor B. Plots are
shown for the three categories of the AHR dataset for the
hSV M? classifier with regularisation constant C' = 10, al-
though results for other values of C show similar trends [16].
The first row explores the whole range -1.0 to +1.0, while
the second row expands the range 0.75 to 1.0 where sudden
rises in AROC occur. We note that the best AROC values
for all three learning tasks are obtained for B > 0.99, and
the worst for B = —1.0.

Thus, both the weight balancing and the sample balancing
techniques yield the conclusion that for the AHR dataset,
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extreme re-balancing by ignoring all of the negative exam-
ples produces the best AROC.

6.3.2 Testson Reuters

Experiments reported in the previous sections show that
1-class SVMs tend to perform better than traditional 2-
class SVMs on AHR-data. On the other hand, using both
classes always produces better results with Reuters cate-
gories. In order to understand the reason for this difference
in behaviour, we performed additional experiments on the
Reuters data set to observe the performance of 1-class and
2-class SVMs when the most frequent features are removed.
To this end, we removed the most frequent x% of the 20,197
features (highest DocFreq scores) and trained classifiers on
random 5% (stratified sample) and then tested on remaining
95% of the data. As usual, the average AROC £Std for 20
such tests is shown in Figure 5. Four different target cases
were used: the 3rd, the 6th, the 10th and the combined
11th-15th largest categories. The sizes of target classes are
shown in the sub-figure titles.

An inspection of plots highlights a few observations:

1. The accuracy of all classifiers is very high when all fea-
tures are used. As the most frequent features are removed,
all SVM models start degenerating, however, the drop in
performance for 2-class SVM models is much larger, and
1-class SVM models start outperforming the 2-class mod-
els. This behaviour is also present in other categories not
shown in Figure 5, so long as the target class is less than
10% of the total data. This trend of better performance
with 1-class models is most apparent in hSV M*, although
hSVM? also shows similar trends. Thus, when there are
many weakly informative features, and the target class is a
small fraction of the data set, 1-class SVMs outperform the
traditional 2-class SVM models.

2. The mean AROC is always > 0.5 indicating that even
after feature removal, this data set does not quite have all
the properties of AHR-data where balanced 2-class models
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Figure 5: Mean AROC as a function of the % of features
removed (with standard deviation envelope). Four differ-
ent target cases were used: the 3rd, the 6th, the 10th and
the combined 11th-15th largest categories. Results are pre-
sented for two machines: (1) ASVM' and (2) hSV M? Plots
are shown for the positive 1-class (B = +1) (solid line) and
the balanced 2-class (B = 0) (dashed line) modes.

performed worse than random for many settings of the reg-
ularisation constant.

7. EXPERIMENTS WITH SYNTHETIC DATA

We observed in Section 6.2.1 that even in low dimensional
space, the phenomenon of better performance with one-class
learner persists. Our intuitive explanation here is that if the
learner uses the minority class examples only, the “corner”
(the half space) where minority data resides is properly de-
termined. However, the minority class is “swamped” by the
background class, hence once the background instances are
added, the SVM solution becomes suboptimal. Now we ex-
plore this intuition using synthetic data.

We use three data sets of instances of similar structure.
The observation vectors in these synthetic data sets con-
tain a small number n;,s of informative attributes and the
remaining, larger number, nnoise, of noise attributes. These
attributes are binary, generated according to uniform ran-
dom distribution with probabilities P;, s and Proise of value
= +1, respectively. The informative attributes determine
the labels modulo the additional label noise which is the
random reversal of certain proportions of labels, namely the
proportions LNy of the positive and LN_ of the negative
labels. In all sets, we generate m = 9000 instances of which
Py=+1 = 3% have labels y = +1.

e Si1: For this data set we use n = ninf +nnoise = 1+999
dimensions and Ppise = 2%. The labels are generated
as a random bipolar label vector y € {£1}°°°° with the
proportion py=41 = 3% of positive examples. For the
informative dimension we set ;5 = (y+1)/2 € {0,1}
and then change randomly the proportion LN_ = 20%
of 0s to 1s.

