
S. Singh et al. (Eds.): ICAPR 2005, LNCS 3686, pp. 381 – 389, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consolidated Tree Classifier Learning in a Car Insurance
Fraud Detection Domain with Class Imbalance

Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz, Ibai Gurrutxaga, and José I. Martín

Dept. of Computer Architecture and Technology, University of the Basque Country,
M. Lardizabal, 1, 20018 Donostia, Spain

{txus.perez, j.muguerza, olatz.arbelaitz,
ibai.gurrutxaga, j.martin}@ehu.es

http://www.sc.ehu.es/aldapa

Abstract. This paper presents an analysis of the behaviour of Consolidated
Trees, CT (classification trees induced from multiple subsamples but without
loss of explaining capacity). We analyse how CT trees behave when used to
solve a fraud detection problem in a car insurance company. This domain has
two important characteristics: the explanation given to the classification made is
critical to help investigating the received reports or claims, and besides, this is a
typical example of class imbalance problem due to its skewed class distribution.
In the results presented in the paper CT and C4.5 trees have been compared,
from the accuracy and structural stability (explaining capacity) point of view
and, for both algorithms, the best class distribution has been searched.. Due to
the different associated costs of different error types (costs of investigating
suspicious reports, etc.) a wider analysis of the error has also been done:
precision/recall, ROC curve, etc.

1 Introduction

The application of machine learning to real world problems has to be done
considering two important aspects: class distribution affects to classifiers’ accuracy
and the explanation is very important in some domains.

In real domains such as illness diagnosis, fraud detection in different fields,
customer’s behaviour analysis (marketing), customer fidelisation, ... it is not enough
to obtain high accuracy in the classification, comprehensibility in the built classifier is
also needed [2]. The classifying paradigms used to solve this kind of problems need to
be able to give an explanation, for example classification trees.

On the other hand, it is very common to find domains where the number of
examples for one of the categories (or classes) of the dependent variable is much
smaller than for the rest of the classes. These situations are named class imbalance or
skewed class distribution.

Classifiers do not behave well when they are trained with very unbalanced data
sets. For example, if 99% of the examples in a data set belong to the same class, for a
classifier that labels test cases with the majority class, the accuracy will be 99%.
Since most classifiers are designed to minimise the error rate, the classifiers built
from this kind of data-sets tend to be very simple and nonsense [3].

382 J.M. Pérez et al.

Weiss and Provost [8] have shown that each domain has an optimal class
distribution to be used for training. Their work shows that, in situations where the
class distribution of the training set can be chosen, it is often preferable to use a
different distribution to the one expected in reality. So, in environments with skewed
class distribution, we can use samples with modified class distribution with the aim of
building valid classifiers. Undersampling, eliminating some examples, is the most
common strategy to modify the class distribution of a sample. Even if the direct
consequence of undersampling is that some examples are ignored, in general,
undersampling techniques obtain better results than oversampling techniques
(repeating some examples) [3]. In order to avoid the information loss produced by
undersampling, multiple classifiers can be built based on subsamples with changed
distribution. Most of the information in the original sample can be covered by
choosing adequately the number of generated subsamples. Techniques such as
bagging and boosting can be a good option in some cases but not in areas where
explanation is important. It is clear that “while a single decision tree can easily be
understood by a human as long as it is not too large, fifty such trees, even if
individually simple, exceed the capacity of even the most patient” [2].

We have developed an algorithm, CTC (Consolidated Tree’s Construction
Algorithm), that is able to face both problems: several subsamples with the desired
class distribution are created from the original training set, but opposite to other
algorithms that build multiple trees (bagging, boosting), a single tree is induced,
therefore the comprehensibility of the base classifier is not lost.

Fraud detection problems belong to the group of domains where the explanation in
the classification is important. We will use the CTC algorithm and compare it to C4.5
[6] in a fraudulent report detection problem from a car insurance company. This is a
difficult problem because the experts in the company estimate that the fraud average
is in reality higher than 10% or 15% but the fraud examples are very difficult to
detect, and, as a consequence, in the data provided by insurance companies this
percentage is lower. Many of the examples labelled as not fraudulent in the data-set
are actually fraudulent which makes the problem even harder. It is important to
provide an insurance company with a tool to know the profile of fraudulent customers
or the evidences that make a report suspicious of fraud, in order to investigate them
more deeply, so that the fraud does not suppose great financial loss.

