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Abstract In machine learning problems, differences in prior class probabilities—or
class imbalances—have been reported to hinder the performance of some standard
classifiers, such as decision trees. This paper presents a systematic study aimed at
answering three different questions. First, we attempt to understand what the class
imbalance problem is by establishing a relationship between concept complexity, size
of the training set and class imbalance level. Second, we discuss several basic re-
sampling or cost-modifying methods previously proposed to deal with class imbalances
and compare their effectiveness. Finally, we investigate the assumption that the class
imbalance problem does not only affect decision tree systems but also affects other
classification systems such as Neural Networks and Support Vector Machines.
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Introduction

As the field of machine learning makes a rapid transition from the status of “academic
discipline” to that of “applied science”, a myriad of new issues, not previously considered
by the machine learning community, is now coming into light. One such issue is the class
imbalance problem. The class imbalance problem corresponds to the problem encountered by

inductive learning systems on domains for which one class is represented by a large number



of examples while the other is represented by only a few.!

The class imbalance problem is of crucial importance since it is encountered by a large
number of domains of great environmental, vital or commercial importance, and was shown,
in certain cases, to cause a significant bottleneck in the performance attainable by standard
learning methods which assume a balanced class distribution. For example, the problem
occurs and hinders classification in applications as diverse as the detection of oil spills in
satellite radar images (Kubat et al., 98), the detection of fraudulent telephone calls (Fawcett
and Provost, 97), in-flight helicopter gearbox fault monitoring (Japkowicz et al., 95), infor-
mation retrieval and filtering (Lewis and Catlett, 94) and diagnoses of rare medical conditions
such as thyroid diseases (Murphy and Aha, 94).

To this point, there have been a number of attempts at dealing with the class imbalance
problem (Pazzani et al., 94; Japkowicz et al., 95; Ling and Li, 98; Kubat and Matwin, 97;
Fawcett and Provost, 97; Kubat et al., 98; Domingos, 99; Chawla et al., 01; Elkan, 01);
However, these attempts were mostly conducted in isolation. In particular, there has not
been, to date, much systematic strive to link specific types of imbalances to the degree
of inadequacy of standard classifiers nor are there been many comparisons of the various
methods proposed to remedy the problem. Furthermore, no comparison of the performance

of different types of classifiers on imbalanced data sets has yet been performed.?

'Tn this paper, we only consider the case of concept-learning. However, the discussion also applies to
multi-class problems.

2Two studies attempting to systematize research on the class imbalance problem are worth mentioning,
nonetheless: One, currently in progress at AT&T Lab, links different degrees of imbalances to the perfor-
mance of C4.5, a decision Tree learning system on a large number of real-world data sets. However, it does
not study the effect of concept complexity nor training set size in the context of their relationship with class
imbalances, nor does it look at ways to remedy the class imbalance problem or the effect of class imbalances
on classifiers other than C4.5. The second study is that by [Lawrence et al., 1998], which does not study the
effect of class imbalances on classifiers’ performance but which compares a number of specific approaches
proposed to deal with class imbalances in the context of Neural Networks and on a few real-world data sets.
In their study, no classifier other than Neural Networks were considered and no systematic study conducted.



The purpose of this paper is to address these three concerns in an attempt to unify the
research conducted on this problem. In a first part, the paper concentrates on explaining
what the class imbalance problem is by establishing a relationship between concept complex-
ity, size of the training set and class imbalance level. In doing so, we also identify the class
imbalance situations that are most damaging for a standard classifier that expects balanced
class distributions. The second part of the paper turns to the question of how to deal with
the class imbalance problem. In this part we look at five different methods previously pro-
posed to deal with this problem and, all assumed to be more or less equivalent to each other.
We attempt to establish to what extent these methods are, indeed, equivalent and to what
extent they differ. The first two parts of our study were conducted using the C5.0 decision
tree induction system. In the third part, we set out to find out whether or not the problems
encountered by C5.0 when trained on imbalanced data sets are specific to C5.0. In particu-
lar, we attempt to find out whether or not the same pattern of hindrance is encountered by
Neural Networks and Support Vector Machines and whether similar remedies can apply.

The remainder of the paper is divided into six sections. Section 2 is an overview of
the paper explaining why the questions we set out to answer are important and how they
will advance our understanding of the class imbalance problem. Section 3 describes the
part of the study focusing on understanding the nature of the class imbalance problem and
finding out what types of class imbalance problems create greater difficulties for a standard
classifier. Section 4 describes the part of the study designed to compare the five main types
of approaches previously attempted to deal with the class imbalance problem. Section 5
addresses the question of what effect class imbalances have on classifiers other than C5.0.

Sections 6 and 7 conclude the paper.



