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Abstract. We show that the novelty detection approach is a viable so-
lution to the class imbalance and examine which approach is suitable for
different degrees of imbalance. In experiments using SVM-based classi-
fiers, when the imbalance is extreme, novelty detectors are more accu-
rate than balanced and unbalanced binary classifiers. However, with a
relatively moderate imbalance, balanced binary classifiers should be em-
ployed. In addition, novelty detectors are more effective when the classes
have a non-symmetrical class relationship.

1 Introduction

The class imbalance refers to a situation where one class is heavily underrepre-
sented compared to the other class in a classification problem [1]. Dealing with
the class imbalance is of importance since it is not only very prevalent in various
domains of problems but also a major cause for performance deterioration [2].
When one constructs a binary classifier with an imbalanced training dataset,
the classifier produces lopsided outputs to the majority class. In other words, it
classifies far more patterns to belong to the majority class than it should. Real
world examples include fault detection in a machine, fraud detection, response
modeling, and so on.

A vast number of approaches have been proposed to deal with the class
imbalance [1,2,3,4,5,6]. The most popular methods try to balance the dataset
with under-/over-sampling, and cost modification. A balanced binary classifier
is constructed using one of the balancing methods, while a classifier is called
unbalanced when no balancing method is implemented. On the other hand, the
drastic solution of totally ignoring one class during training can work well for
some imbalanced problems [7,8,9,10]. This approach is called novelty detection
or one-class classification [11,12] where the majority class is designated as nor-
mal while the minority class as novel. A classifier learns the characteristics of the
normal patterns in training data and detects novel patterns that are different
from the normal ones. Geometrically speaking, a novelty detector generates a
closed boundary around the normal patterns [13]. Although a novelty detector
usually learns only one class, it can also learn two classes. It has been empiri-
cally shown that a novelty detector trained with a few novel patterns as well can
generate a more accurate and tighter boundary [9,12].
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In this paper, we show that the novelty detection approach is a viable solu-
tion to the class imbalance. In particular, two types of novelty detectors, 1-SVM
trained only with one class [13] and 1-SVM trained with two classes (1-SVM2)
[14], are compared with balanced and unbalanced SVMs. In order to investigate
which approach is suitable for different degrees of class imbalance, experiments
are conducted on artificial and real-world problems with varying degrees of im-
balance. In the end, we examine the following conjectures:

(a) Novelty detectors are suitable for an extreme imbalance while balanced bi-
nary classifiers are suitable for a relatively moderate imbalance.

(b) A problem is called symmetrical when each class originally consists of ho-
mogeneous patterns and a classifier discriminates two classes, e.g. apples
and oranges, or males and females. A problem is called non-symmetrical,
when only one class is of interest and everything else belongs to another
class. A classifier distinguishes one class from all other classes, e.g. apples
from all other fruits. Novelty detectors are more suitable for datasets with
non-symmetrical class relationships than with symmetrical relationships.

(c) As the class imbalance diminishes, a novelty detector trained with two classes
improves more, compared to one trained with one class.

The following section briefly reviews the support vector-based classifiers used
in this paper and Section 3 presents the experimental results. Conclusion and
some remarks are given in Section 4.

2 Support Vector-Based Classifiers

Suppose a dataset X = {(xi, yi)}N
i=1 where xi is a d-dimensional input pattern

and yi is its class label. Let us define the majority and the minority classes as
X+ = {xi|yi = +1} and X− = {xi|yi = −1}, respectively. In an imbalanced
dataset, N+ � N− where N+ and N− are the numbers of patterns in X+ and
X−, respectively. We employ unbalanced SVM, balanced SVMs, 1-SVM, and
1-SVM2 as listed in Table 1.

Table 1. Classifiers used: SVM indicates the standard two-class SVM. SVM-U, SVM-
O, and SVM-C are balanced SVMs using under-sampling, over-sampling, and cost
modification, respectively. 1-SVM and 1-SVM2 indicate one-class SVMs trained with
one class and with two classes, respectively.

