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Abstract

Handing unbalanced data and noise are two important issues in the field of machine learning. This paper proposed a complete frame-
work of fuzzy relevance vector machine by weighting the punishment terms of error in Bayesian inference process of relevance vector
machine (RVM). Above problems can be learned within this framework with different kinds of fuzzy membership functions. Experiments
on both synthetic data and real world data demonstrate that fuzzy relevance vector machine (FRVM) is effective in dealing with unbal-
anced data and reducing the effects of noises or outliers.
� 2008 Published by Elsevier B.V.
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1. Introduction

Relevance vector machine is a popular learning machine
motivated by the statistical learning theory, and gaining
popularity because of theoretically attractive features and
profound empirical performance (Tipping, 2001a,b;
Majumder et al., 2005; Bishop and Tipping, 2000). How-
ever, there are still some limitations of this theory. During
the training procedure of RVM, all training points are trea-
ted uniformly, as a matter of fact, in many real world appli-
cations, the influence of the training points are different.

There are many researches which are focused on the fol-
lowing two major issues: learning from unbalanced data and
noise (Murphey et al., 2004; Guo and Murphey, 2001; Tao
et al., 2005; Fu Lin and Wang, 2005; Lin and Wang, 2002,
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2004). In many application problems, the training data for
each class is extremely unbalanced. To classify potential cus-
tomers in ecommerce is a case in point. One thing in com-
mon in ecommerce is that 99% of netizen do not buy any
product but only 1% buy some product. Most machine
learning algorithms may not be robust enough and some-
times their performance could be affected severely with
unbalanced data. This issue is caused by the overwhelming
number of learning samples in one class input to the learning
system partially undo the training effect on the small learn-
ing samples of a different class. The problem is more serious
when data set has high level of noise.

In order to deal with above problems in the area of
machine learning, Lin and Wang propose fuzzy support
vector machine (FSVM) to eliminate the influence caused
by unbalanced data and noise (Fu Lin and Wang, 2005;
Lin and Wang, 2002, 2004). In this paper, a complete frame-
work of FRVM is presented to address above problems
with respect to RVM. By introducing Fuzzy mathematics,
RVM is reformulated into FRVM. Specifically, a fuzzy
membership is assigned to each input point such that differ-
ent input points can make different influences in learning
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process. This is a natural way to make the learning algo-
rithm more robust against unbalanced data and noise.
Compared with FSVM, FRVM is based on full probabilis-
tic framework rather than optimization theory.

The rest of this article is organized as follows. A brief
review of relevance vector machine will be described in Sec-
tion 2. Section 3 gives details on the architectures of fuzzy
relevance vector machine. Different kinds of fuzzy member-
ship functions are introduced in Section 4. The perfor-
mance of the fuzzy relevance vector machine is presented
and compared with the conventional RVM in Section 5.
Some concluding remarks are included in Section 6.

2. Relevance vector machine

RVM is a probabilistic non-linear model with a prior
distribution on the weights that enforces sparse solutions
(Tipping, 2001a). It is reported that RVM can yield nearly
identical performance to, if not better than, that of SVM
while using far fewer relevance vectors than the number
of support vectors for SVM in several benchmark studies
(Tipping, 2001a,b; Majumder et al., 2005; Bishop and
Tipping, 2000). Compared with SVM, it is not necessary
for RVM to tune any regularization parameter during
the training phase, neither for kernel function to satisfy
Mercer’s condition. Furthermore, the predictions are
probabilistic. For regression problems, the RVM makes
predictions based on the function:

yðx;xÞ ¼
XN

i¼1

xiKðx; xiÞ þ x0 ð1Þ

where K(x,xi) is a kernel function, which effectively defin-
ing one basis function for each example in the training
set, and x = (x0,x1, . . .,xN)T are adjustable parameters
(or weights). Inferring weights procedures is under a fully
probabilistic framework. Specifically, a Gaussian prior dis-
tribution of zero mean and variance r2

xj
� a�1

j is defined
over each weight:

pðxjaÞ ¼
YN
i¼0

Nðxij0; a�1
i Þ ð2Þ

where the key to obtain sparsity is the use of N + 1 inde-
pendent hyperparameters a = (a0,a1, . . .,aN)T, one per
weight (or basis function), which moderate the strength
of the prior information.

