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Abstract. Several works point out class imbalance as an obstacle on
applying machine learning algorithms to real world domains. However,
in some cases, learning algorithms perform well on several imbalanced
domains. Thus, it does not seem fair to directly correlate class imbalance
to the loss of performance of learning algorithms. In this work, we develop
a systematic study aiming to question whether class imbalances are truly
to blame for the loss of performance of learning systems or whether
the class imbalances are not a problem by themselves. Our experiments
suggest that the problem is not directly caused by class imbalances, but
is also related to the degree of overlapping among the classes.

1 Introduction

Machine learning methods have advanced to the point where they might be ap-
plied to real world problems, such as in data mining and knowledge discovery.
By being applied on such problems, several new issues that have not been previ-
ously considered by machine learning researchers are now coming into light. One
of these issues is the class imbalance problem, i.e., the differences in class prior
probabilities. In real world machine learning applications, it has often been re-
ported that the class imbalance hinder the performance of some standard classi-
fiers. However, the relationship between class imbalance and learning algorithms
is not clear yet, and a good understanding of how each one affects the other is
lacking. In spite of a decrease in performance of standard classifiers on many im-
balanced domains, this does not mean that the imbalance is the sole responsible
for the decrease in performance. Rather, it is quite possible that beyond class
imbalances yield certain conditions that hamper classifiers induction.

Our research is motivated by experiments we had performed over some im-
balanced datasets, for instance the sick dataset [9], that provided good results
(99.65% AUC) even with a high degree of imbalance (only 6.50% of the examples
belong to the minority class). In addition, other research works seems to agree
with our standpoint [8].



In this work, we develop a systematic study aiming to question whether class
imbalances hindrance classifier induction or whether these deficiencies might be
explained in other ways. To this end, we develop our study on a series of artificial
datasets. The idea behind using artificial datasets is to be able to fully control all
the variables we want to analyze. If we were not able to control such variables,
the results may be masked or difficult to understand and interpret, under the risk
of producing misleading conclusions. OQur experiments suggest that the problem
is not solely caused by class imbalances, but is also related to the degree of data
overlapping among the classes.

This work is organized as follow: Section 2 introduces our hypothesis regard-
ing class imbalances and class overlapping. Section 3 presents some notes related
to evaluating classifiers performance in imbalanced domains. Section 4 discusses
our results. Finally, Section 5 presents some concluding remarks.

2 The Role of Class Imbalance on Learning

In the last years, several works have been published in the machine learning
literature aiming to overcome the class imbalance problem [7,12]. There were
even two international workshops, the former was sponsored by AAAI [5] and
the latter was held together with the Twentieth International Conference on Ma-
chine Learning [1]. There seems to exist an agreement in the Machine Learning
community with the statement that the imbalance between classes is the major
obstacle on inducing classifiers in imbalanced domains.

Conversely, we believe that class imbalances are not always the problem. In
order to illustrate our conjecture, consider the decision problem shown in Fig-
ure 1. The problem is related to building a Bayes classifier for a simple single
attribute problem that should be classified into two classes, positive and neg-
ative. It is assumed perfect knowledge regarding conditional probabilities and
priors. The conditional probabilities for the two classes are given by Gaussian
functions, with the same standard deviation for each class, but the negative class
having mean one standard deviation (Figure 1(a)) and four standard deviations
(Figure 1(b)) apart from the positive class mean. The vertical lines represent
optimal Bayes splits.

From Figure 1, it is clear that the influence of changing priors on the positive
class, as indicated by the dashed lines, is stronger in Figure 1(a) than in Fig-
ure 1(b). This indicates that it is not the class probabilities the main responsible
for the hinder in the classification performance, but instead the degree of over-
lapping between the classes. Thus, dealing with class imbalances will not always
help classifiers performance improvement.

3 On Evaluating Classifiers in Imbalanced Domains

The most straightforward way to evaluate classifiers performance is based on the
confusion matrix analysis. Table 1 illustrates a confusion matrix for a two class
problem having class values positive and negative.
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(a) High overlaid instances (b) Low overlaid instances

Fig. 1. A Simple Decision Problem

Positive Prediction | Negative Prediction
Positive Class|True Positive (T'P) |False Negative (FN)

Negative Class|False Positive (FP)|True Negative (T'N)
Table 1. Confusion matrix for a two-class problem.

From such matrix it is possible to extract a number of widely used metrics
for measuring learning systems performance, such as Classification Error Rate,

_ FP+FN ; _
defined as Err = TETFNTEFPTTN O equivalently, Accuracy, defined as Acc =
TP+TN 1 _
TPYFPYFNTTN — L — B

However, when the prior classes probabilities are highly different, the use of
such measures might produce misleading conclusions. Error rate and accuracy
are particularly suspect as performance measures when studying the effect of
class distribution on learning since they are strongly biased to favor the majority
class. For instance, it is straightforward to create a classifier having an accuracy
of 99% (or an error rate of 1%) in a domain where the majority class proportion
correspond to 99% of the instances, by simply forecasting every new example as
belonging to the majority class.