The paper proceeds describing how a single tree can be built from several
subsamples, CTC algorithm, in Section 2. In Section 3 we describe the main
characteristics of the car insurance company’s database for fraud detection, and
Section 4 contains the methodology used to face the class imbalance problem in the
described domain. Section 5 is devoted to describe the results obtained for the fraud
detection problem with both algorithms CTC and C4.5. Finally Section 6 is devoted to
show the conclusions and further work.

2 Consolidated Trees’ Construction Algorithm

Consolidated Trees’ Construction Algorithm (CTC) uses several subsamples to build
a single tree [4]. The consensus is achieved at each step of the tree’s building process
and only one tree is built. The different subsamples are used to make proposals about

 Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain 383

the feature that should be used to split in the current node. The split function used in
each subsample is the gain ratio criterion (the same used by Quinlan in C4.5). The
decision about which feature will be used to make the split in a node of the
Consolidated Tree (CT) is accorded among the different proposals by a voting process
(not weighted) node by node. Based on this decision, all the subsamples are divided
using the same feature. The iterative process is described in Algorithm 1.

Algorithm 1. Consolidated Trees’ Construction Algorithm (CTC)

 Generate Number_Samples subsamples (Si) from S with Resampling_Mode method.
CurrentNode := RootNode
for i := 1 to Number_Samples
 LSi := {Si}
end for
repeat
 for i := 1 to Number_Samples

CurrentSi := First(LSi)
 LSi := LSi - CurrentSi
 Induce the best split (X,B)i for CurrentSi
 end for
 Obtain the consolidated pair (Xc,Bc), based on (X,B)i, 1 ≤ i ≤ Number_Samples
 if (Xc,Bc) ≠ Not_Split
 Split CurrentNode based on (Xc,Bc)
 for i := 1 to Number_Samples
 Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1

i, … Sn
i}

 LSi := {S1
i, … Sn

i} ∪ LSi
 end for
 else consolidate CurrentNode as a leaf
 end if
CurrentNode := NextNode
 until ∀i, LSi is empty

The algorithm starts extracting a set of subsamples (Number_Samples) from the
original training set. Based on previous experimentation we find that to use 30
subsamples can be a good trade-off among efficiency and computational cost . The
subsamples are obtained based on the desired resampling technique
(Resampling_Mode). For example, the class distribution of the original training set
can be changed or not, examples can be drawn with or without replacement, different
subsample sizes can be chosen, etc.

Decision tree’s construction algorithms divide the initial sample in several data
partitions. In our algorithm, LSi contains all the data partitions created from each
subsample Si. When the process starts, the only existing partitions are the initial
subsamples.

The pair (X,B)i is the split proposal for the first data partition in LSi. X is the feature
selected to split and B indicates the proposed branches or criteria to divide the data in
the current node. In the consolidation step, Xc is the feature obtained by a voting
process among all the proposed X. Whereas Bc will be the median of the proposed Cut

384 J.M. Pérez et al.

values when Xc is continuous and all the possible values of the feature when Xc is
discrete. In the different steps of the algorithm, the default parameters of C4.5 have
been used as far as possible.

The process is repeated while LSi is not empty. The Consolidated Tree’s generation
process finishes when in the last subsample in all the partitions in LSi, most of the
proposals are not to split it, so, to become a leaf node. When a node is consolidated as
a leaf node, the a posteriori probabilities associated to it are calculated averaging the a
posteriori obtained from the data partitions related to that node in all the subsamples.

Once the consolidated tree has been built, it works the same way a decision tree
does for testing, pruning, etc. This way the explanation of the classifier is not lost
even if several subsamples are used to build it.

3 Car Insurance Database for Fraud Detection

One of the factors affecting the price of car insurance policies is the large amount of
fraudulent reports that a company is not able to detect is. The company has to assume
all the increase in costs produced by this fraud, and, as a consequence, the insurance
policies become more expensive. The experts in the companies think that at least 10%
or 15% of the produced reports are fraudulent, and, however, about 5% of them is
detected. So the databases in insurance companies have the following characteristics:
the examples labelled as fraudulent belong to the minority class (class imbalance)
and, on the other hand, they are the only 100% reliable data, because among the
examples labelled as not fraudulent there are some fraudulent examples that the
company has not been able to detect. Therefore the information provided to the
algorithm is not correct which makes the machine learning problem difficult to solve.