Given a data set of input-target pairs G ¼ fðxi; tiÞgN
i¼1

(where xi is the input vector, ti is the desired real-valued
labeling, and N is the number of the input records). Sup-
pose the targets are independent and noise is assumed to
be mean-zeros Gaussian with variance r2. Thus, the likeli-
hood of the complete data set can be written as

pðtjx; r2Þ ¼ ð2pr2Þ�N=2 exp � 1

2r2
kt � Uxk2

� �
ð3Þ

where t = (t1, t2, . . ., tN)T, U = [/(x1),/(x2), . . .,/(xN)]T and
/(xn) = [1, K(xn,x1), K(xn,x2), . . .,K(xn,xN)]T.
Having defined the prior distribution and likelihood
function, from Bayes’ rule, the posterior over weights is
thus given by

pðxjt; a; r2Þ ¼ pðtjx; r2ÞpðxjaÞ
pðtja; r2Þ � N xjl;Rð Þ ð4Þ

where the posterior covariance and mean are, respectively,

R ¼ ðr�2UTUþ AÞ�1 ð5Þ
l ¼ r�2RUTt ð6Þ

with A = diag(a) = diag(a0,a1, . . .,aN).
The likelihood distribution over the training targets can

be ‘‘marginalized” by integrating out the weights to obtain
the marginal likelihood for the hyperparameters:

pðtja; r2Þ ¼
Z

pðtjx; r2ÞpðxjaÞdx � Nð0;CÞ ð7Þ

where the covariance is given by C = r2I + UA�1UT.
The estimated value of the model weights is given by the

mean of the posterior distribution, which is also the maxi-
mum a posteriori (MAP) estimate of the weights, and
depends on the value of the hyperparameters a and of
the noise r2 whose estimated value is obtained by maximiz-
ing (7).

Given a new input x�, the probability distribution of the
corresponding output y� is given by the (Gaussian) predic-
tive distribution:

pðt�jx�; aMP; r
2
MPÞ ¼

Z
pðt�jx�;x; r2

MPÞpðxjt; aMP; r
2
MPÞdx

� Nðy�; r2
�Þ

ð8Þ
where the mean and the variance (uncertainty) of the pre-
diction are, respectively,

y� ¼ lT/ðx�Þ; ð9Þ
r2
� ¼ r2

MP þ /ðx�ÞTR/ðx�Þ: ð10Þ

The RVM is built on the few training samples whose
associated hyperparameters do not go to infinity during
the training process, leading to a sparse solution. These
remaining samples are called the relevance vectors (RVs),
resembling the SVs in the SVM framework. We give the
pseudo-code of the RVM algorithm in Algorithm 1.

Relevance vector classification follows an essentially
identical framework as for regression, for simplicity we
omit details here:

Input: S ¼ fðxi; tiÞgN
i¼1: training data set; N: the number

of the independent samples; en: additive noise
assumed to be mean-zero Gaussian with variance
r2.

Output: S0 � S: relevance vectors; y(x,x): predicted
function.
Termination conditions: training samples S ¼ fðxi; tiÞgi¼1

are all trained.
N



D.-F. Li et al. / Pattern Recognition Letters 29 (2008) 1175–1181 1177
Algorithm 1 (RVM).
Begin

hyperparameters a and r2 are obtained according to
maximizing Eq. (7) the marginal likelihood for hyper-
parameters a and r2;
model weights are given by mean of the posterior dis-
tribution Eq. (4); for i = 1 to N
{ if xi 6¼ 0
{The corresponding point (xi, ti) is a relevance
vector;}
i ¼ iþ 1;

}
predicted function y(x,x) is calculated according to
Eq. (1);

End
3. Fuzzy relevance vector machine

It has been emphasized above that the performance of
RVM relies on only a few training points represent ‘‘proto-
typical” samples of classes, except them, most training
points could be considered of no use or even harmful.
Thus, to further improve the performance of RVM model,
different training points should be treated with various atti-
tudes, i.e. a fuzzy membership si associated with each train-
ing point xi can be used as the attitude of meaningful. We
extend the concept of RVM with fuzzy membership and
named it as FRVM.

3.1. For regression problems

The final model obtained by RVM can be regarded as
minimize:

LðxÞ ¼ 1

2r2

XN

n¼1

½tn � xT/ðxnÞ�2 þ
XN

i¼0

log jxij ð11Þ

where the first term of Eq. (11) is a measure of sum error in
the RVM, and the second term of Eq. (11) is the regulari-
zation term. When introducing the fuzzy membership si of
the corresponding point xi, Eq. (11) can be changed as
follows:

LðxÞ ¼ 1

2r2

XN

n¼1

½snðtn � xT/ðxnÞÞ�2 þ
XN

i¼0

log jxij ð12Þ

where the left term of Eq. (12) can be regarded as weighted
sum error in the RVM.