Overview of the Paper

As mentioned in the previous section, the study presented in this paper investigates the

following three series of questions:

Question 1: What is the nature of the class imbalance problem? i.e., in what domains do
class imbalances most hinder the accuracy performance of a standard classifier such as

C5.07

Question 2: How do the different approaches proposed for dealing with the class imbalance

problem compare?

Question 3: Does the class imbalance problem hinder the accuracy performance of classi-

fiers other than C5.07

These questions are important since their answers may put to rest currently assumed but
unproven facts, dispel other unproven beliefs as well as suggest fruitful directions for future
research. In particular, they may help researchers focus their inquiry onto the particular
type of solution found most promising, given the particular characteristics identified in their
application domain.

Question 1 raises the issue of when class imbalances are damaging. While the studies
previously mentioned identified specific domains for which an imbalance was shown to hurt
the performance of certain standard classifiers, they did not discuss the questions of whether
imbalances are always damaging and to what extent different types of imbalances affect
classification performances. This paper takes a global stance and answers these questions

in the context of the C5.0 tree induction system on a series of artificial domains spanning a



large combination of characteristics.?
Question 2 considers five related approaches previously proposed by independent re-

searchers for tackling the class imbalance problem*:

1. Upsizing the small class at random.

2. Upsizing the small class at “focused” random.

3. Downsizing the large class at random.

4. Downsizing the large class at “focused” random.

5. Altering the relative costs of misclassifying the small and the large classes.

In more detail, Methods 1 and 2 consist of re-sampling patterns of the small class (either
completely randomly or randomly but within parts of the input space close to the boundaries
with the other class) until there are as many data from the small class as from the large
one.® Methods 3 and 4 consists of eliminating data from the large class (either completely
randomly or, randomly but within parts of the input space far away from the boundaries

with the large class) until there are as many data in both classes. Finally, method 5 consists

3The paper, however, concentrates on domains that present a “between-class imbalance” in that the
imbalance affects each subcluster of the small class to the same extent. Because of lack of space, the
interesting issue of “within-class imbalances”—which are special cases of the problem of small disjuncts
(Holte, 89)—has been omitted here. This very important question is dealt with elsewhere (Japkowicz, 01).

4In this study, we focus on discrimination-based approaches to the problem which base their decisions on
both the positive and negative data. The study of recognition-based approaches which base their decision
on one of the two classes but not both has been attempted in (Japkowicz, 00) but did not seem to do as well
as discrimination-based methods (this might be linked, however, to the fact that the recognition threshold
was not chosen very carefully. Nonetheless, we leave it to future work to determine truly whether or not
that is the case).

5(Estabrooks, 00) and the AT&T study previously mentioned in Footnote 2 show that, in fact, the
optimal amount of re-sampling is not necessarily that which yields the same number of data in each class.
The optimal amount seems to depend upon the input domain and does not seem easy to estimate a priori.
In order to simplify our study, here, we decided to re-sample until the two classes are of the same size. This
decision will not alter our results, however, since we are interested in the relative performance of the different
remedial approaches we consider.



of reducing the relative misclassification cost of the large class (or, equivalently, increasing
that of the small one) to make it correspond to the size of the small class.

These methods were previously proposed by (Ling and Li, 98; Kubat and Matwin, 97;
Domingos, 99; Chawla et al., 00; and Elkan, 01) but were not systematically compared
before. Here, we compare the five methods, once again, to the data sets used in the previous
part of the paper. This was done to see whether or not the five approaches for dealing with
class imbalances respond to different domain characteristics in the same way.

Question 3, finally, asks whether the observations made in answering the previous ques-
tions for C5.0 also hold for other classifiers. In particular, we study the effect of class
imbalances on Multi-Layer Perceptrons (MLPs), which could be thought of being capable
of more flexible learning than C5.0, and thus, be less sensitive to class imbalances. We then
repeat this study with Support Vector Machines (SVMs) which could be believed, not to
be affected by this problem given that they base their classification on a small number of
support vectors and, thus, may not be sensitive to the number of data representing each
class. We look at the performance of MLPs and SVMs on a subset of the series of domains
used in the previous part of the paper so as to see whether the three approaches are affected

by different domain characteristics in the same ways.

Question 1: What is the nature of the Class Imbalance
Problem?

In order to answer Question 1, a series of artificial concept-learning domains was generated
that varies along three different dimensions: the degree of concept complerity, the size of

the training set, and the level of imbalance between the two classes. The standard classifier



system tested on this domain in this section was the C5.0 decision tree induction system
(Quinlan, 93). This classifier has previously been shown to suffer from the class imbalance
problem (e.g., (Kubat et al., 98)), but not in a completely systematic fashion. The study
in this section aims at answering the question of what different faces a class imbalance can
take and which of these faces hinders C5.0 most.