Unbalanced Balanced Novelty detector Novelty detector
binary classifier binary classifiers with one class with two classes

SVM-U
SVM SVM-O 1-SVM 1-SVM2

SVM-C
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2.1 Support Vector Machine (SVM)

SVM finds a hyperplane that separates two classes with a maximal margin in a
feature space [15]. An optimization problem can be considered:

min
1
2
‖w‖2 + C

N∑

i=1

ξi, (1)

s.t yi(wTΦ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , N,

where C ∈ (0,∞] is the cost coefficient which controls the trade-off between the
margin and the training error. The solution can be obtained by the quadratic
programming techniques. In the optimal solution, only a small number of αi’s
are positive where αi’s are the Lagrangian multipliers related to the training
patterns. Those patterns for which αi’s are positive are called support vectors
and the subset of support vectors is denoted as SV. The SVM decision function
for a test pattern x is computed as

f(x) = sign
[
wTΦ(x) + b

]
= sign

[
∑

xi∈SV

αiyik(xi,x) + b

]
. (2)

2.2 Balancing with SVM

In an imbalanced problem, a typical binary classifier predict most or even all
patterns to belong to the majority class [1]. Although the classification accuracy
may be very high, this is not what we are interested in. We would like to con-
struct a classifier which identifies both classes. Therefore, a balanced classifier
is preferred although its accuracy may be lower than an unbalanced one. Vari-
ous balancing methods have been proposed [1,2,3,4,5,6]. We apply a few of the
simplest methods: under-sampling, over-sampling, and cost modification.

With under-sampling [1], N− patterns are randomly sampled from X+ to
equate the numbers of patterns in two classes. With over-sampling [5], patterns
from X− are randomly sampled N+ times with replacement. The two sampling
methods are the most simple and the most popular. However, under-sampling
may discard important information from the majority class. Over-sampling do
not make additional information while increasing the number of patterns sig-
nificantly. In this paper, SVM-U and SVM-O denote SVM classifiers using the
under- and over-sampling methods, respectively.

For SVM, the cost modification method [3,6] is readily applicable by assigning
a smaller cost to the majority class and a larger cost to the minority class to
assure that the minority class is not ignored. One way to accomplish it is to
modify the objective function in (1) as follows,

min
1
2
‖w‖2 + C+

∑

xi∈X+

ξi + C− ∑

xi∈X−
ξi, (3)

where C+ = N−
N C and C− = N+

N C. The classifier obtained by solving (3) is
denoted as SVM-C. SVM-C may lead to seriously biased results since the costs
assigned entirely based on the numbers of patterns can be incorrect.
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2.3 Support Vector Machine for Novelty Detection

1-SVM [13] finds a function that returns +1 for a small region containing training
data and −1 for all other regions. A hyperplane w is defined to separate a
fraction of patterns from the origin with a maximal margin in a feature space.
The conventional 1-SVM performs a kind of unsupervised learning, learning only
the majority class and not considering the class labels. Thus an optimization
problem can be considered as follows,

min
1
2
‖w‖2 − ρ +

1
νN+

∑

xi∈X+

ξi, (4)

s.t wT Φ(xi) ≥ ρ − ξi, ξi ≥ 0, ∀xi ∈ X+.

where ν ∈ (0, 1] is a cost coefficient.
One can construct 1-SVM2 [14] by incorporating patterns from the minority

class into (4) as follows,

min
1
2
‖w‖2 − ρ +

1
νN

∑

i

ξi, (5)

s.t yi(wT Φ(xi) − ρ) ≥ ξi, ξi ≥ 0, i = 1, 2, · · · , N.

Note that this is not for binary classification. The objective function is not to
separate two classes but to separate the majority patterns from the origin while
keeping the errors as small as possible. The solutions of (4-5) can be obtained
analogously to SVM.

3 Experimental Results

The classifiers were applied to ten artificial and 24 real-world problems. For
each training dataset, the degree of class imbalance varied with the fractions
of the minority class being 1, 3, 5, 7, 10, 20, 30, and 40%. Each classifier was
constructed based on a training dataset and evaluated on a test set which has
a relatively balanced class distribution. Ten different training and test sets were
randomly sampled for each problem to reduce a sampling bias.

