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Abstract. This paper presents an analysis of the behaviour of Consolidated 
Trees, CT (classification trees induced from multiple subsamples but without 
loss of explaining capacity). We analyse how CT trees behave when used to 
solve a fraud detection problem in a car insurance company. This domain has 
two important characteristics: the explanation given to the classification made is 
critical to help investigating the received reports or claims, and besides, this is a 
typical example of class imbalance problem due to its skewed class distribution. 
In the results presented in the paper CT and C4.5 trees have been compared, 
from the accuracy and structural stability (explaining capacity) point of view 
and, for both algorithms, the best class distribution has been searched.. Due to 
the  different associated costs of different error types (costs of investigating 
suspicious reports, etc.) a wider analysis of the error has also been done: 
precision/recall, ROC curve, etc. 

1   Introduction 

The application of machine learning to real world problems has to be done 
considering two important aspects: class distribution affects to classifiers’ accuracy 
and the explanation is very important in some domains. 

In real domains such as illness diagnosis, fraud detection in different fields, 
customer’s behaviour analysis (marketing), customer fidelisation, ... it is not enough 
to obtain high accuracy in the classification, comprehensibility in the built classifier is 
also needed [2]. The classifying paradigms used to solve this kind of problems need to 
be able to give an explanation, for example classification trees. 

On the other hand, it is very common to find domains where the number of 
examples for one of the categories (or classes) of the dependent variable is much 
smaller than for the rest of the classes. These situations are named class imbalance or 
skewed class distribution. 

Classifiers do not behave well when they are trained with very unbalanced data 
sets. For example, if 99% of the examples in a data set belong to the same class, for a 
classifier that labels test cases with the majority class, the accuracy will be 99%. 
Since most classifiers are designed to minimise the error rate, the classifiers built 
from this kind of data-sets tend to be very simple and nonsense [3]. 
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Weiss and Provost [8] have shown that each domain has an optimal class 
distribution to be used for training. Their work shows that, in situations where the 
class distribution of the training set can be  chosen, it is often preferable to use a 
different distribution to the one expected in reality. So, in environments with skewed 
class distribution, we can use samples with modified class distribution with the aim of 
building valid classifiers. Undersampling, eliminating some examples, is the most 
common strategy to modify the class distribution of a sample. Even if the direct 
consequence of undersampling is that some examples are ignored, in general, 
undersampling techniques obtain better results than oversampling techniques 
(repeating some examples) [3]. In order to avoid the information loss produced by 
undersampling, multiple classifiers can be built based on subsamples with changed 
distribution. Most of the information in the original sample can be covered by 
choosing adequately the number of generated subsamples. Techniques such as 
bagging and boosting can be a good option in some cases but not in areas where 
explanation is important. It is clear that “while a single decision tree can easily be 
understood by a human as long as it is not too large, fifty such trees, even if 
individually simple, exceed the capacity of even the most patient” [2]. 

We have developed an algorithm, CTC (Consolidated Tree’s Construction 
Algorithm), that is able to face both problems: several subsamples with the desired 
class distribution are created from the original training set, but opposite to other 
algorithms that build multiple trees (bagging, boosting), a single tree is induced, 
therefore the comprehensibility of the base classifier is not lost. 

Fraud detection problems belong to the group of domains where the explanation in 
the classification is important. We will use the CTC algorithm and compare it to C4.5 
[6] in a fraudulent report detection problem from a car insurance company. This is a 
difficult problem because the experts in the company estimate that the fraud average 
is in reality higher than 10% or 15% but the fraud examples are very difficult to 
detect, and, as a consequence, in the data provided by insurance companies this 
percentage is lower. Many of the examples labelled as not fraudulent in the data-set 
are actually fraudulent which makes the problem even harder. It is important to 
provide an insurance company with a tool to know the profile of fraudulent customers 
or the evidences that make a report suspicious of fraud, in order to investigate them 
more deeply, so that the fraud does not suppose great financial loss. 