In order to detect fraud, suspicious reports have to be investigated but this has
associated costs: the costs concerning to the investigation itself (staff, resources, etc.),
and the cost coming from investigating not fraudulent customers [1]. The company’s
image can be severely affected by customers that are annoyed when they realise that
they are being investigated. When evaluating a report, it will be important for the
insurance broker to know the fraud probability assigned to it by the classification
system, as well as the factors that have affected to the decision. The explanation given
by the classifier about the decision made could be used by the broker to investigate
the case. So, if the aim is to have a tool that will help in the detection of fraudulent
reports, it is absolutely necessary to use classification paradigms that are able to give
an explanation, for example, decision trees. This paper analyses the behaviour of
different classifiers with real data from a car insurance company, the kind of problem
we have just described. The data-set has 108,000 examples, and just 7.40% of them
are fraudulent cases. This database is clearly an example of class imbalance problem
with imprecise information for one of the classes.

The database has 31 independent variables that contribute to the report with
information of different nature about the accidents: date of the accident (when
it happened and when it was communicated), insured person (age, sex, marital
status,...), insurance policy and vehicle (fully comprehensive insurance or not, driving
experience, kind and use of the vehicle, power,…). When solving this problem with

 Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain 385

supervised classification, the dependent variable or class will have two categories:
fraud and not fraud.

4 Experimental Methodology

The original class distribution of the collected data does not always coincide with the
best one to build the classifier when a problem with class imbalance has to be faced.
We will make a sweep with different percentages of fraud examples in order to find
the class distribution we should use to induce the tree. Based on the methodology
proposed by Weiss and Provost in [8] the tried percentages will be 2%, 5%, 7.40%
(original distribution), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 95%.
We will use the methodology described in [8] to compare the CTC algorithm (with
parameters mentioned in Section 2) with the well known C4.5 with default settings
for the different class distributions. In order to make a fair comparison, the used
training sets need to have the same size even if the used percentages are changed. The
size of the training set is fixed to 75% of the minority class examples (6,000
examples), so that subsamples of all the mentioned percentages can be used in the
experimentation. The remaining 25% of both, majority and minority classes, will be
used for test.

Two trees, one with C4.5 and the other with CTC, have been built for each one of
the proposed percentages. Even if Weiss and Provost did not prune the trees, the
results obtained with pruned trees in this database are substantially better for both
algorithms. Therefore, we will present the results obtained by pruning the trees based
on the training sample and C4.5 standard pruning. To prune the C4.5 trees we have
used the corrector proposed by Weiss and Provost for estimating the a posteriori
probability of the leaf nodes, so that they are adapted to the distribution expected in
reality. This has to be done because the class distribution of the training set and the
class distribution existing in reality (test) do not coincide. Nevertheless, the corrector
needs not to be used when pruning CT trees, because the pruning is done with the
whole training set (the percentages are the ones expected in reality), and the a
posteriori probabilities are corrected due to the backfitting process.

As a validation method, the experimentation has been repeated 10 times.

5 Experimental Results

In the problem described in previous sections, the behaviour of classifiers can not be
analysed based just on the error rate. Other aspects will help us to complete our
comprehension about the classifier’s behaviour: the structural stability of the
generated trees and the complexity of the trees will give us information about the
quality of the explanation, the ratio among True Positive and False Positive examples
(ROC curve) will give us information about the behaviour of the classifier in different
environments, etc.

Table 1 shows, for CT trees built with 30 subsamples and C4.5, the error rates and
standard deviation (Error and σ columns) and the average complexity, measured as
the number of internal nodes of the trees (Compl. column). The values in different

386 J.M. Pérez et al.

Table 1. Error, standard deviation and complexity for different class distributions

 C4.5 CT(30)
 Error σ Compl. Error σ Compl.

2% 7.40 0.00 0.0 7.30 0.00 3.8
5% 7.40 0.00 0.0 7.31 0.03 4.8

7.4% 7.40 0.00 0.0 7.31 0.03 4.3
10% 7.40 0.00 0.0 7.31 0.03 4.1
20% 7.57 0.34 12.3 7.30 0.05 5.6
30% 9.75 0.68 103.6 7.30 0.05 6.6
40% 11.70 1.06 183.7 7.31 0.03 6.2
50% 10.87 0.95 141.4 7.29 0.06 7.1
60% 8.69 0.71 44.6 7.30 0.05 6.9
70% 8.59 0.60 28.2 7.30 0.05 7.2
80% 8.27 0.52 17.2 7.29 0.06 6.6
90% 8.59 0.70 11.2 7.29 0.06 6.0
95% 7.40 0.00 0.0 7.31 0.07 3.4

rows are related to different class distributions. Results show that in every case the
error is smaller for CTC than for C4.5. The trees built with C4.5 are not able to reduce
the error rate of 7.40% that would achieve a trivial classifier that labels all the
examples with the majority class (no fraud). The values belonging to average
complexity confirm that when the error for C4.5 trees is 7.40% the built trees are
trivial classifiers: they are just the root node. For the rest of the percentages, the built
classifiers do not make sense because of the achieved error rate and complexity. The
values of standard deviation show that the error rates achieved with CT trees are very
stable (best values are obtained when class distributions are 50%, 80% and 90%).
Besides, all of them are under the threshold of 7.40% (7.30% in average) and with
small complexity in average; therefore, giving a simple explanation. These results
confirm that CT trees are better situated in the learning curve and also according to
the principle of parsimony (Occam’s razor).