e Sy: In this case nins = 10, Npoise = 990, Piny = 5%,
Proise = 2%. Having defined informative attributes
Tinf,i € R for ¢ = 1,...,9000, we have randomly gen-
erated a vector v € R'®, then chosen a bias b € R such
that for 2004 (=~ 22%) instances ¢ we got the scores
Zingi - v > b. Of these 2004 instances, we randomly
select 270 instances (= 3% of 9000) and label them +1
and the remaining 8730 instances we labelled —1.
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Figure 6: Mean AROC with + standard deviation envelopes
as a function of the mixture ratio B_,; for four machines
with C = 1000: hSVM' and hSVM? Plots A, B, C
show results for linear kernels with S;, S: and Ss, re-
spectively. Results with higher degree polynomial kernels
(d = 2,3,4) are shown for Ss in plots D, E and F, respec-
tively. B_,,=[0,0.01,0.1,0.5,1,5,10, 35].

e S3: This set was designed to test the impact of non-
linear kernels. It is generated as S; with the difference
that only n = ninf + Npoise = 1 + 19 = 20 dimensions
are used and the random proportions LNy and LN_ of
the both +1 and of 0 entries, respectively, are reversed
in the second phase of the generation of the informative
attribute x;, .

In experiments, each set of 9000 instances generated as de-
scribed above, was split randomly into 3000 training and
6000 test instances, with proportional sampling (without
replacement) from both classes. All results reported are
averages of 20 such random splits.

Figure 6 presents the results of experiments evaluating AROC
as a function of the mixture ratio B_,, for the two kernel
machines. For all three data sets, we show the results for
the linear kernel (Figures 6A-6C), and for Ss we show the
impact of higher degree polynomial kernels (Figures 6D-6F).
The results, especially for hSV M", strikingly resemble those
obtained for the AHR data (c.f Figure 3), with the consistent
pattern of decreasing performance with increasing propor-
tion of negative class instances. As kernel degree increases
we observe the familiar pattern of decreasing performance
with increasing dominance of negative class instances (Fig-
ures 6C-6F). Thus, the relatively low dimensional S3 data
set when used with higher degree polynomial kernels behaves
in a way similar to that of the high dimensional datasets St
and S with linear kernels.

We also experimented with different values of the regulari-
sation constant C, but found that this had marginal impact
on AROC in the above settings.

In addition, our experiments with different label noise set-
tings (LN4+ and LN_) show that the pattern of decreasing
performance with increasing amounts of negative class in-
stances persists with different levels of label noise.

8. DISCUSSION

Deterioration of 2-class SVMs. The degradation of
learning performance in the presence of abundant negative
examples has been noted in [17]. Their solution of focusing
on the best positive region works in low dimensional input
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Figure 7: Understanding the influence of sparse high di-
mensional space on the SVM solution of two-class learner.
(A) Usage of features in decreasing order of usage. (B) Mag-
nitude of SVM weights for two-class model for the NegOnly
(features used only in the negative class in the training set)
features in decreasing order of magnitude. (C) Contribution
of NegOnly features to SVM score. (D) Usage of NegOnly
features in the positive test set.

space when there is a single region to be labelled as positive
and the minority class is around 10% of the data. For our
situation of very high dimensional input space with around
3% minority class data in the case of AHR, the more drastic
solution of totally ignoring negative class examples seems to
work better for all machines.

Such learning from positive examples alone has been shown
to be of benefit for some real world balanced data sets with
low dimensional input space [12; 13]. In there, it is shown
(using synthetic datasets in two dimensional input space)
that negative examples may be counter-productive in do-
mains where the negative class data are not all located in a
few localised spots, but rather, they wrap around the posi-
tive data.

In order to gain some insight into why this phenomenon oc-
curs with high dimensional input space, we first explore the
feature space for one particular randomisation of the KDD
cup 2002 pooled data. Figure 7(A) plots the number of in-
stances when a particular feature is used in the pooled set
versus the number of features, where these features are or-
dered in the decreasing order of their usage in the pooled set.
As seen from Figure 7(A), the high dimensional space con-
sisting of 18,330 features is hardly sampled. Furthermore,
for this particular split, there are around 14,610 features
that occur only in the negative examples of the training set.
We call these features NegOnly features, and our hypothesis
is that for many of these features balanced 2-class hSV M?
allocates excessively low (highly negative) weights, which is
an ‘easy way’ to minimise the margin errors. However, when
some of these features occur in positive test examples, they
push the scores of these examples excessively into negative
direction, which causes a deterioration in the overall perfor-
mance.

