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Abstract

We consider the problem of classification in noisy, high-dimensional, and class-imbalanced protein datasets. In order to design a

complete classification system, we use a three-stage machine learning framework consisting of a feature selection stage, a method

addressing noise and class-imbalance, and a method for combining biologically related tasks through a prior-knowledge based clus-

tering. In the first stage, we employ Fisher�s permutation test as a feature selection filter. Comparisons with the alternative criteria show

that it may be favorable for typical protein datasets. In the second stage, noise and class imbalance are addressed by using minority

class over-sampling, majority class under-sampling, and ensemble learning. The performance of logistic regression models, decision

trees, and neural networks is systematically evaluated. The experimental results show that in many cases ensembles of logistic regres-

sion classifiers may outperform more expressive models due to their robustness to noise and low sample density in a high-dimensional

feature space. However, ensembles of neural networks may be the best solution for large datasets. In the third stage, we use prior

knowledge to partition unlabeled data such that the class distributions among non-overlapping clusters significantly differ. In our

experiments, training classifiers specialized to the class distributions of each cluster resulted in a further decrease in classification error.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One of the major objectives of bioinformatics is the
automated characterization of a large number of pro-

teins available from numerous databases. The ultimate

goal of such a characterization is a detailed understand-

ing of protein function and its complex network of inter-

actions with other molecules in biochemical pathways.

As a consequence of advanced technology and genome

research, protein targets now include sequences associ-

ated with particular disease conditions or even putative
proteins mapped from open reading frames that encode
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genes of various organisms. Hence, despite steady exper-

imental efforts such as the protein structure initiative [1],

the accelerated growth of data has given rise to the wide
application of statistics, machine learning, and data

mining to molecular biology data.

Machine learning and data mining approaches have

been successfully applied to various tasks involving pro-

tein structure and function. Predictions of secondary

structure [2], tertiary structure [3], protein disorder

[4,5], relative solvent accessibility [6], switch sequences

[7], number of contacts between amino acids [8], cleav-
age [9] or phosphorylation sites [10] are computational

methods aimed at explaining biological phenomena,

but also at reducing the cost of experimental research.

Most of these approaches rely on well-known statistical

techniques or various machine-learning approaches,

e.g., linear regression, single or ensembles of neural net-

works, or support vector machines. Other techniques
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such as sequence profiles [11,12] or hidden Markov

models [3,13] have been used for modeling protein

homology or recognition of structurally/functionally

important sequence motifs, while clustering algorithms

[14,15] have been employed towards identifying com-

mon characteristics of biological sequences.
This study aims to address several issues that fre-

quently occur in the prediction of protein�s structural

and functional properties. Restricting ourselves to a

two-class classification framework, we put an emphasis

to noisy and high-dimensional protein datasets where

one class (positive or minority class) is underrepresented

and small, while the other class (negative or majority

class) is arbitrarily large. We present a complete machine
learning framework for such datasets, thus countering is-

sues from data preparation to prediction and exploiting

unlabeled data. In the feature selection stage we em-

ployed Fisher�s permutation test and compared its per-

formance to other popular techniques. To address

noise and class asymmetry, we combined minority class

over-sampling with majority class under-sampling and

showed that the increase in dataset size, together with
the addition of synthetic examples, is often beneficial to

model learning. The performance of logistic regression

models, decision trees, and neural networks was system-

atically evaluated with the result that ensembles of logis-

tic regression models favorably compared to other

classifiers in cases of small- to medium-sized datasets.

On the other hand, neural networks achieved the best re-

sults on the large datasets. Finally, we provided a mech-
anism for combining biologically related learning tasks

in which the improved performance on the data with a

relatively small number of labeled minority examples

was achieved through a prior-knowledge based cluster-

ing of unlabeled data combined with estimation of class

priors and predictor construction for each cluster.

This paper is structured as follows. Section 2 provides

basic information about characteristics of protein data,
followed by a brief overview of feature selection meth-

ods and a discussion on learning from class-imbalanced

datasets. In Section 3 our methods for feature selection,

strategies for learning from noisy and imbalanced data,

and classification algorithms are described. Techniques

for combining clustering, estimation of class priors,

and predictor construction towards improved classifica-

tion results are also presented. Section 4 describes the
experimental setup and presents the most important re-

sults of the study. Finally, concluding remarks are con-

tained in Section 5.
3 Abbreviations used: NMR – nuclear magnetic resonance, PAC –

probably approximately correct.
2. Background

In this section, we discuss characteristics of protein
datasets and data representation most commonly used

in this area. In Section 2.2, the basics of feature selection
methods are introduced, while an overview of ap-

proaches used to address learning from skewed class dis-

tributions is contained in Section 2.3.