If we want to evaluate the stability of the explanation given by CT trees we need to
measure the structural stability. A structural distance, Common, based on a pair to pair
comparison among all the trees of the compared set has been defined with this aim.
Common is calculated starting from the root and covering the tree, level by level. The
common nodes among two trees are counted if they coincide in the feature used to
make the split, the proposed branches or stratification and the position in the tree [5].
Normalising the Common value with the complexity of the tree (as defined before)
and making the analysis for the CT trees built for different class distributions, we find
a maximum value of 74.27% and minimum of 35.19% being the average 49.36%. So
we can say that in average half of the structure of the trees, and, as a consequence the
explanation, is maintained. However for C4.5 the %Common is in average 10.31%.

The division of the error in false positive (FP) and false negative (FN) is important
in this kind of applications. FP quantifies the amount of unnecessary investigations of
customers whereas the FN quantifies the fraudulent customers that are not detected.
Evidently it is of capital importance not to investigate honest customers in order to
achieve a good company image. Even if the objective is to detect all the fraudulent
reports, the quantification of the percentage of investigated reports is also important
due to the costs and the trouble to the customers it implies. We will analyse these
aspects with results of precision, recall or sensitivity, breakeven point, ROC curve

 Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain 387

and AUC [7]. To be brief, we will present results for class distribution of 50% (results
for other distributions are similar).

Classification trees can work on a more or less conservative way by modifying the
threshold needed to label a node as fraudulent. Table 2 shows results for a wide range
of thresholds. When the threshold is 0% (trivial acceptor) all the examples will be
classified as fraudulent; this would be the most liberal operation mode. On the other
hand, the most restrictive operation mode will be when the threshold is 100%. Only
the fraudulent examples belonging to homogeneous nodes would be classified as
fraudulent. The adequate threshold is usually selected so that the best trade off among
costs of FP and FN is found.

Table 2. Results for conservative and liberal operation mode for CTC and C4.5 algorithms

 CTC C4.5
Threshold Precision Recall Reports Precision Recall Reports.

0% 7.41 100.00 27000 7.41 100.00 27000
5% 11.21 89.66 15995 12.20 76.39 12523
10% 12.17 66.53 10932 12.60 70.17 11135
15% 53.98 5.12 190 13.50 41.28 6115
20% 55.03 5.09 185 14.11 22.87 3241
25% 57.84 4.89 169 14.52 16.80 2314
30% 59.92 4.71 157 14.95 14.32 1916
35% 60.31 4.68 155 15.61 13.33 1708
40% 60.64 4.62 152 15.78 11.82 1498
45% 63.23 3.59 113 14.73 10.13 1375
50% 63.39 3.46 109 14.85 9.91 1335
55% 63.51 3.42 108 13.88 8.92 1285
60% 66.43 2.80 84 13.31 8.29 1245
65% 67.05 2.62 78 12.13 7.28 1199
70% 70.11 2.24 64 10.69 6.14 1148
75% 70.39 1.61 46 9.82 5.48 1116
80% 50.00 0.09 3 9.83 5.38 1094
85% 50.00 0.09 3 9.83 5.38 1094
90% 50.00 0.09 3 9.83 5.22 1062
95% 50.00 0.09 3 9.83 5.22 1062

100% -- 0.00 0 -- 0.00 0

The precision and recall are two parameters that can be used to measure the
effectiveness of the classifier on basis of the threshold. Examples of conservative and
liberal operation mode appear in bold in Table 2. We can observe that if the classifier
based on CTC would work in a conservative way (threshold 75%), the company
would revise only 46 reports (reports) and 70.39% of them (precision) would be
fraudulent (the probability to find a fraudulent report has been increased from 7.4% to
70.39% and the disturbed customers have been very few). If we would like to detect
more fraudulent reports, increasing the recall but still without disturbing a lot of not
fraudulent customers we could decrease the threshold to 15% (liberal example). As a
consequence 190 reports would be revised and more than half of them would be
fraudulent. Table 2 shows that the trees induced with C4.5 achieve higher recall
values, but the amount of reports to investigate and the low precision obtained make
grow considerably the costs related to investigations and incorrectly revised
customers.