The paper proceeds describing how a single tree can be built from several 
subsamples, CTC algorithm, in Section 2. In Section 3 we describe the main 
characteristics of the car insurance company’s database for fraud detection, and 
Section 4 contains the methodology used to face the class imbalance problem in the 
described domain. Section 5 is devoted to describe the results obtained for the fraud 
detection problem with both algorithms CTC and C4.5. Finally Section 6 is devoted to 
show the conclusions and further work. 

2   Consolidated Trees’ Construction Algorithm 

Consolidated Trees’ Construction Algorithm (CTC) uses several subsamples to build 
a single tree [4]. The consensus is achieved at each step of the tree’s building process 
and only one tree is built. The different subsamples are used to make proposals about 
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the feature that should be used to split in the current node. The split function used in 
each subsample is the gain ratio criterion (the same used by Quinlan in C4.5). The 
decision about which feature will be used to make the split in a node of the 
Consolidated Tree (CT) is accorded among the different proposals by a voting process 
(not weighted) node by node. Based on this decision, all the subsamples are divided 
using the same feature. The iterative process is described in Algorithm 1. 

Algorithm 1. Consolidated Trees’ Construction Algorithm (CTC) 

    Generate Number_Samples subsamples (Si) from S with Resampling_Mode method. 
CurrentNode := RootNode 
for  i := 1 to Number_Samples 
    LSi := {Si}  
end for  
repeat 
    for  i := 1 to Number_Samples 

CurrentSi := First(LSi) 
  LSi  := LSi - CurrentSi  
          Induce the best split (X,B)i for CurrentSi 
    end for  
    Obtain  the consolidated pair (Xc,Bc), based on (X,B)i, 1 ≤ i ≤ Number_Samples 
    if (Xc,Bc) ≠ Not_Split 
       Split CurrentNode based on (Xc,Bc) 
       for i := 1 to Number_Samples 
            Divide CurrentSi based on (Xc,Bc) to obtain n subsamples {S1

i, … Sn
i} 

            LSi  := {S1
i, … Sn

i} ∪ LSi  
        end for 
    else consolidate CurrentNode as a leaf  
     end if 
CurrentNode := NextNode 
 until ∀i, LSi is empty 
 

The algorithm starts extracting a set of subsamples (Number_Samples) from the 
original training set. Based on previous experimentation we find that to use 30 
subsamples can be a good trade-off among efficiency and computational cost . The 
subsamples are obtained based on the desired resampling technique 
(Resampling_Mode). For example, the class distribution of the original training set 
can be changed or not, examples can be drawn with or without replacement, different 
subsample sizes can be chosen, etc. 

Decision tree’s construction algorithms divide the initial sample in several data 
partitions. In our algorithm, LSi contains all the data partitions created from each 
subsample Si. When the process starts, the only existing partitions are the initial 
subsamples. 

The pair (X,B)i is the split proposal for the first data partition in LSi. X is the feature 
selected to split and B indicates the proposed branches or criteria to divide the data in 
the current node. In the consolidation step, Xc is the feature obtained by a voting 
process among all the proposed X. Whereas Bc will be the median of the proposed Cut 
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values when Xc is continuous and all the possible values of the feature when Xc is 
discrete. In the different steps of the algorithm, the default parameters of C4.5 have 
been used as far as possible. 

The process is repeated while LSi is not empty. The Consolidated Tree’s generation 
process finishes when in the last subsample in all the partitions in LSi, most of the 
proposals are not to split it, so, to become a leaf node. When a node is consolidated as 
a leaf node, the a posteriori probabilities associated to it are calculated averaging the a 
posteriori obtained from the data partitions related to that node in all the subsamples. 

Once the consolidated tree has been built, it works the same way a decision tree 
does for testing, pruning, etc. This way the explanation of the classifier is not lost 
even if several subsamples are used to build it. 

3   Car Insurance Database for Fraud Detection 

One of the factors affecting the price of car insurance policies is the large amount of 
fraudulent reports that a company is not able to detect is. The company has to assume 
all the increase in costs produced by this fraud, and, as a consequence, the insurance 
policies become more expensive. The experts in the companies think that at least 10% 
or 15% of the produced reports are fraudulent, and, however, about 5% of them is 
detected. So the databases in insurance companies have the following characteristics: 
the examples labelled as fraudulent belong to the minority class (class imbalance) 
and, on the other hand, they are the only 100% reliable data, because among the 
examples labelled as not fraudulent there are some fraudulent examples that the 
company has not been able to detect. Therefore the information provided to the 
algorithm is not correct which makes the machine learning problem difficult to solve. 