This part of the paper first discusses the domain generation process followed by a report

of the results obtained by C5.0 on the various domains.

Domain Generation

For the experiments of this section, 125 domains were created with various combinations
of concept complexity, training set size, and degree of imbalance. The generation method
used was inspired by Schaffer who designed a similar framework for testing the effect of
overfitting avoidance in sparse data sets (Schaffer, 93). From Schaffer’s study, it was clear
that the complexity of the concept at hand was an important part of the data overfitting
problem and, given the relationship between the problem of overfitting the data and dealing
with class imbalances (see (Kubat et al., 98)), it seems reasonable to assume that, here
again, concept complexity is an important piece of the puzzle. Similarly, the training set
size should also be a factor in a classifier’s ability to deal with imbalanced domains given the
relationship between the data overfitting problem and the size of the training set. Finally,
the degree of imbalance is the obvious other parameter expected to influence a classifier’s
ability to classify imbalanced domains.

The 125 generated domains of our study were generated in the following way: each of

the domain is one-dimensional with inputs in the [0, 1] range associated with one of the two
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Figure 1: A Backbone Model of Complexity 3

classes (1 or 0). The input range is divided into a number of regular intervals (i.e., intervals
of the same size), each associated with a different class value. Contiguous intervals have
opposite class values and the degree of concept complexity corresponds to the number of
alternating intervals present in the domain. Actual training sets are generated from these
backbone models by sampling points at random (using a uniform distribution), from each of
the intervals. The number of points sampled from each interval depends on the size of the
domain as well as on its degree of imbalance. An example of a backbone model is shown in
Figure 1.

Five different complexity levels were considered (¢ = 1..5) where each level, ¢, corresponds
to a backbone model composed of 2¢ regular intervals. For example, the domains generated
at complexity level ¢ = 1 are such that every point whose input is in range [0, .5) is associated
with a class value of 1, while every point whose input is in range (.5, 1] is associated with
a class value of 0; At complexity level ¢ = 2, points in intervals [0, .25) and (.5, .75) are
associated with class value 1 while those in intervals (.25, .5) and (.75, 1] are associated with

class value 0; etc., regardless of the size of the training set and its degree of imbalance.®

6In this paper, complexity is varied along a single very simple dimension. Other more sophisticated
models could be used in order to obtain finer-grained results. In (Estabrooks, 00), for example, a k-DNF
model using several dimensions was used to generate a few artificial domains presenting class imbalances.
The study was less systematic than the one in this paper, but it yielded results corroborating those of this

paper.



Five training set sizes were considered (s = 1..5) where each size, s, corresponds to a
training set of size round((5000/32) % 2°). Since this training set size includes all the regular
intervals in the domain, each regular interval is, in fact, represented by round(((5000/32) *
2%)/2¢) training points (before the imbalance factor is considered). For example, at a size
level of s = 1 and at a complexity level of ¢ = 1 and before any imbalance is taken into
consideration, intervals [0, .5) and (.5, 1] are each represented by 157 examples; If the size
is the same, but the complexity level is ¢ = 2, then each of intervals [0, .25), (.25, .5), (.5,
.75) and (.75, 1] contains 78 training examples; etc.

Finally, five levels of class imbalance were also considered (i = 1..5) where each level,
1, corresponds to the situation where each sub-interval of class 1 is represented by all the
data it is normally entitled to (given ¢ and s), but each sub-interval of class 0 contains only
1/(32/2)th (rounded) of all its normally entitled data. This means that each of the sub-
intervals of class 0 are represented by round((((5000/32)x2%)/2¢)/(32/2")) training examples.
For example, for c =1, s = 1, and i = 2, interval [0, .5) is represented by 157 examples and
(.5, 1] is represented by 79; If c = 2, s = 1 and i = 3, then [0, .25) and (.5, .75) are each
represented by 78 examples while (.25, .5) and (.75, 1] are each represented by 20; etc.

The number of testing points representing each sub-interval was kept fixed (at 50). This
means that all domains of complexity level ¢ = 1 are tested on 50 positive and 50 negative
examples; all domains of complexity level ¢ = 2 are tested on 100 positive and 100 negative

examples; etc.



Results for Question 1

The results for C5.0 are displayed in Figures 2, 3, 4 and 5 which plots the error C5.0 obtained
for each combination of concept complexity, training set size, and imbalance level, on the
entire testing set. For each experiment, we reported four types of results: 1) the corrected
results in which no matter what degree of class imbalance is present in the training set, the
contribution of the false positive error rate is the same as that of the false negative one in the
overall report.” 2) the uncorrected results in which the reported error rate reflects the same
imbalance as the one present in the training set.® 3) the false positive error rate; and 4) the
false negative error rate. The corrected and uncorrected results are provided so as to take
into consideration two out of any possible number of situations: one in which, despite the
presence of an imbalance, the cost of misclassifying the data of one class is the same as that
of classifying those of the other class (the corrected version); the other situation is the one
where the relative cost of misclassifying the two classes correspond to the class imbalance.’