To train the SV-based classifiers, two hyper-parameters have to be specified
in advance, the RBF kernel width, σ, and the cost coefficient, C or ν. For each
problem, we chose the best parameters on a hold-out dataset which has an equal
number of patterns from the two classes.

3.1 Artificial Datasets

We generated five types of majority classes which reflect features such as scal-
ing, clustering, convexity, and multi-modality. For each distribution, two types
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Fig. 1. The artificial datasets: The first and second rows correspond to symmetrical and
non-symmetrical cases, respectively. The columns correspond to “Gauss”, “Gauss3”,
“Ellipse”, “Ellipse2”, and “Horseshoe” from left to right. The circles and the crosses
represent patterns from the majority and the minority classes, respectively.

of minority classes were generated. One has a multivariate Gaussian distribution
while the other has the uniform distribution over the whole input space. The for-
mer corresponds to the symmetrical case while the latter to the non-symmetrical
case. Thus, ten (= 5 × 2) artificial datasets were generated as shown in Fig. 1.
For each dataset, 200 and 1,000 patterns were sampled from the majority class
for training and test, respectively, and 1,000 patterns were sampled from the
minority class for test.

Fig. 2(a) shows the average accuracies over the five symmetrical artificial
datasets. When the fraction of the minority class is 5% or lower, 1-SVM and
1-SVM2 are superior to the binary classifiers, balanced or not. Then, balanced
classifiers, especially SVM-U and SVM-O, improved and came ahead of them
as the fraction of the minority class increases. 1-SVM is generally slightly bet-
ter than 1-SVM2. The average accuracies over the non-symmetrical datasets are
shown in Fig. 2(b). Novelty detectors are even better than in Fig. 2(a). In par-
ticular, 1-SVM is the best classifier or tied for the best for all the fractions.
Unexpectedly, 1-SVM2 gets gradually worse as the fraction of the minority class
increases. Novelty detection is more effective for non-symmetrical datasets than
for symmetrical ones. Considering that 1-SVM is better than 1-SVM2, utilizing
two classes does not necessarily lead to better results. As expected, unbalanced
SVM did not work well and performed worst in both cases, although it caught
up with the others as the fraction increased.

Fig. 3 shows examples of decision boundaries with 10% of patterns from the
minority class. For the symmetrical dataset, every classifier generated a reason-
able boundary. The boundaries by the binary classifiers resembled the “optimal”
one. While the boundaries by the novelty detectors were different from the opti-
mal one, they could effectively discriminate the two classes. On the other hand,
for the non-symmetrical dataset, the binary classifiers failed to generate good
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Fig. 2. The average accuracies for the artificial datasets

decision boundaries. SVM generated boundaries that will classify too large a
region as the majority class. Remember that crosses can appear anywhere in the
2D space. SVM-U did its best given the dataset, but generated a boundary that
was much different from the optimal one because too many patterns from the
majority class were discarded. Another drawback of SVM-U is its instability. A
boundary in one trial was very different from a boundary in another. Note that
we present the best looking boundary in our experiments. SVM-O and SVM-
C performed poorly since the patterns from the minority class were too scarce
to balance the imbalance. The novelty detectors generated boundaries similar to
the optimal one, though the boundaries by 1-SVM and 1-SVM2 were not exactly
identical.

3.2 Real-World Datasets

A total of 21 real-world datasets were selected from UCI machine learning reposi-
tory1, Data Mining Institute (DMI)2, Rätsch’s benchmark repository3, and Tax4

as listed in Table 2. Digit and letter recognition problems are non-symmetrical
since they were formulated to distinguish one class from all others. For the digit
dataset, ‘1’ and ‘3’ were designated in turn as the majority classes and discrim-
inated from all other digits, respectively. For the letter dataset, ‘a’, ‘o’, and ‘s’
were designated in turn as the majority class. Also, the pump dataset is non-
symmetrical since a small non-faulty region is to be recognized in the whole
input space. Therefore, six non-symmetrical problems were formulated.