2.1. Characteristics of protein datasets

One of the common characteristics of protein data-

sets is that they are often noisy, high-dimensional,

sparse, and class imbalanced. In general, three sources

contribute to the noise in protein data: (i) biological

complexity and variability (protein modification upon

transcription, conclusions based on organism, gender

or tissue specific cells, etc.); (ii) limitations of experimen-

tal procedures (sample preparation protocols, tech-
niques such as X-ray crystallography or NMR3

spectroscopy, etc.); and (iii) human error (lab condi-

tions, misinterpretation of results, database labeling

and curation, etc.). High dimensionality and sparsity

of protein datasets are often consequences of so-called

orthogonal (binary) data representation [16] which is

predominantly used in this area. Each locus in a protein

is represented by a 20-bit vector in which the observed
amino acid is represented by a one and the remaining

amino acids are represented by zeros (e.g., for alanine

the representation is 100000000000000000000). Predic-

tions for each residue in a protein are then based on

all amino acids within a window of length w centered

at that residue (windows of odd lengths are typically

considered). Consequently, orthogonal data representa-

tion produces a high-dimensional sample with 20Æw fea-
tures, 19Æw of which are zeros. It also introduces noise

since in such a representation long-range sequence inter-

actions are ignored. Additional attributes can be added

to orthogonal representation to account for terminal

(asymmetric) windows or prior knowledge. Finally, as

a result of experimental constraints or due to uncom-

monness of certain events, protein datasets are often

imbalanced, i.e., the numbers of available examples with
different class designations are not approximately equal.

For example, in secondary structure prediction, the per-

centages of available residues in a-helices, b-sheets, and
coils are roughly 35, 20, and 45%; while in predicting

intrinsically disordered regions, the ratio of ordered ver-

sus disordered residues in Protein Data Bank [17] is

approximately 20:1. (Disordered residues are residues

with unstable 3-dimensional conformation, either on a
secondary or tertiary structure level, and can generally

be extracted from the crystal-structure data as the resi-

dues with missing atomic coordinates [18]).

Another important characteristic of protein datasets

is high redundancy. Proteins whose sequence identity

is above �30% are homologous with high probability.
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Homologous proteins originate from gene duplication

and/or speciation; they share a common ancestry and of-

ten carry out similar or identical functions. Addition-

ally, many proteins correspond to different disease

states or are engineered to facilitate lab experiments.

Such proteins may easily form a large body of redun-
dant data, which can lead to unrealistically high esti-

mates of performance results. To account for data

redundancy, it is a common practice to impose a thresh-

old on sequence identity or to introduce some other

measure of sequence similarity such that the analysis is

performed on non-redundant sequences. The same was

done in this study.

2.2. Feature selection for high-dimensional data

High-dimensional problem representation and the

collection of high-dimensional data often require feature

selection aimed at reducing the curse-of-dimensionality

problems [19–21]. In addition, a large number of fea-

tures can present a scalability issue to the learning algo-

rithm. Feature selection has recently received
considerable attention in the machine learning

community.

Generally, methods for selecting subsets of features

can be divided into wrappers, embedded methods, and

filters [20]. Wrappers utilize the learning machine as a

fitness function and search for the best features in the

space of all feature subsets. This formulation of the

problem allows the use of standard optimization tech-
niques. Despite their simplicity and often having the best

performance results [22], wrappers may suffer from over-

fitting and excessive computational complexity since the

problem itself is NP-hard. In addition, wrappers highly

depend on the inductive principle of the learning model.

To reduce complexity, greedy approaches such as for-

ward-selection or backward-elimination are often em-

ployed [19].
Embedded methods are incorporated into the learn-

ing procedure, and therefore are also dependent on the

model. Many machine learning classifiers internally per-

form embedded feature selection, which may simply re-

sult in their weighting or a construction of composite

features. Examples of embedded methods are CART

[23] or the support vector machine approach of Guyon

et al. [24]. In the recursive feature elimination approach
of Guyon et al. [24], an initial model is trained using all

features. Then, features are iteratively removed in a

greedy fashion until the largest margin of separation is

reached.

Filters are based on selecting the best features in one

pass and are typically performed as a preprocessing step

to model selection and learning. In domains such as text

categorization or gene selection, filters are still dominant
although combinations with both embedded methods

and wrappers are appealing. Filters evaluate one feature
at a time and estimate its usefulness for the prediction

process according to various metrics. Recent papers on

text categorization empirically evaluated several such

metrics and suggested that information gain, v2 test,

and bi-normal separation provide the best performance

results [25,26]. We extend that work in this paper by
evaluating the common techniques in the bioinformatics

domain and by adding Fisher�s permutation test as an

alternative filter.