Each plot in each of these figures represents the plot obtained at a different training set
size. The leftmost plot corresponds to the smallest size (s = 1) and progresses until the

rightmost plot which corresponds to the largest (s = 5). Within each of these plots, each

cluster of five bars represent the concept complexity level. The leftmost cluster corresponds

"For this set of results, we simply report the error rate obtained on the testing set corresponding to the
experiment at hand.

8For this set of results, we modify the ratio of false positive to false negative error obtained on the original
testing set to make it correspond to the ratio of positive to negative examples in the training set.

9A more complete set of results could have involved comparisons at other relative costs as well. However,
given our large number of experiments, this would have been unmanageable. We thus decided to focus
on two meaningful and important cases only. Similarly, and for the same reasons, we decided not to vary
C5.0’s decision threshold across the ROC space (Swets et al., 2000). Since we are seeking to establish the
relative performance of several classification approaches we believe that all the results obtained using the
same decision threshold are representative of what would have happened along the ROC curves. We leave
it to future work, however, to verify this assumption.

10
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Figure 2: C5.0 and the Class Imbalance Problem—Corrected
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Figure 3: C5.0 and the Class Imbalance Problem—UnCorrected
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Figure 4: C5.0 and the Class Imbalance Problem— False Positive Error Rate
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Figure 5: C5.0 and the Class Imbalance Problem— False Negative Error Rate:
Very Close to 0
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to the simplest concept (¢ = 1) and progresses until the rightmost one which corresponds to
the most complex (¢ = 5). Within each cluster, finally, each bar corresponds to a particular
imbalance level. The leftmost bar corresponds to the most imbalanced level (i = 1) and
progresses until the rightmost bar which corresponds to the most balanced level (i = 5, or
no imbalance). The height of each bar represents the average percent error rate obtained by
C5.0 (over five runs on different domains generated from the same backbone model) on the
complexity, class size and imbalance level this bar represents. To make the comparisons easy,
horizontal bars were drawn at every 5% marks. If a graph does not display any horizontal
bars, it is because all the bars represent an average percent error below 5%, and we consider
the error negligeable in such cases.

Our results reveal several points of interest: first, no matter what the size of the training
set is, linearly separable domains (domains of complexity level ¢ = 1) do not appear sensitive
to any amount of imbalance. As a matter of fact, as the degree of concept complexity
increases, so does the system’s sensitivity to imbalances. Indeed, we can clearly see both in
Figure 2 (the corrected results) and Figure 3 (the uncorrected results) that as the degree of
complexity increases, high error rates are caused by lower and lower degrees of imbalances.
Although the error rates reported in the corrected cases are higher than those reported in
the uncorrected cases, the effect of concept complexity on class imbalances is clearly visible
in both situations.

A look at Figures 4 and 5 explains the difference between Figures 2 and 3 since it reveals
that most of the error represented in these graphs actually occurs on the negative testing
set (i.e., most of the errors are false positive errors). Indeed, none of the average percents

of false negative errors over all degrees of concept complexity and levels of imbalance ever
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exceed 5%. This is not surprising since we had expected the classifier to overfit the majority
class, but the extent to which it does so might be a bit surprising.

As could be expected, imbalance rates are also a factor in the performance of C5.0 and,
perhaps more surprisingly, so is the training set size. Indeed, as the size of the training set
increases, the degree of imbalance yielding a large error rate decreases. This suggests that in
very large domains, the class imbalance problem may not be a hindrance to a classification
system. Specifically, the issue of relative cardinality of the two classes—which is often
assumed to be the problem underlying domains with class imbalanced—may in fact be easily
overridden by the use of a large enough data set (if, of course, such a data set is available
and its size does not prevent the classifier from learning the domain in an acceptable time
frame).

All in all, our study suggests that the imbalance problem is a relative problem depending
on both the complexity of the concept represented by the data in which the imbalance occurs
and the overall size of the training set, in addition to the degree of class imbalance present
in the data. In other words, a huge class imbalance will not hinder classification of a domain
whose concept is very easy to learn nor will we see a problem if the training set is very
large. Conversely, a small class imbalance can greatly harm a very small data set or one

representing a very complex concept.
Question 2: A Comparison of Various Strategies

Having identified the domains for which a class imbalance does impair the accuracy of a
regular classifier such as C5.0, this section now proposes to compare the main methodologies

that have been proposed to deal with this problem. First, the various schemes used for this

13



comparison are described, followed by a comparative report on their performance. In all the

experiments of this section, once again, C5.0 is used as our standard classifier.