Fig. 4(a) shows the average accuracies over the 18 symmetrical real-world
problems. The novelty detectors are better than the binary classifiers when the
fraction is lower than 5%. Their accuracies remain still for all fractions while

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html.
2 http://www.cs.wisc.edu/dmi/.
3 http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm .
4 Pump vibration datasets for fault detection used in [12]. Personal communication.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.cs.wisc.edu/dmi/
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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(a) SVM (b) SVM-U (c) SVM-O

(d) SVM-C (e) 1-SVM (f) 1-SVM2

Fig. 3. Decision boundaries for the horseshoe dataset: Six classifiers were trained with
100 circles and ten crosses. The solid boundaries were generated by the classifiers while
the broken ones are the “optimal” ones.
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Table 2. Real-world datasets: 18 of 24 have symmetrical class distributions while three
have non-symmetrical distributions

Symmetrical classes

Dataset Source Dataset Source Dataset Source

banana Rätsch breast-cancer Rätsch bright DMI
bupa Rätsch check DMI diabetes Rätsch
dim DMI german Rätsch heart Rätsch

housing DMI image Rätsch ionosphere UCI
mush DMI thyroid Rätsch titanic Rätsch

twonorm Rätsch vehicle UCI waveform Rätsch

Non-symmetrical classes

Dataset Source Dataset Source Dataset Source

digit UCI letter UCI pump Tax
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Fig. 4. The average accuracies for the real-world datasets

the accuracies of the binary classifiers increase steeply. When the fraction ex-
ceeds 5%, SVM-O is the best classifier. 1-SVM and 1-SVM2 are equivalent to
each other. Fig. 4(b) shows the average accuracies over the six non-symmetrical
real-world problems. 1-SVM2 is the best or tied for the best when the fraction
is 20% or lower. 1-SVM2 improves steadily as the fraction increases while the
accuracy of 1-SVM changes little. 1-SVM is better than the binary classifiers
until the fraction increases to 7%. Among the binary classifiers, SVM-U is the
most accurate. The other classifiers show little difference in accuracy.

4 Conclusions and Discussion

In our experiments, the conjectures in Section 1 were investigated:

(a) With an extreme imbalance, e.g. with 5% or lower fraction of the minority
class, novelty detectors are generally more accurate than binary classifiers.
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On the other hand, with a moderate imbalance, e.g. with 20% or higher
fraction of the minority class, balanced binary classifiers are more accurate
than unbalanced binary classifier and novelty detectors. With a fraction of
5 to 20% of the minority class, the results are not conclusive.

(b) Novelty detectors perform better for the non-symmetrical problems than
for the symmetrical ones, in comparison to binary classifiers. That is not
surprising since solving a non-symmetrical problem is naturally fit for the
novelty detection approach.

(c) The results are conflicting regarding the third conjecture. For the artificial
datasets, 1-SVM2 is no better than 1-SVM and its accuracy even decreases
as the fraction of the minority class increases. For the real-world dataset, on
the other hand, 1-SVM2 is slightly better than 1-SVM. Its accuracy increases
gradually for the non-symmetrical datasets. We speculate that learning only
one class can be sufficient for a relatively noise-free dataset such as the
artificial ones while learning two classes helps a novelty detector refine its
boundary for a noisy dataset.

In summary, novelty detection approach should be considered as a candidate
for imbalanced problems, especially when the imbalance is extreme. Balanced
binary classifiers have comparable performances. So a balancing method should
be chosen empirically depending on the problem at hand.

A few limitations have to be addressed. First, we only have considered degrees
of class imbalance. There are many other factors to influence the class imbalance
such as data fragmentation, complexity of data, data size to name a few [2,4].
The novelty detection approach needs to be analyzed with respect to them. Sec-
ond, parameter selection was based on a balanced hold-out dataset. How to per-
form parameter selection with an imbalanced dataset demands further research.
Third, we restricted our base classifiers to SVM in the experiments. Other fami-
lies of algorithms such as neural networks and codebook-based methods need to
be investigated as well.
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