Other fact against the use of accuracy (or error rate) is that these metrics
consider different classification errors as equally important. However, highly im-
balanced problems generally have highly non-uniform error costs that favor the
minority class, which is often the class of primary interest. For instance, a sick
patience diagnosed as healthy might be a fatal error while a healthy patience
diagnosed as sick is considered a much less serious error since this mistake can
be corrected in future exams.

Finally, another point that should be considered when studying the effect of
class distribution on learning systems is that the class distribution may change.
Consider the confusion matrix shown in Table 1. Note that the class distribution
(the proportion of positive to negative instances) is the relationship between the
first and the second lines. Any performance metric that uses values from both
columns will be inherently sensitive to class skews. Metrics such as accuracy and
error rate use values from both lines of the confusion matrix. As class distribution



changes these measures will change as well, even if the fundamental classifier
performance does not.

All things considered, it would be more interesting if we use a performance
metric that disassociates the errors (or hits) that occurred in each class. From
Table 1 it is possible to derive four performance metrics that directly measure
the classification performance on positive and negative classes independently:

— False negative rate: F'N, 4. = TPi% is the percentage of positive cases
misclassified as belonging to the negative class;

— False positive rate: F P, = FPI“;% is the percentage of negative cases
misclassified as belonging to the positive class;

— True negative rate: TN,y = FPT_‘_% is the percentage of negative cases
correctly classified as belonging to the negative class;

— True positive rate: TP, = TPZ% is the percentage of positive cases

correctly classified as belonging to the positive class;

These four performance measures have the advantage of being independent
of class costs and prior probabilities. The aim of a classifier is to minimize the
false positive and negative rates or, similarly, to maximize the true negative
and positive rates. Unfortunately, for most real world applications, there is a
tradeoff between F'N,.qte and F Pr4te and, similarly, between T'N,.qze and T Prgte.-
The ROC! graphs [10] can be used to analyze the relationship between F N,
and FPrge (or TNpgte and T Prg.) for a classifier.

A ROC graph characterizes the performance of a binary classification model
across all possible trade-offs between the classifier sensitivity (7'P,q¢.) and false
alarm (F'Pqte). ROC graphs are consistent for a given problem even if the
distribution of positive and negative instances is highly skewed. A ROC analysis
also allows the performance of multiple classification functions to be visualized
and compared simultaneously. A standard classifier corresponds to a single point
in the ROC space. Point (0, 0) represents classifying all instances as negative,
while point (0, 1) represents classifying all instances as positive. The upper
left point (0, 1) represents a perfect classifier. One point in a ROC diagram
dominates another if it is above and to the left. If point A dominates point B, A
outperforms B for all possible class distributions and misclassification costs [2].

Some classifiers, such as the Naive Bayes classifier or some Neural Networks,
yield a score that represents the degree to which an instance is a member of
a class. Such ranking can be used to produce several classifiers, by varying the
threshold of an instance pertaining to a class. Each threshold value produces a
different point in the ROC space. These points are linked by tracing straight
lines through two consecutive points to produce a ROC curve?. For Decision
Trees, we could use the class distributions at each leaf as score or, as proposed

1 ROC is an acronym for Receiver Operating Characteristic, a term used in signal
detection to characterize the tradeoff between hit rate and false alarm rate over a
noisy channel.

2 Conceptually, we may imagine varying a threshold from —oo to +oo and tracing a
curve through the ROC space



in [3], by ordering the leaves by its positive class accuracy and producing several
trees by re-labelling the leaves, once at time, from all forecasting negative class
to all forecasting positive class in the positive accuracy order.

The area under the ROC curve (AUC) represents the expected performance
as a single scalar. The AUC has a known statistical meaning: it is equivalent
to the Wilconxon test of ranks, and is equivalent to several other statistical
measures for evaluating classification and ranking models [4]. In this work, we
use the AUC as the main method for assessing our experiments. The results of
these experiments are shown in the next section.

4 Experiments

As the purpose of our study is to understand when class imbalances influence
the degradation of performance on learning algorithms, we run our experiments
on a series of artificial datasets whose characteristics we are able to control, thus
allowing us to fully interpret the results. This is not the case when real datasets
are used, as we stated before.

The artificial datasets employed in the experiments have two major con-
trolled parameters. The first one is the distance between the centroids of the
two clusters, and the second one is the grade of imbalance. The distance be-
tween centroids let us control the “level of difficulty” of correctly classifying the
two classes. The grade of imbalance let us analyze if imbalance is a factor for
degrading performance by itself.