Schemes for Dealing with Class Imbalances

Over-Sampling Two oversampling methods were considered in this category. The first
one, random oversampling, consists of oversampling the small class at random until it con-
tains as many examples as the other class. The second method, focused oversampling, consists
of oversampling the small class only with data occurring close to the boundaries between
the concept and its negation. A factor of a = .25 was chosen to represent closeness to the

boundaries.'?

Under-Sampling Two under-sampling methods, closely related to the over-sampling meth-
ods were considered in this category. The first one, random undersampling, consists of elim-
inating, at random, elements of the over-sized class until it matches the size of the other
class. The second one, focused undersampling, consists of eliminating only elements further

away (where, again, o = .25 represents closeness to the boundaries)

Cost-Modifying The cost-modifying method used in this study consists of modifying
the relative cost associated to misclassifying the positive and the negative class so that it
compensates for the imbalance ratio of the two classes. For example, if the data presents
a 1:10 class imbalance in favour of the negative class, the cost of misclassifying a positive

example will be set to 9 times that of misclassifying a negative one.

10This factor means that for interval [a, b], data considered close to the boundary are those in [a, a+
.25 x (b-a)] and [a+.75 x (b-a), b]. If no data were found in these intervals (after 500 random trials
were attempted), then the data were sampled from the full interval [a, b] as in the random oversampling
methodology.

14
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Figure 6: Oversampling: Error Rate, Corrected

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 7: Oversampling: Error Rate, Uncorrected

Results for Question 2

Like in the previous section, four series of results are reported in the context of each scheme:
the corrected error, the uncorrected error, the false positive error and the false negative error.
The format of the results is the same as that used in the last section. The results for random
oversampling are displayed in Figures 6 to 9; those for focused oversampling, in Figures 10-
13; those for random undersampling in Figures 14-17; those for focused undersampling in

Figures 18-21; and those for cost-modifying, in Figures 22-25.

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 8: Oversampling: False Positive Error Rate

15



|

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 9: Oversampling: False Negative Error Rate

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5
Figure 10: Focused Oversampling: Error Rates, Corrected

The results indicate a number of interesting points. First, all the methods proposed to
deal with the class imbalance problem present an improvement over C5.0 used without any
type of re-sampling nor cost-modifying technique both in the corrected and the uncorrected
versions of the results. Nonetheless, not all methods help to the same extent. In particular, of
all the methods suggested, undersampling is by far the least effective. This result is actually
at odds with previously reported results (e.g., (Domingos, 99)), but we explain this disparity
by the fact that in the applications considered by (Domingos, 99), the minority class is the

class of interest while the majority class represents everything other than these examples

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 11: Focused Oversampling: Error Rates, UnCorrected
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Figure 12: Focused Oversampling: Error Rates, False Positives
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Figure 13: Focused Oversampling: Error Rates, False Negatives
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(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 14: Undersampling: Corrected Error Rate
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(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 15: Undersampling: Uncorrected Error Rate
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Figure 16: Undersampling: False Positive Error Rate
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Figure 17: Undersampling: False Negative Error Rate
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Figure 18: Focused Undersampling: Error Rate, Corrected
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Figure 19: Focused Undersampling: Error Rate, Uncorrected
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Figure 20: Focused Undersampling: False Positive Error Rate
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Figure 21: Focused Undersampling: False Negative Error Rate
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Figure 22: Cost Modifying: Corrected Error Rate
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Figure 23: Cost Modifying: Uncorrected Error Rate
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Figure 24: Cost Modifying: False Positive Error Rate
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Figure 25: Cost Modifying: False Negative Error Rate

of interest. It follows that in domains such as (Domingos, 99)’s the majority class includes
a lot of data irrelevant to the classification task at hand that are worth eliminating by
undersampling techniques. In our data sets, on the other hand, the roles of the positive and
the negative class are perfectly symmetrical and no examples are irrelevant. Undersampling
is, thus, not a very useful scheme in these domains. Focused undersampling does not present
any advantages over random undersampling on our data sets either and neither methods are
recommended in those cases where the two classes play symmetrical roles and do not contain
irrelevant data.