Considering the difference between Eqs. (11) and (12) in
the Bayesian inference, it is necessary to reformulate Eqs.
(3), (5) and (6) in classical RVM. Eq. (3) is redefined as
follows:

pðtjx; r2Þ ¼ ð2pr2Þ�N=2 exp � 1

2r2

XN

n¼1

½snðtn � xT/ðxnÞÞ�2
( )

ð13Þ
Eqs. (5) and (6) are altered based on Eq. (13), gives:

R ¼ ðr�2UTG2Uþ AÞ�1 ð14Þ
with G = diag(s1, s2, . . ., sN):

l ¼ r�2RUTGt: ð15Þ
Eq. (7) for marginal likelihood is replaced by

pðtja; r2Þ ¼
Z

pðtjx; r2ÞpðxjaÞdx � Nð0;CÞ; ð16Þ

where the covariance is given by C = r2I + GUA�1UTGT.
The updating procedure for a is the same as classical

RVM, i.e. does not need to change:

anew
i ¼ ci

l2
i
; ð17Þ

where li is the ith posterior mean weight from (15) and ci is
defined by

ci ¼ 1� aiRii ð18Þ
With Rii the ith diagonal element of the posterior weight
covariance from (16) computed with the current a and r2

values. For the noise variance r2, the update is redefined
as follows:

ðr2Þnew ¼ kGt � GUlk2
= N � Ricið Þ ð19Þ
3.2. For classification problems

For two-class classification, applying the generalization
linear model and logistic sigmoid link function, the likeli-
hood can be written as follows:

pðtjxÞ ¼
YN
n¼1

rfyðxn; xÞgtn ½1� rfyðxn; xÞg�1�tn ð20Þ

where the targets tn 2 {0,1}.
The most probable weights xMP can be obtained by

finding the minimum over of

� logfpðtjxÞpðxjaÞg ¼ �
XN

n¼1

½tn log yn þ ð1� tnÞ

� logð1� ynÞ� þ
1

2
xTAx ð21Þ

with yn = r{y(xn;x)}. Where the first term of Eq. (21) is the
sum error of data, and the second term of Eq. (21) is the
regularization term. When introducing the fuzzy member-
ship of the corresponding point, Eq. (21) can be changed
as follows:

� logfpðtjxÞpðxjaÞg ¼ �
XN

n¼1

sn½tn log yn þ ð1� tnÞ

� logð1� ynÞ� þ
1

2
xTAx ð22Þ

The following procedure adopt the efficient ‘‘iteratively-re-
weighed least-squares” algorithm to find xMP.
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The gradient and Hessian matrix of (22) are given by

g ¼ UT diagðsÞðy � tÞ þ Ax ð23Þ
Hessian ¼ UT diagðsÞBUþ A ð24Þ

where B = diag(b1,b2, . . .,bN) is a diagonal matrix with
bn = r{y(xn)}[1 � r{y(xn)}]. The posterior covariance is
thus given by

R ¼ ðUT diagðsÞBUþ AÞ�1 ð25Þ

Using the statistics R and xMP, the hyperparameters a are
updated with (17) in identical fashion to the regression
case.

From the above, we can easily conclude that it is stan-
dard RVM if we set all si = 1. With different value of si,
we can control the trade-off of the respective training point
(xi, ti) in the system. A smaller value of si makes the corre-
sponding point (xi, ti) less important in the training. So
RVM is the special case of FRVM if we set all si = 1 and
FRVM is more suitable for classify and regression.

4. Generating the fuzzy memberships

There are two typical examples for unbalanced data:
data with time property or data with classes that have very
unequal frequency. In many real applications, some sam-
ples may be outliers or be corrupted by noise, Since the
RVM depends on only a small part of the data points
(RVs), it may become sensitive to noises or outliers in the
training set. In this paper, fuzzy memberships are utilized
to make RVM more robust under above circumstance.
Specifically, different fuzzy membership functions are
defined.