The main idea behind our experiments is to analyze if class imbalance, by
itself, can degrade the performance of learning systems. In order to perform
this analysis, we created several datasets. These datasets are composed by two
clusters: one representing the majority class and the other one representing the
minority class. Figure 2 presents a pictorial representation of four possible in-
stances of these datasets in a two-dimensional space.

Fig. 2. Pictorial representation of some instances of the artificial datasets em-
ployed in the experiments.

We aim to answer several question analyzing the performance obtained on
these datasets. The main questions are:



— Is class imbalance a problem for learning systems as it is being stated in
several research works? In other words, will a learning system present low
performance with a highly imbalanced dataset even when the classes are far
apart?

— The distance between the class clusters is a factor that contributes to the
poor performance of learning systems in an imbalanced dataset?

— Supposing that the distance between clusters matters in learning with imbal-
anced datasets, how class imbalance can influence the learning performance
for a given distance between the two cluster?

The following section provides a more in deep description of the approach we
used to generate the artificial datasets used in the experiments.

4.1 Experiments setup

To evaluate our hypothesis, we generated 10 artificial domains. Each artificial
domain is described by 5 attributes, and each attribute value is generated at
random, using a Gaussian distribution, with standard deviation 1. Jointly, each
domain has 2 classes: positive and negative. For the first domain, the mean of
the Gaussian function for both classes is the same. For the following domains,
we stepwise add 1 standard deviation to the mean of the positive class, up to 9
standard deviations. For each domain, we generated 12 datasets. Each dataset
has 10.000 instances, but having different proportions of instances belonging to
each class, considering 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%,
45% and 50% of the instances in the positive class, and the remainder in the
negative class.

Although the class complexity is quite simple (we generate datasets with
only two classes, and each class is grouped in only one cluster), this situation is
often faced by machine learning algorithms since most of them, for classification
problems, follow the so-called separate-and-conquer strategy, which recursively
divides and solves smaller problems in order to induce the whole concept. Fur-
thermore, Gaussian distribution might be used as an approximation of several
statistical distributions.

To run the experiments, we chose the algorithm for inducing decision trees
C4.5 [11]. C4.5 was chosen because it is quickly becoming the community stan-
dard algorithm when evaluating learning algorithms in imbalanced domains. All
the experiments were evaluated using 10-fold cross validation. As discussed in
Section 3, we used the area under the ROC curve (AUC) as a quality measure.
We also implemented the method proposed in [3] to obtain the ROC curves and
the corresponding AUCs from the standard classifiers induced by C4.5.

4.2 Results

The results obtained by applying C4.5 in the artificially generated datasets are
summarized in Table 2, which shows the mean AUC value and the respective
standard deviation in parenthesis, of the classifiers induced by C4.5 for all the



datasets having different class priors and different distances between the positive
and negative class centroids. We omitted the values of AUC for the datasets
having a distance of class centroids greater or equal than 4 standard deviations
since the results are quite similar to the datasets having a distance of 3 standard
deviations. Furthermore, for those datasets the difference of AUC are statistically
insignificant, with 95% of confidence level, for any proportion of instances in each
class. The results with the dataset having class centroids 9 standard deviations
apart is included in order to illustrate the small variation between them and the

previous column.

Positive Distance of Class Centroids

instances 0 1 2 3 9
1%  [50.00% (0.00%)|64.95% (9.13%)|90.87% (6.65%)|98.45% (2.44%)| 99.99% (0.02%)
2.5% [50.00% (0.00%)|76.01% (6.41%)|95.82% (3.11%)[97.95% (2.12%)| 99.99% (0.02%)
5% |50.00% (0.00%)|81.00% (2.86%)|98.25% (1.45%)|98.95% (1.11%)|100.00% (0.00%)
10% |50.00% (0.00%)|86.69% (2.11%)[98.22% (1.14%)(99.61% (0.55%)| 99.99% (0.02%)
15% [50.00% (0.00%)|88.41% (2.37%)|98.92% (0.75%)|99.68% (0.49%)| 99.99% (0.02%)
20% |50.00% (0.00%)[90.62% (1.44%)|99.08% (0.42%)|99.90% (0.21%)| 99.99% (0.02%)
25% |50.00% (0.00%)[90.88% (1.18%)|99.33% (0.32%)|99.90% (0.14%)| 99.98% (0.03%)
30% |50.00% (0.00%)[90.75% (0.81%)(99.24% (0.29%)[99.86% (0.14%)| 99.99% (0.02%)
35% |50.00% (0.00%)[91.19% (0.94%)|99.36% (0.43%)[99.91% (0.08%)| 99.99% (0.02%)
40% |50.00% (0.00%)[90.91% (0.99%)(99.46% (0.10%)[99.90% (0.13%)| 99.99% (0.03%)
45% |50.00% (0.00%)|91.73% (0.79%)|99.44% (0.22%)[99.90% (0.09%)| 99.98% (0.04%)
50% |50.00% (0.00%)|91.32% (0.68%)|99.33% (0.19%)|99.87% (0.13%)| 99.99% (0.03%)

Table 2. AUC obtained from classifiers induced by C4.5 varying class priors

and class overlapping

As expected, if both positive and negative classes have the same centroids,
we have a constant AUC value of 50%, independently of class imbalance. This
AUC value means that all examples are classified as belonging to the majority
class.