The situation, in the case of oversampling, is quite different. Indeed, oversampling is
shown to help quite dramatically at all complexity and training set size level. Just to
illustrate this fact, consider, for example, the situation at size 2 and degree of complexity 4:
while in this case, any degree of imbalance (other than the case where no imbalance is present)

causes C5.0 difficulties (see figures 2(b) and 3(b)), none but the highest degree of imbalance
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do so when the data is oversampled at random (see figures 6(b) and 7(b)). Contrarily to
the case of undersampling, the focused approach does make a difference—albeit, small—in
the case of oversampling. Indeed, at sizes 1 and 2, focused oversampling deals with the
highest level of complexity better than random oversampling (compare the results at degree
of difficulty 5 in figures 6(a, b) and 7(a, b) on the one hand and figures 10(a, b) and 11(a,
b), on the other hand). Interestingly, the improvement in overall error does not seem to
affect the distribution of the error. Indeed, as Figures 8, 9, 12 and 13 will attest, while
the false positive rate has decreased, the false negative one has not significantly increased
despite the fact that the size of the positive training set has increased dramatically. This is
quite an important result since it contradicts the expectation that oversampling would have
shifted the error distribution and, thus, not much helped in the case where it is essential
to preserve a low false negative error rate while learning the false positive error rate. In
summary, oversampling and focused oversampling seem quite effective ways of dealing with
the problem, at least in situations such as those represented in our training set.

The last method, cost-modifying, is more effective than both random oversampling and
focused oversampling in all but a single observed case, that of concept complexity 5 and Size 3
(compare the results for concept complexity 5 in figures 6(c), 7(c), 10(c) and 11(c) on the one
hand to those of figures 22(c) and 23(c) on the other). In this case both random and focused
oversampling are more accurate than cost-modifying. The generally better results obtained
with the cost-modifying method over those obtained by oversampling are in agreement with
(Lawrence et al., 98) who suggest that modifying the relative cost of misclassifying each class
allows to achieve the same goals as oversampling without increasing the training set size, a

step that can harm the performance of a classifier. Nonetheless, although we did not show
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it here, we assume that in those cases where the majority class contains irrelevant examples,

undersampling methods may be more effective than cost modifying ones.

Question 3: Are other classifiers also sensitive to Class
Imbalances in the Data?

Sections 1 and 2 studied the question of how class imbalances affect classification and how
they can be countered all in the context of C5.0, a decision tree induction system. In
this section, we are concerned about whether classification systems using other learning
paradigms are also affected by the class imbalance problem and to what extent. In particular,
we consider two other paradigms which, a priori, may seem less prone to hindrances in the
face of class imbalances than decision trees: Multi-Layer Perceptrons (MLPs) and Support
Vector Machines (SVMs).

MLPs can be believed to be less prone to the class imbalance problem because of their
flexibility. Indeed, they may be thought to be able to compute a less global partition of
the space than decision tree learning systems since they get modified by each data point
sequentially and repeatedly and thus follow a top-down as well as a bottom-up search of the
hypothesis space simultaneously. Even more convincingly than MLPs, SVMs can be believed
to be less prone to the class imbalance problem than C5.0 because boundaries between classes
are calculated with respect to only a few support vectors, the data points located close to
the other class. The size of the data set representing each class may, thus, be believed not
to matter given such an approach to classification.

The point of this section is to assess whether indeed MLLPs and SVMs are less prone to the

class imbalance problem and if so, to what extent. Again, we used domains belonging to the
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same family as the ones used in the previous section to make this assessment. Nonetheless,
because MLLP and SVM training is much less time-efficient than C5.0 training and because
SVM training was not even possible for large domains on our machine (because of a lack of
memory), we did not conduct as extensive a set of experiments as we did in the previous
sections. In particular, because of memory restrictions, we restricted our study of the effects
of class imbalances to domains of size 1 for SVMs (for MLPs, we actually conducted our
study on all sizes for the imbalance study since we did not have memory problems) and,
because of low training efficiency, we only looked at the effect of random oversampling and

undersampling for size 1 on both classifiers.!!

MLPs and the Class Imbalance Problem

Because of the nature of MLPs, more experiments needed to be ran than in the case of
C5.0. Indeed, because the performance of MLPs depends upon the number of hidden units
it uses, we experimented with 2, 4, 8 and 16 hidden units and reported only the results
obtained with the optimal network capacity. Other default values were kept fixed (i.e., all
the networks were trained by the Levenberg-Marquardt optimization method, the learning
rate was set at 0.01; the networks were all trained for a maximum of 300 epochs or until the
performance gradient descended below 1071%; and the threshold for discrimination between
the two classes was set at 0.5). This means that the results are reported a-posteriori (after
checking all the possible network capacities, the best results are reported).