4.1. Data with time property

Given a sequence of training points

fðx1; y1; t1Þ; . . . ; ðxN ; yN ; tN Þg ð26Þ

where t1 6 	 	 	 6 tN is the time when the point arrived in the
system. Let fuzzy membership si be a function of time ti

si ¼ f ðtiÞ ð27Þ

such that s1 = l 6 	 	 	 6 sN = 1.
A quadric function of time is chosed to approximate

fuzzy membership function

si ¼ f ðtiÞ ¼ aðti � bÞ2 þ c ð28Þ

by applying the boundary conditions, the following shows

si ¼ f ðtiÞ ¼ ð1� lÞfðti � t1Þ=ðtN � t1Þg2 þ l ð29Þ
4.2. Classes with very unequal frequency

In some classification problem, cost might vary, i.e. cost
matrices are constructed for different classes. The prototyp-
ical example of the problem of cost-sensitive classification
is medical diagnosis which reflect 90% healthy and 10% dis-
ease. Classification error rate or accuracy is not the best
measure here. In this situation, let fuzzy membership si

be a function of class yi

si ¼
sþ; yi ¼ 1

s�; yi ¼ �1

�
ð30Þ
4.3. Outliers and noises

Lin and Wang have proposed two strategies for auto-
matic setting of fuzzy memberships in train support vector
machine with noise data (Lin and Wang, 2004). Suppose a
heuristic function h(x) is highly relevant to the fuzzy mem-
bership function l(x). The relationship between functions
h(x) and l(x) is defined as

lðxÞ ¼

1;

if hðxÞ > hc

rþ ð1� rÞfðhðxÞ � hT Þ=ðhC � hT Þgd
;

if hðxÞ < hT

r;

otherwise

8>>>>>>>><
>>>>>>>>:

ð31Þ

In the context of discriminating between noises and data,
there are two strategies to define the heuristic function
h(x). One is based on kernel-target alignment (Cristianini
et al., 2002) and the other is k-NN.

The strategy of kernel-target alignment (KT) uses the
function fK(xi,yi) as the heuristic function h(xi), i.e.

hðxiÞ ¼ fKðxi; yiÞ ¼
XN

j¼1

yiyjKðxi; xjÞ ð32Þ

where K(xi,xj) = exp(�r�2kxi � xjk2). The strategy of k-
NN (k-NN) defines the heuristic function in the following
procedure:


 Find a set SK
i that consists of k nearest neighbors of xi.


 Count the number of data points in the set SK
i that the

class label is the same as that of the data point xi, and
represents it as ni.

 Define h(xi) = ni.

Results presented in (Lin and Wang, 2004) indicate that
both two strategies slightly improve the performance of
FSVM, meanwhile, the time complexity of FSVM increases
due to the need to estimate many extra parameters. To
make a trade-off between predicting performance and com-
plexity, a simple way to set the fuzzy membership could be
used as an alternative.

Denote the mean of class +1 as x+ and the mean of class
�1 as x�. The radius of class +1 is

rþ ¼ max
fxijyi¼1g

kxþ � xik ð33Þ

and the radius of class �1 is



Table 1
Comparison between the RVM method and the FRVM method in models
constructed with unbalanced data about training errors, test errors,
unbalanced errors and relevance vectors

Data with time
property

Classes with very unequal
frequency

RVM FRVM RVM FRVM

Training errors (%) 6.40 6.40 6.40 7.60
Relevance vectors 4 5 4 6
Test errors (%) 9.60 9.30 9.60 8.50
Unbalanced errors (%) 4.40 4.20 5.30 3.40
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r� ¼ max
fxi jyi¼�1g

kx� � xik ð34Þ

Then fuzzy membership si of xi in class +1 is defined as
follows

si ¼

1;

kxi � xþk=rþ 6 kxi � x�k=r�
fðkxi � x�k=r�Þ=ðkxi � xþk=rþÞgq

;

else

8>>><
>>>:

ð35Þ

and the fuzzy membership si of xi in class �1 is similar to
class +1

si ¼

1;

kxi � x�k=r� 6 kxi � xþk=rþ
fðkxi � xþk=rþÞ=ðkxi � x�k=r�Þgq

;

else

8>>><
>>>:

ð36Þ
5. Experiments

We have described the basis idea, method and process of
FRVM framework in detail. By weighting the punishment
terms of error in Bayesian inference process of RVM, prob-
lems such as training with unbalanced data or noisy data
can be solved with FRVM. Now, to validate the effective-
ness of FRVM framework, a synthetic dataset and eight
real datasets are selected to evaluate the performance of
FRVM as follows.

5.1. Experiment with unbalanced data

Ripley’s synthetic data1 is used to evaluate the FRVM
with unbalanced data. This data consists of two features
and one targeted variable.