In order to detect fraud, suspicious reports have to be investigated but this has 
associated costs: the costs concerning to the investigation itself (staff, resources, etc.), 
and the cost coming from investigating not fraudulent customers [1]. The company’s 
image can be severely affected by customers that are annoyed when they realise that 
they are being investigated. When evaluating a report, it will be important for the 
insurance broker to know the fraud probability assigned to it by the classification 
system, as well as the factors that have affected to the decision. The explanation given 
by the classifier about the decision made could be used by the broker to investigate 
the case. So, if the aim is to have a tool that will help in the detection of fraudulent 
reports, it is absolutely necessary to use classification paradigms that are able to give 
an explanation, for example, decision trees. This paper analyses the behaviour of 
different classifiers with real data from a car insurance company, the kind of problem 
we have just described. The data-set has 108,000 examples, and just 7.40% of them 
are fraudulent cases. This database is clearly an example of class imbalance problem 
with imprecise information for one of the classes. 

The database has 31 independent variables that contribute to the report with 
information of different nature about the accidents: date of the accident (when  
it happened and when it was communicated), insured person (age, sex, marital 
status,...), insurance policy and vehicle (fully comprehensive insurance or not, driving 
experience, kind and use of the vehicle, power,…). When solving this problem with 
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supervised classification, the dependent variable or class will have two categories: 
fraud and not fraud. 

4   Experimental Methodology 

The original class distribution of the collected data does not always coincide with the 
best one to build the classifier when a problem with class imbalance has to be faced. 
We will make a sweep with different percentages of fraud examples in order to find 
the class distribution we should use to induce the tree. Based on the methodology 
proposed by Weiss and Provost in [8] the tried percentages will be 2%, 5%, 7.40% 
(original distribution), 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 95%. 
We will use the methodology described in [8] to compare the CTC algorithm (with 
parameters mentioned in Section 2) with the well known C4.5 with default settings 
for the different class distributions. In order to make a fair comparison, the used 
training sets need to have the same size even if the used percentages are changed. The 
size of the training set is fixed to 75% of the minority class examples (6,000 
examples), so that subsamples of all the mentioned percentages can be used in the 
experimentation. The remaining 25% of both, majority and minority classes, will be 
used for test. 

Two trees, one with C4.5 and the other with CTC, have been built for each one of 
the proposed percentages. Even if Weiss and Provost did not prune the trees, the 
results obtained with pruned trees in this database are substantially better for both 
algorithms. Therefore, we will present the results obtained by pruning the trees based 
on the training sample and C4.5 standard pruning. To prune the C4.5 trees we have 
used the corrector proposed by Weiss and Provost for estimating the a posteriori 
probability of the leaf nodes, so that they are adapted to the distribution expected in 
reality. This has to be done because the class distribution of the training set and the 
class distribution existing in reality (test) do not coincide. Nevertheless, the corrector 
needs not to be used when pruning CT trees, because the pruning is done with the 
whole training set (the percentages are the ones expected in reality), and the a 
posteriori probabilities are corrected due to the backfitting process. 

As a validation method, the experimentation has been repeated 10 times. 

5   Experimental Results 

In the problem described in previous sections, the behaviour of classifiers can not be 
analysed based just on the error rate. Other aspects will help us to complete our 
comprehension about the classifier’s behaviour: the structural stability of the 
generated trees and the complexity of the trees will give us information about the 
quality of the explanation, the ratio among True Positive and False Positive examples 
(ROC curve) will give us information about the behaviour of the classifier in different 
environments, etc. 

Table 1 shows, for CT trees built with 30 subsamples and C4.5, the error rates and 
standard deviation (Error and σ columns) and the average complexity, measured as 
the number of internal nodes of the trees (Compl. column). The values in different 
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Table 1. Error, standard deviation and complexity for different class distributions 

 C4.5 CT(30) 
 Error σ Compl. Error σ Compl.