The results are presented in Figures 26, 27, 28 and 29 for concept complexities c=1..5,

HUnlike in Question 2 for C5.0, our intent here is not to compare all possible techniques for dealing with
the class imbalance problem with MLPs and SVMs. Instead, we are only hoping to shed some light on
whether these two systems do suffer from class imbalances and get an idea of whether some simple remedial
methods can be considered for dealing with the problem.
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(b) Size=2 (c) Size=3

Figure 26: MLPs and the Class Imbalance Problem—Corrected

(a) Size=1 (b) Size=2 (c) Size=3 (d) Size=4 (e) Size=5

Figure 27: MLPs and the Class Imbalance Problem—Uncorrected

training set sizes s=1..5, and imbalance levels i=1..5. The format used to report these results
is the same as the one used in the previous two sections.

There are several important differences between the results obtained with C5.0 and those
obtained with MLPs. In particular, in all the MLP graphs a large amount of variance can
be noticed in the results despite the fact that all results were averaged over five different
trials. The conclusions derived from these graphs thus should be thought of reflecting general
trends rather than specific results. Furthermore, a careful analysis of the graphs reveals that

MLPs do not seem to suffer from the class imbalance problem in the same way as C5.0.

(a) Imbalanced (b) Oversampling (c)

Ll

Figure 28: Lessening the Class Imbalance Problem in MLP Networks—Corrected
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(a) Imbalanced (b) Oversampling (c) Undersampling
Figure 29: Lessening the Class Imbalance Problem in MLP Networks—
UnCorrected

Looking, for example, at the graphs for size 1 for C5.0 and MLP (see figures 2(a) and 3(a)
on the one hand and figures 26(a) and 27(a) on the other hand), we see that C5.0 displays
extreme behaviors: it either does a perfect (or close to perfect) job or it misclassifies 25% of
the testing set wrongly (see figure 2(a)). For MLP, this is not the case and misclassification
rates span an entire range. As a result, MLP seems less affected by the class imbalance
problem than C5.0. For example, for size=1, and concept complexity 4, C5.0 ran with
imbalance levels 4, 3, 2, and 1 (see figure 2(a)) misclassify 25% of the testing set whereas
MLP (see figure 26(a)) misclassifies the full 25% of the testing set for only imbalance levels
2 and 1—the highest degrees of imbalance (some misclassification also occurs at imbalance
levels 3 and 4, but not as drastic as for levels 2 and 1). Note that the difficulty displayed by
MLPs at concept complexity 5 for all sizes is probably caused by the fact that, once again
for efficiency reasons, we did not try networks of capacity greater than 16 hidden units. We,
thus, ignore these results in our discussion.

Another important difference that can be seen by looking at the graphs for size 5 of
both C5.0 (figures 2(e) and 3(e)) and MLP (figure 26(e) and 27(e)) is that while the overall
size of the training set makes a big difference in the case of C5.0, it doesn’t make any

difference for MLP: except for the highest imbalance levels combined with the highest degrees
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of complexity, C5.0 does not display any noticeable error at training set size 5—the highest.
MLPS’s on the other hand do. This may be explained by the fact that it is more difficult
for MLP networks to process large quantities of data than it is for C5.0.

Because MLP generally suffers from the class imbalance problem, we asked whether, like
for C5.0, this problem can be lessened by simple techniques. For the reason of efficiency
noted earlier and for reasons of conciseness of report, we restricted our experiments to the
cases of random oversampling and random undersampling and to the smallest size (size 1)
case. The results of these experiments are shown in Figures 28 and 29 which display the
results obtained with no re-sampling at all (a repeat of figures 26(a) and 27(a)), random
oversampling and random undersampling. Only the corrected and uncorrected results are
reported.

The results in these figures show that both oversampling and undersampling have a no-
ticeable effect for MLLPs, though once again, oversampling seems more effective. The differ-
ence in effectiveness between undersampling and oversampling, however, is less pronounced
in the case of MLLPs than it was in the case of C5.0. As a matter of fact, undersampling is
much less effective than oversampling for MLP in the most imbalanced cases, but it has com-
parable effectiveness in all the other ones. This suggests that like for C5.0, simple methods

for counteracting the effect of class imbalances should be considered when using MLPs.

SVMs and the Class Imbalance Problem

Like for MLPs, more experiments needed to be ran with SVMs than in the case of C5.0.
Actually, even more experiments were ran with SVMs than with MLPs. We ran SVMs with

a Gaussian Kernel but since the optimal variance of this kernel is unknown, we tried 10
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Figure 30: The Class Imbalance Problem in SVMs—Corrected.

(a) Irenb;;lla;nc;:d (b) VO\;er’sar;lpl“ing (c) tJn;ieIisa;nl;ling

Figure 31: The Class Imbalance Problem in SVMs—Uncorrected.
different possible variance values for each experiment. We experimented with variances 0.1,
0.2, etc. up to 1. We did not experiment with modifications to the soft margin threshold
(note that such experiments would be equivalent to the cost-modification experiments of
C5.0). Like for MLPs, the results are reported a-posteriori (after checking the results with
all the possible variances, we report only the best results obtained).