388 J.M. Pérez et al.

A way to find a balance among precision and recall is to establish a threshold,
breakeven point, so that both parameters are made equal. Although this is a too
general measure for the purposes of our study, CTC clearly beats C4.5; the estimated
values are 34.45% for CTC and 15.25% for C4.5. Evidently being the aim the
maximisation of precision and recall when larger the breakeven point is, better the
behaviour of the algorithm is.

We have also calculated the ROC curves (they are not shown due to lack of space)
of both classifiers. The aim is to maximize the TP with a minimum FP, and as a
consequence, to maximize the Area Under the ROC Curve (AUC). We have
calculated the average AUC for all the analyzed class distributions and the average
values obtained are: 68.87% for CTC and 60.71% for C4.5. This indicates that CT
trees have better global behaviour than C4.5 trees.

6 Conclusions and Further Work

This paper presents the analysis of the influence of class distribution in a fraud
detection problem from a car insurance company for two tree induction algorithms:
C4.5 and CTC. The behaviour of both algorithms for different class distributions has
been analysed based on the methodology presented in [8]. Thanks to this
methodology we have been able to build non trivial C4.5 trees, but results have been
better for CT trees. Moreover, both algorithms build a single tree, that is to say, they
maintain the explanation in the classification which is essential in real problems of
this kind where an explanation added to the classification made is compulsory. The
results presented in Section 5 confirm that CT trees behave better than C4.5 trees in
many aspects: accuracy, structural stability or explanation, ROC curve,
precision/recall, etc.

The results obtained in this experimentation could be compared to other strategies
that do not lose the explanation even if they use several subsamples to build the
classifier. For example the procedure presented in [2], which is able to extract
explanation to bagging, and our proposal could be compared. As we mentioned when
describing CTC algorithm many parameters can be varied. CTC algorithm can be
tested using other base algorithm different to C4.5 such as CHAID, CART, …

Related to the real application, fraud detection in car insurance companies, the
difficulty finding fraud examples make us think that the characteristics provided by
the experts in the company might not be suitable, so the extraction of more
discriminating information could be studied.

Acknowledgements

The work described in this paper was partly done under the University of Basque
Country (UPV/EHU), project: 1/UPV 00139.226-T-15920/2004. It was also funded
by the Diputación Foral de Gipuzkoa and the European Union. We also want to thank
the collaboration of the company ADHOC Synectic Systems, S.A. The lymphography
domain was obtained from the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data.

 Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain 389

References

1. Chan P.K., Stolfo S.J.: Toward Scalable Learning with Non-uniform Class and Cost
Distributions: A Case Study in Credit Card Fraud Detection, Proc. of the 4th Int.
Conference on Knowledge Discovery and Data Mining, (1998) 164-168.

2. Domingos P.: Knowledge acquisition from examples via multiple models. Proc. 14th
International Conference on Machine Learning Nashville, TN (1997) 98-106.

3. Japkowicz N.: Learning from Imbalanced Data Sets: A Comparison of Various Strategies,
Proceedings of the AAAI Workshop on Learning from Imbalanced Data Sets, Menlo Park,
CA, (2000).

4. Pérez J.M., Muguerza J., Arbelaitz O., Gurrutxaga I.: A New Algorithm to Build
Consolidated Trees: Study of the Error Rate and Steadiness. Advances in Soft Computing,
Proceedings of the International Intelligent Information Processing and Web Mining
Conference (IIS: IIPWM´04), Zakopane, Poland (2004), 79-88.

5. Pérez J.M., Muguerza J., Arbelaitz O., Gurrutxaga I., Martín J.I.: Analysis of structural
convergence of Consolidated Trees when resampling is required. Proc. of the 3rd
Australasian Data Mining Conf. (AusDM04), Australia (2004), 9-21.

6. Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers
Inc.(eds), San Mateo, California, (1993).

7. Sebastiani F.: Machine Learning in Automated Document Categorisation. Tutorial of the
18th Int. Conference on Computational Linguistics, Nancy, Francia, 2000.

8. Weiss G.M., Provost F.: Learning when Training Data are Costly: The Effect of Class
Distribution on Tree Induction, Journal of Artificial Intelligence Research, Vol. 19, (2003)
315-354.

	Introduction
	Consolidated Trees’ Construction Algorithm
	Car Insurance Database for Fraud Detection
	Experimental Methodology
	Experimental Results
	Conclusions and Further Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