2% 7.40 0.00 0.0 7.30 0.00 3.8 
5% 7.40 0.00 0.0 7.31 0.03 4.8 

7.4% 7.40 0.00 0.0 7.31 0.03 4.3 
10% 7.40 0.00 0.0 7.31 0.03 4.1 
20% 7.57 0.34 12.3 7.30 0.05 5.6 
30% 9.75 0.68 103.6 7.30 0.05 6.6 
40% 11.70 1.06 183.7 7.31 0.03 6.2 
50% 10.87 0.95 141.4 7.29 0.06 7.1 
60% 8.69 0.71 44.6 7.30 0.05 6.9 
70% 8.59 0.60 28.2 7.30 0.05 7.2 
80% 8.27 0.52 17.2 7.29 0.06 6.6 
90% 8.59 0.70 11.2 7.29 0.06 6.0 
95% 7.40 0.00 0.0 7.31 0.07 3.4 

 

rows are related to different class distributions. Results show that in every case the 
error is smaller for CTC than for C4.5. The trees built with C4.5 are not able to reduce 
the error rate of 7.40% that would achieve a trivial classifier that labels all the 
examples with the majority class (no fraud). The values belonging to average 
complexity confirm that when the error for C4.5 trees is 7.40% the built trees are 
trivial classifiers: they are just the root node. For the rest of the percentages, the built 
classifiers do not make sense because of the achieved error rate and complexity. The 
values of standard deviation show that the error rates achieved with CT trees are very 
stable (best values are obtained when class distributions are 50%, 80% and 90%). 
Besides, all of them are under the threshold of 7.40% (7.30% in average) and with 
small complexity in average; therefore, giving a simple explanation. These results 
confirm that CT trees are better situated in the learning curve and also according to 
the principle of parsimony (Occam’s razor). 

If we want to evaluate the stability of the explanation given by CT trees we need to 
measure the structural stability. A structural distance, Common, based on a pair to pair 
comparison among all the trees of the compared set has been defined with this aim. 
Common is calculated starting from the root and covering the tree, level by level. The 
common nodes among two trees are counted if they coincide in the feature used to 
make the split, the proposed branches or stratification and the position in the tree [5]. 
Normalising the Common value with the complexity of the tree (as defined before) 
and making the analysis for the CT trees built for different class distributions, we find 
a maximum value of 74.27% and minimum of 35.19% being the average 49.36%. So 
we can say that in average half of the structure of the trees, and, as a consequence the 
explanation, is maintained. However for C4.5 the %Common is in average 10.31%. 

The division of the error in false positive (FP) and false negative (FN) is important 
in this kind of applications. FP quantifies the amount of unnecessary investigations of 
customers whereas the FN quantifies the fraudulent customers that are not detected. 
Evidently it is of capital importance not to investigate honest customers in order to 
achieve a good company image. Even if the objective is to detect all the fraudulent 
reports, the quantification of the percentage of investigated reports is also important 
due to the costs and the trouble to the customers it implies. We will analyse these 
aspects with results of precision, recall or sensitivity, breakeven point, ROC curve 
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and AUC [7]. To be brief, we will present results for class distribution of 50% (results 
for other distributions are similar). 

Classification trees can work on a more or less conservative way by modifying the 
threshold needed to label a node as fraudulent. Table 2 shows results for a wide range 
of thresholds. When the threshold is 0% (trivial acceptor) all the examples will be 
classified as fraudulent; this would be the most liberal operation mode. On the other 
hand, the most restrictive operation mode will be when the threshold is 100%. Only 
the fraudulent examples belonging to homogeneous nodes would be classified as 
fraudulent. The adequate threshold is usually selected so that the best trade off among 
costs of FP and FN is found. 

Table 2. Results for conservative and liberal operation mode for CTC and C4.5 algorithms 

 CTC C4.5 
Threshold Precision Recall Reports Precision Recall Reports. 