Consider the column where the centroids of each class are 1 standard de-
viation appart. If this column is analyzed solely, someone may infer that the
degree of class imbalance on its own is the main factor that influences the learn-
ing process. The AUC has an upward trend, increasing from nearly 65% when
the proportion of instances of positive class is 1% to more than 90% when the
proportion of positive and negative instances are the same. However, when the
class centroids distance goes up to 2 standard deviations, we can see that the
influence of the class priors becomes weaker. For instance, the value of AUC
for the classifiers induced with the dataset having 1% and 2.5% of instances in
the positive class and the centroid of this class 2 standard deviations apart the
centroid of the negative class is still worst than the classifiers induced changing
the class distribution and the same centroids, but the values of AUC are closer
than the values with the same proportion and the difference of the centroids is
1 standard deviation.

For classifiers induced with datasets having 3 or more standard deviations
apart, the problem becomes quite trivial, and the AUC values are nearly 100%
regardless of the class distribution.



For a better visualization of the overall trends, these results are shown graph-
ically in Figure 3 and 4. These graphs show the behavior of the C4.5 algorithm
assessed by the AUC metric in both class imbalance and class overlapping.

Figure 3 plots the percentage of positive instances in the datasets versus the
AUC of the classifiers induced by C4.5 for different centroids of positive class (in
standard deviations) from the negative class. The curves with centroids of posi-
tive class 3 to 8 standard deviations apart are omitted for a better visualization,
but the curves are quite similar to the curve with centroid 9 standard deviations
apart the negative class. Consider the curves of positive class where the class
centroids are 2 and 3 standard deviations apart. Both classifiers have good per-
formances, with AUC higher than 90%, even if the proportion of positive class is
barely 1%. Particularly, the curve where the positive class centroid is 9 standard
deviations from the negative class centroid represents almost a perfect classifier,
independently of the class distribution.
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Fig. 3. Variation in the proportion of positive instances versus AUC

Figure 4 plots the variation of centroids distances wversus the AUC of the
classifiers induced by C4.5 for different class imbalances. The curves that rep-
resent the proportion of positive instances between 20% and 45% are omitted
for visualization purposes since they are quite similar to the curve that repre-
sents equal proportion of instances in each class. In this graph, we can see that
the main degradation in the classifiers performances occurs mainly when the
difference between the centre of the positive and negative class is 1 standard de-
viation. In this case, the degradation is significantly higher for highly imbalanced



datasets, but decreases when the distance between the centre of the positive and
negative class increases. The differences in performance of classifiers are statis-
tically insignificant when the difference between the centers goes up 4 standard
deviations, independently on how many instances belongs to the positive class.
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Fig. 4. Variation in the centre of positive class versus AUC

Analyzing the results, it is possible to see that class overlapping have an
important role in the concept induction, even stronger than class imbalance.
Those trends seem to validate our formerly hypothesis, presented in Section 2.

5 Conclusion and future work

Class imbalance is often reported as an obstacle to the induction of good clas-
sifiers by machine learning algorithms. However, for some domains, machine
learning algorithms are able to achieve meaningful results even in the presence
of highly imbalanced datasets.

In this work, we develop a systematic study using a set of artificially gener-
ated datasets aiming to show that the degree of class overlapping has a strong
correlation with class imbalance. This correlation, to the best of our knowledge,
has not been previously analyzed elsewhere in the machine learning literature.
A good understanding of this correlation would be useful in the analysis and
development of tools to treat imbalanced data or in the (re)design of learning
algorithms for practical applications.



In order to study this question in more depth, several further approaches can
be taken. For instance, it would be interesting to vary the standard deviations of
the Gaussian functions that generate the artificial datasets. It is also worthwhile
to consider the generation of datasets where the distribution of instances of the
minority class is separated in several small clusters. This approach can lead the
study of the class imbalance problem together with the small disjunct problem, as
proposed in [6]. Another point to explore is to analyze the ROC curves obtained
from the classifiers. This approach might produce some useful insights in order
to develop or analyze methods for dealing with class imbalance. Last but not
least, experiments should also be conducted on real-world datasets in order to
verify that the hypothesis presented in this work does apply to them.
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