2.3. Classification methods for imbalanced data

The problem of class imbalance has to be carefully

approached due to a possibility of considerable differ-
ences between class distributions in the labeled and unla-

beled data, different costs of labeling and costs of

classification for examples of each class [27–29], and a

significantly degraded performance of some learners

when the class distribution in the training data is heavily

skewed [29,30].

There are two major groups of learning techniques

designed to address class imbalance: supervised and
unsupervised techniques. The supervised techniques

have the knowledge of the class labels whereas the unsu-

pervised techniques infer the labels for the minority

class. The supervised techniques can be broadly catego-

rized into three classes: (i) methods in which fractions of

the minority and majority examples are controlled via

under-sampling and/or over-sampling so that the desired

class distribution is obtained in the training set, (ii)
methods that use a recognition-based, instead of dis-

crimination-based, inductive scheme, and (iii) methods

that employ a cost-matrix to account for different costs

of errors or examples [31,32].

An example of a supervised technique is the work of

Kubat and Matwin [33] where majority examples were

divided into four groups: noisy examples – examples

with incorrect class designations, borderline examples
– examples that are close to the class boundary (consid-

ered unreliable due to susceptibility to attribute noise),

redundant examples – examples that repeat or do not

introduce sample variability, and safe examples – exam-

ples that are worth keeping for the classification task.

Noisy and borderline examples were detected via Tomek

links [34] and together with redundant examples re-

moved from the training data before the learning pro-
cess began. In another study by Kubat et al. [35] a

performance drop was detected with an increasing num-

ber of negative examples and the SHRINK system was

proposed for detecting rare events. Their system concen-

trated on building a single ‘‘best positive region’’ and

improved performance results with the increase of nega-

tive examples.

Another mechanism to overcome the curse of imbal-
ance in the datasets is a combination of over-sampling

and under-sampling [36–38]. Chawla et al. [36]
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combined under-sampling and over-sampling tech-

niques, but instead of simply replicating minority exam-

ples they generated artificial examples by interpolating

between nearby minority examples. This approach

proved to be particularly useful for improving the gener-

alizability of decision trees and rule-learners. Chan and
Stolfo [39] trained classification models such that their

performance was optimized on a desired class distribu-

tion of unlabeled examples. They split the majority data

into several disjunctive sets and trained a model on each

set. Finally, models were combined via a second-stage

classifier whose inputs were the predictions of individual

models. A similar approach was used by Radivojac et al.

[40] where an ensemble of classifiers was created. Each
model was trained using all examples from the minority

class and a random selection of examples from the

majority class. In order to improve performance results

on the minority class, Nugroho et al. [41] and DeRouin

et al. [42] modified the architecture and the learning rate

of a neural network. In a recognition-based approach,

Japkowicz et al. [43] trained an autoassociator for each

of the classes and then classified each new example
based on the distance between the input example and

the autoassociators� outputs. Thresholds for accepting

or rejecting examples were optimized separately for

every domain.

The second large class of techniques for detecting rare

events involves an unsupervised framework. Although

in most cases examples of only one class are not suffi-

cient for successful learning in the PAC framework
[44], it is possible to detect rare examples using unsuper-

vised approaches. Initially, minority class examples are

completely ignored (if available) and a model is trained

using all the data from the majority class. Then, algo-

rithms for outlier detection are employed where avail-

able minority examples may be used for threshold

tuning. Techniques for outlier detection have been

extensively studied in the field of statistics [45]. Statisti-
cal approaches first postulate an underlying probability

distribution, and the outliers are detected as data points

with small probabilities of occurrence. Depth-based [46]

and distance-based [47] methods were also proposed,

but just like the density estimation methods, they all

may become inaccurate when the number of features in-

creases, especially if a significant fraction of features are

noisy. Breunig et al. [48] proposed an approach for
detecting outliers based on the density of a data point�s
local neighborhood, while Aggarwal and Yu [49]

searched for outliers in high-dimensional feature space

by identifying them in lower dimensional projections

of the data as examples with unusually low density. Fi-

nally, clustering methods such as CLARANS [50] or

BIRCH [51] developed in the data mining community

also detect outliers and then typically ignore them in
the cluster construction. However, such algorithms are

not optimized for the outlier detection.
3. Methods

We constrain our discussion to a standard two-class

classification problem. Let DL and DU be the sets of la-

beled and unlabeled data. We define the dataset of la-

beled examples as DL = {(xi, yi) j i = 1,. . .,nL}, where
x = (x1, x2, . . . ,xk)