Figure 7 shows results corroborating this hypothesis. In Fig-
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ure 7(B), we plot the magnitude of the SVM weights for the
same split, for the balanced two-class hSV M? model created
with the setting C' = 5000, B = 0. The x-axis is the frac-
tion of NegOnly features, where these features are sorted by
decreasing order of magnitude of the SVM weights for the
features. The usage of these features in the positive class
of the training set is 0. Hence, during the training (min-
imisation of regularised risk (2)), these features may have
relatively large negative weights so as to minimise the error
penalty. However, as shown in Figure 7(D) their usage in
the test instances contributes large negative scores for the
positive instances in the test set, cf. Figure 7(C) which plots
the contribution of these features to the SVM scores. Effec-
tively, NegOnly features are “confusing” the two-class clas-
sifier, while leaving the one-class learner unaffected (since
one-class solution vector has entries corresponding to these
features set to zero).

Persistent dominance of 1-class SVMs. The above
analysis is applicable to a high dimensional feature set. How-
ever, we have also observed in Section 6.2.1 that even in low
dimensional dense space, this phenomenon of better perfor-
mance with one-class learner persists. Our intuitive expla-
nation here concurs with that provided in [12; 13]. If the
learner uses the minority class examples only, the “corner”
(the half space) where minority data resides is properly de-
termined. However, the minority class is “swamped” by the
diffuse background class. Once the background instances
are added, the SVM solution is determined by the need to
minimise the margin errors for this class at the expense of
the target class and the resulting solution becomes subopti-
mal in terms of the resulting ROC curve. The strange thing
is that the heavy discounting of the majority class does not
rectify this impact completely, cf. B = 0.99 in Figure 4.
Weakly informative features. An alternative explana-
tion for the relatively good performance of 1-class SVMs is
implied by experiments with Reuters data. We hypothesise
that one factor is the relatively “weak” connection between
the labels and the features in the case of AHR-data. Since
the contrary is true for topic-based classification in Reuters,
the superior performance with fringe classifiers is not evident
until the most frequent features, which tend to be strongly
indicative of the labels for this dataset, are removed (Fig-
ure 5). Thus, we may expect 1-class SVMs to work well in
other real world applications with weak connection between
labels and attributes.

Interaction of learning algorithm with feature selec-
tion methods. An additional point regarding selection of
features is that the performance of any dedicated statistical
system for feature selection is a function of both, the selec-
tion method and the learning strategy for evaluation of the
selection. For instance, all 1-class SVMs in Figure 3 perform
very well with features selected by ChiSqua while all 2-class
learners perform poorly with the same features. Thus, eval-
uation of feature selection methods cannot be performed in
isolation from the learning algorithm.

Impact of kernels. Experiments with the polynomial ker-
nels seem to indicate that interactions between the 19 noisy
attributes in the set S3 are equivalent to explicit addition
of hundreds of extra noise attributes in the datasets S1 and
Sa>. The higher the degree of the kernel, the more such
‘noisy’ virtual attributes are added (on the level of the fea-
ture space) and the more pronounced is the difference be-
tween one-class and two-class learning. Note that in this
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case, in contrast to the case of AHR-data case, the range of
AROC values is around 60-90% and never drops below 50%.

9. CONCLUSION

In this paper we have explored imbalance compensation
techniques for data with heavily unequal priors using two
real world data sets: Reuters and AHR data set. The
Reuters dataset is an example of a ‘regular data set’, where
extreme re-balancing, provides quite good results but using
both classes always produces better results. On the other
hand, the AHR data set behaves differently, with the pos-
itive one-class learners performing significantly better than
two-class learners. Further, for this dataset, negative one-
class learner performs worse than random. Experiments
with synthetic data indicates that favourable conditions for
such performance can naturally arise in many other situa-
tions, in particular when popular support vector machines
with non-linear kernels are used.

Our investigation suggests that one-class learning from pos-
itive class examples can be a very robust classification tech-
nique when dealing with very unbalanced data and high di-
mensional noisy feature space. It can be used as an alter-
native to aggressive feature selection usually used in such
situations and can be very attractive for learning with non-
linear kernels, when direct feature selection on the feature
space level cannot be implemented.
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