As mentioned before, because of problems of memory capacity, the results are reported
for a training set size of 1 and it was not possible to report results similar to those reported
for MLP in Figures 26 and 27. Instead, we report results similar to those of Figures 28 and 29
for MLPs in Figures 30 and 31 for SVMs. In particular, these figures show results obtained
by SVMs with no resampling at all, random oversampling and random undersampling for
size 1.

The results displayed in Figures 30(a) and 31(a) show that there is a big difference

between C5.0 and MLPs on the one hand and SVMs on the other. Indeed, while for both
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C5.0 and MLPs, the leftmost column in a cluster of columns—those columns representing
the highest degree of imbalances—were higher than the others (figures 2(a) and 26(a)), in the
case of SVMs (figure 30(a)) the 5 columns in the clusters display a flat value or the leftmost
columns have lower values than the rightmost ones (see the case of concept complexity 4 in
particular). The uncorrected results in Figure 31(a) reflect the fact that SVMs are completely
insensitive to class imbalances and make, on average, as many errors on the positive and
the negative testing set, and are shown to suffer if the relative cost of misclassifying the two
classes is altered in favour of one or the other class.

This is quite interesting since it suggests that SVMs are absolutely not sensitive to the
class imbalance problem (this, by the way, is similar to the property of the decision tree
splitting criterion introduced by (Drummond and Holte, 00)). As a matter of fact, Figures 30
and 31 (b) and (c) show that oversampling the data at random does not help in any way
and undersampling it at random even hurts the SVM’s performance.

All in all, this suggests that when confronted to a class imbalance situation, it might
be wise to consider using SVMs since they are robust to such problems. Of course, this
should be done only if SVMs fare well on the particular problem at hand as compared to
other classifiers. In our domains, for example, up to concept complexity 3 (included), SVMs
(figure 30(a)) are competitive with MLPs (figure 28(a)) and only slightly less competitive
with oversampled C5.0 (figure 6(a)). At complexity 4, oversampled MLPs (figure 28(b)) and

C5.0 (figure 6(a)) are more accurate than SVMs (figure 30(a)).
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Conclusion

The purpose of this paper was to explain the nature of the class imbalance problem, compare
various simple strategies previously proposed to deal with the problem and assess the effect
of class imbalances on different types of classifiers.

Our experiments allowed us to conclude that the class imbalance problem is a relative
problem that depends on 1) the degree of class imbalance; 2) the complexity of the concept
represented by the data; 3) the overall size of the training set; and 4) the classifier involved.

More specifically, we found that the higher the degree of class imbalance the higher the
complexity of the concept and the smaller the overall size of the training set, the greater the
effect of class imbalances in classifiers sensitive to the problem. The three types of classifiers
we tested were not sensitive to the class imbalance problem in the same way: C5.0 was the
most sensitive of the three, MLPs came next and displayed a different pattern of sensitivity
(a grayer-scale type compared to C5.0’s which was more categorical); and SVMs came last
since they were shown not to be at all sensitive to this problem.

Finally, for classifiers sensitive to the class imbalance problem, it was shown that simple
re-sampling methods could help a great deal whereas they do not help, and in certain cases,
even hurt the classifier insensitive to class imbalances. An extensive and careful study of
the classifier most affected by class imbalances, C5.0, reveals that while random re-sampling
is an effective way to deal with the problem, random oversampling is a lot more useful
than random undersampling. More “intelligent” oversampling helps even further, but more
“intelligent” undersampling does not. The cost-modifying method seems more appropriate

than the over-sampling and even focused over-sampling method except in one case of very
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high complexity and medium-range training set size.
Future Work

The work in this paper presents a systematic study of class imbalance problems on a large
family of domains. Nonetheless, this family does not cover all the known characteristics
that a domain may take. For example, we did not study the effect of irrelevant data in the
majority class. We assume that such a characteristic should be important since it it may
make undersampling more effective than oversampling or even cost-modifying on domains
presenting a large variance in the distribution of the large class. Other characteristics should
also be studied since they may reveal other strengths and weaknesses of the remedial methods
surveyed in this study.

In addition several other methods for dealing with class imbalance problems should be
surveyed. Two approaches in particular are 1) over-sampling by creation of new synthetic
data points not present in the original data set but presenting similarities to the existing data
points and 2) learning from a single class rather than from two classes, trying to recognize
examples of the class of interest rather than discriminate between examples of both classes.

Finally, it would be interesting to combine, in an “intelligent” manner, the various meth-
ods previously proposed to deal with the class imbalance problem. Preliminary work on this
subject was previously done by (Chawla et al., 01) and (Estabrooks and Japkowicz, 01), but

much more remains to be done in this area.
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