0% 7.41 100.00 27000 7.41 100.00 27000 
5% 11.21 89.66 15995 12.20 76.39 12523 
10% 12.17 66.53 10932 12.60 70.17 11135 
15% 53.98 5.12 190 13.50 41.28 6115 
20% 55.03 5.09 185 14.11 22.87 3241 
25% 57.84 4.89 169 14.52 16.80 2314 
30% 59.92 4.71 157 14.95 14.32 1916 
35% 60.31 4.68 155 15.61 13.33 1708 
40% 60.64 4.62 152 15.78 11.82 1498 
45% 63.23 3.59 113 14.73 10.13 1375 
50% 63.39 3.46 109 14.85 9.91 1335 
55% 63.51 3.42 108 13.88 8.92 1285 
60% 66.43 2.80 84 13.31 8.29 1245 
65% 67.05 2.62 78 12.13 7.28 1199 
70% 70.11 2.24 64 10.69 6.14 1148 
75% 70.39 1.61 46 9.82 5.48 1116 
80% 50.00 0.09 3 9.83 5.38 1094 
85% 50.00 0.09 3 9.83 5.38 1094 
90% 50.00 0.09 3 9.83 5.22 1062 
95% 50.00 0.09 3 9.83 5.22 1062 

100% -- 0.00 0 -- 0.00 0 
 

The precision and recall are two parameters that can be used to measure the 
effectiveness of the classifier on basis of the threshold. Examples of conservative and 
liberal operation mode appear in bold in Table 2. We can observe that if the classifier 
based on CTC would work in a conservative way (threshold 75%), the company 
would revise only 46 reports (reports) and 70.39% of them (precision) would be 
fraudulent (the probability to find a fraudulent report has been increased from 7.4% to 
70.39% and the disturbed customers have been very few). If we would like to detect 
more fraudulent reports, increasing the recall but still without disturbing a lot of not 
fraudulent customers we could decrease the threshold to 15% (liberal example). As a 
consequence 190 reports would be revised and more than half of them would be 
fraudulent. Table 2 shows that the trees induced with C4.5 achieve higher recall 
values, but the amount of reports to investigate and the low precision obtained make 
grow considerably the costs related to investigations and incorrectly revised 
customers. 
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A way to find a balance among precision and recall is to establish a threshold, 
breakeven point, so that both parameters are made equal. Although this is a too 
general measure for the purposes of our study, CTC clearly beats C4.5; the estimated 
values are 34.45% for CTC and 15.25% for C4.5. Evidently being the aim the 
maximisation of precision and recall when larger the breakeven point is, better the 
behaviour of the algorithm is. 

We have also calculated the ROC curves (they are not shown due to lack of space) 
of both classifiers. The aim is to maximize  the TP with a minimum FP, and as a 
consequence, to maximize the Area Under the ROC Curve (AUC). We have 
calculated the average AUC for all the analyzed class distributions and the average 
values obtained are: 68.87% for CTC and 60.71% for C4.5. This indicates that CT 
trees have better global behaviour than C4.5 trees. 

6   Conclusions and Further Work 

This paper presents the analysis of the influence of class distribution in a fraud 
detection problem from a car insurance company for two tree induction algorithms: 
C4.5 and CTC. The behaviour of both algorithms for different class distributions has 
been analysed based on the methodology presented in [8]. Thanks to this 
methodology we have been able to build non trivial C4.5 trees, but results have been 
better for CT trees. Moreover, both algorithms build a single tree, that is to say, they 
maintain the explanation in the classification which is essential in real problems of 
this kind where an explanation added to the classification made is compulsory. The 
results presented in Section 5 confirm that CT trees behave better than C4.5 trees in 
many aspects: accuracy, structural stability or explanation, ROC curve, 
precision/recall, etc. 

The results obtained in this experimentation could be compared to other strategies 
that do not lose the explanation even if they use several subsamples to build the 
classifier. For example the procedure presented in [2], which is able to extract 
explanation to bagging, and our proposal could be compared. As we mentioned when 
describing CTC algorithm many parameters can be varied. CTC algorithm can be 
tested using other base algorithm different to C4.5 such as CHAID, CART, … 

Related to the real application, fraud detection in car insurance companies, the 
difficulty finding fraud examples make us think that the characteristics provided by 
the experts in the company might not be suitable, so the extraction of more 
discriminating information could be studied. 
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