Table 1 gives the results of simulations with unbalanced
data. Both two typical examples for unbalanced data are
given. As shown in Table 1, we can see the following
results:

(1) In the training phase, the training error of FRVM is
worse than that of RVM. That is because the princi-
ple disadvantage of RVM is the complexity of the
training phase, as it is necessary to repeatedly com-
pute and invert the Hessian matrix, requiring O(N2)
storage and O(N3) computation. And this disadvan-
tage is strengthened in the case of FRVM. A little
rounding computation error because of the compute
may lead to a big error in the result, at the same time
the data is unbalanced, so in the training phase the
training error of FRVM is worse than that of RVM.

(2) Test errors and unbalanced errors (errors of later
data for data with time property and errors of class
+1 for data with classed that have very unequal fre-
quency) of FRVM are consistently smaller than that
1 http://www.stats.ox.ac.uk/pub/PRNN/.
of RVM. It is natural because in FRVM theory dif-
ferent train data has different contribution to the final
FRVM model and RVM is the special case of FRVM
if we set all si = 1, so FRVM is more suitable for clas-
sify and regression.

(3) FRVM uses more relevance vectors than RVM. It is
noted that a smaller si reduces the effect the parame-
ter xi in problem (13) such that the corresponding
point (xi, ti) is treated as less important. An important
Fig. 1. Comparison of the visual results for data with time property
between RVM method and SVM method.

http://www.stats.ox.ac.uk/pub/PRNN/
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difference between RVM and FRVM is that the
points with the same value of xi may indicate a differ-
ent type of relevance vectors in FRVM due to the
factor si, that is to say there are two irrelevance vec-
tors (xi, ti) and (xk, tk) with the same parameter xi in
RVM, whose fuzzy degree, respectively, is si and sk in
Fig. 2. Comparison of the visual results for classes with very unequal
frequency between RVM method and FRVM method.

Table 2
Comparison between the RVM method and the FRVM method in models
constructed with noise data about test errors

Data sets Test errors (%)

RVM FRVM

Titanic 22.79 ± 0.34 22.54 ± 0.42
Breast-cancer 28.18 ± 4.89 27.14 ± 5.52
Banana 10.94 ± 0.48 10.67 ± 0.40
Thyroid 3.67 ± 1.86 3.17 ± 1.88
Diabetis 24.80 ± 2.49 24.17 ± 2.47
Heart 19.8 ± 4.38 18.1 ± 3.48
Waveform 10.91 ± 0.36 10.61 ± 0.56
Twonorm 3.51 ± 0.40 3.36 ± 0.42
FRVM. If the value of si is much bigger than the
value of sk, the corresponding point (xi, ti) becomes
much important in the training, and (xi, ti) becomes
relevance vector. So FRVM uses more relevance vec-
tors than RVM.
Fig. 1a and b are the visual results for data with time
property by using RVM and FRVM, respectively. Fig. 2a
and b are the visual results for data with classes that have
very unequal frequency by using RVM and FRVM,
respectively.

5.2. Experiment with noisy data

Eight datasets2 are used to investigate the performance
of FRVM with noise, a total of 100 training/test splits
are provided by the authors of these datasets, our results
show average over the 10th, 20th, 100th of those. All
parameters are estimated through 10-fold cross-validation.

Table 2 presents the results of simulations with noise
which show that FRVM can improve the performance of
RVM when the data contains noisy data.

From above results, we can easily conclude that FRVM
can cope with unbalanced data and noisy data better than
RVM.

6. Conclusion

Pattern recognition is a well-studied problem in machine
learning. Various techniques such as decision trees, neural
networks, and rule induction, have been developed and
successfully applied to many domains. Many of these stan-
dard pattern recognition algorithms usually assume that
training samples are evenly distributed among different
classes and without corrupted by noise. However, unbal-
anced data sets or noisy data sets appear frequently in real
world machine learning problems, and increase difficulties
in the training phase.

This paper presents a class of fuzzy relevance vector
machine that combines the fuzzy mathematics with
RVM. Fuzzy relevance vector machine imposes a fuzzy
membership to each input point such that different input
points can make different contributions to the Bayesian
learning process. By setting different types of fuzzy mem-
berships, problems such as training with unbalanced data
or noisy data can be solved with a extension towards
RVM. Experiments on both synthesis data and real world
data have demonstrated that the proposed fuzzy relevance
vector machine is reasonable and its performance is more
robust than that of regular RVM.

There still remains some directions for future work. One
is to ‘‘dig deep” the machine learning problems, then more
2 These datasets are available at http://ida.first.fraunhofer.de/projects/
bench/.

http://ida.first.fraunhofer.de/projects/bench/
http://ida.first.fraunhofer.de/projects/bench/
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suitable model of fuzzy membership function can be
built.
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