T 2 X is a vector of features,

y 2 Y = {0, 1} is the class designation, while nL is the

number of labeled data points. Using similar notation,

DU = {xi j i = 1,. . .,nU}, where x 2 X and nU � nL is

the number of unlabeled data points. Also, let

pL = [pL(0) pL(1)]
T and pU = [pU(0) pU(1)]

T be the

imbalanced class distributions in DL and DU. We as-

sume that, although the same type of sampling was used
to generate both datasets, class distributions pL and pU
may be significantly different. In protein datasets, this

situation occurs frequently due to the considerably dif-

ferent costs of labeling examples of each class. The task

of a classifier is to find a model f(x) that best describes

the data according to some performance measure. Gen-

erally, the model f(x) maps X onto Y, but the internal

task representation of each classifier can vary
significantly.

3.1. Feature selection

Before discussing our approach, we briefly present

three most successful filters for the feature selection pro-

cess: information gain, v2 test, and bi-normal separa-

tion. For this purpose, we restrict X to a set of
discrete k-dimensional vectors. (i) Information gain

(average mutual information) between the feature

i 2 {1,. . ., k} and target variable y is defined as

Iðxi; yÞ ¼
X
xi

X
y

pðxi; yÞ � log2
pðxi; yÞ

pðxiÞ � pðyÞ

and represents the expected amount of information (in

bits) about the class designation if the only available
knowledge about the query data point is its feature i.

(ii) The v2 goodness-of-fit test is used in the feature selec-

tion process to measure statistical independence between

the ith feature and the target. The test is based on calcu-

lating the v2 statistic which is defined as

v2 ¼ nL �
X
xi

X
y

ðpðxi; yÞ � pðxiÞ � pðyÞÞ2

pðxiÞ � pðyÞ
:

It can be shown that the v2 statistic follows the v2 distri-
bution with (|Xi| � 1)Æ(|Y| � 1) degrees of freedom, where

Xi represents the domain of the ith feature. Statistical

significance of the test can be obtained using a lookup

table. (iii) The bi-normal separation (BNS) is a recently

proposed metric [26] for the cases when X = {0, 1}k. The

occurrence of each feature is modeled as a realization of

a Gaussian variable exceeding a threshold. It is defined

as
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BNSðxi; yÞ

¼ F �1 pðxi ¼ 1; y ¼ 1Þ
pðy ¼ 1Þ

� �
� F �1 pðxi ¼ 1; y ¼ 0Þ

pðy ¼ 0Þ

� �����
����;

where F(Æ) is a cumulative density function of the Gauss-

ian distribution with zero mean and unit variance. As

suggested by the author, F�1(0) is defined as 0.0005.

Marginal and joint probabilities p(xi), p(y), and p(xi,y)

are in all cases calculated as relative frequencies.

3.1.1. Permutation test

Consider a data matrix DL in which features are al-

lowed to be real-valued or binary. In order to estimate

the usefulness of a feature, we adopt a statistical ap-

proach and estimate the probability that its elements

with different class designations are generated according

to the same probability distribution. The lower the
probability that the two samples are generated from

the same distribution, the more important the feature

is. More specifically, each feature column i of DL is first

divided into two vectors u and v according to the class

designation. For example, let u be the elements with

class 0 and v the elements with class 1. Vectors

u = (u1,u2,. . .,ul) and v = (v1,v2,. . .,vm), where

l + m = nL, are assumed to be independent and identi-
cally distributed samples drawn from two probability

distributions pU and pV. We would like to test the null

hypothesis (H0) that there is no difference between pU
and pV. If, based on the available data and selected test

statistic,H0 cannot be conclusively rejected as highly un-

likely, we conclude that sufficient evidence that pU and

pV are different cannot be provided. The estimated sig-

nificance level of the null hypothesis is used to rank
the features.

The algorithm begins by choosing and calculating the

test statistic h, which in our case is the sample mean dif-

ference, i.e., h ¼ �u� �v. Then, assuming that samples u

and v were generated according to the same underlying

distribution, they are concatenated into a single sample

w = (u, v) of size l + m. There are (l + m)!/(l!Æm!) possible

divisions of w into two parts of sizes l and m, each of
which is equally likely under H0. The achieved signifi-

cance level (or p-value, p) of the statistical test is defined

to be the probability of observing at least as large a

mean difference by chance as h. However, due to the

sizes of samples u and v, the exact significance level can-

not be computed in most practical situations. In such

cases, it is estimated using a fixed number of permuta-

tions (B) of the combined sample w. In each step b

(b = 1,. . .,B), w is randomly shuffled and split into two

parts u*(b) and v*(b) of lengths l and m. The test statistic

h*(b) is calculated for each pair u*(b) and v*(b), and the

p-value of the null hypothesis is finally estimated as the

fraction of times h*(b)P h if h > 0 or h*(b) 6 h other-

wise. The actually observed permutation w is included

as the iteration B + 1.
This approach, called the permutation test, is a

well-known statistical tool used to estimate whether

two 1-dimensional samples were generated from the

same distribution [52]. It was introduced by Fisher as

an alternative statistical test in cases when the distribu-

tion of the data is not Gaussian. To determine how
many permutations are enough for successful estimation

of the p-value, Efron and Tibshirani [52] calculate the

coefficient of variation as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ=ðp � BÞ

p
. A coefficient

of variation of 0.1, for example, indicates that the

Monte Carlo estimation of the achieved significance le-

vel is within 10% of its true value. In such a case, in or-

der to estimate a significance level of 0.05,

approximately B = 2000 random permutations are
required.

After the p-values of all k features are calculated, the

features are ranked according to the ascending level of

their p-values. Therefore, the most important features

are the ones whose probability distributions of the com-

ponents having different class labels are least likely to be

identical.

3.2. Strategies for learning from noisy and class-imbal-

anced data

To address class-imbalance and noise we search for

the best model in the supervised framework, using a

combination of minority class over-sampling and major-

ity class under-sampling. Classification models are

trained on particular training class distributions, i.e.,
the fractions of majority and minority examples in train-

ing sets, and dataset sizes, and then the best performing

model on a desired class distribution is selected depend-

ing on the achieved performance results. This approach

is consistent with a simple and effective approach by

Angluin and Laird [53] and Magdon-Ismail et al. [54]

who characterized situations in which the increase of

the size of noisy data caused an improvement in predic-
tion results. Additionally, Anguin and Laird showed

that the size of the training dataset in the PAC model

grows with 1/(e2 � g2), where e and g represent the clas-

sification error and noise, respectively.

We denote class distribution in the training set as

pT = [pT(0) pT(1)]
T, where pT(0) and pT(1) are relative

frequencies of the majority and minority class examples.

The combination of majority under-sampling and
minority over-sampling, however, enables us not only

to control pT, but also the size of the training set nT.

In order to evaluate different predictors, we introduce

two parameters. The parameter us controls the amount

of majority class under-sampling. For example,

us = n% indicates that the majority class is reduced so

that the size of the minority class represents n% of the

size of the downsized majority class. After the majority
population is reduced, a parameter os is used to define

over-sampling of the minority class. For example,
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os = n% means that n% of the minority class examples

are added to the training set. No addition of minority

examples amounts to os = 0%. Based on these two

parameters, the class distribution in the training set

can be expressed as

pT ¼ 100=us
1þ 100=usþ os=100

1þ os=100
1þ 100=usþ os=100

� �T
;

while the size of the dataset represents (1 + 100/us + os/

100)Æ100% of the original minority class size. For exam-

ple, us = 50% combined with os = 100% corresponds to

the training set where minority and majority classes
are balanced, i.e., pT = [1/2 1/2]T. On the other hand,

the selection of us = 25% and os = 300% corresponds

to the same class distribution, but with twice as large

size of the training set.

While we use simple random under-sampling due to

the non-redundant nature of the data, we consider two

strategies for over-sampling the minority population:

simple replication and the synthetic minority over-sam-
pling technique (SMOTE) introduced by Chawla et al.

[36]. In the case of simple replication, we randomly se-

lect the desired number of minority examples and add

them to the training set. SMOTE, on the other hand,

synthetically generates new minority class examples

within the neighborhood of each minority class example,

and is described in Section 3.2.1.

There are two opposing effects on model learning
caused by the addition of synthetic minority examples.

(i) The positive effect is that it enables using larger pools

of majority data for a fixed training class distribution.

At the same time it prevents overfitting that would occur

due to the simply replicated minority examples (recall

that the majority class is noisy and that as a result of

its sheer size many majority examples may substantially

penetrate the class region of the minority class). (ii) The
negative effect is that synthetic examples inevitably

introduce additional noise to the data and thus may

hamper the learning process. The resulting effect of these

two events, however, is hard to predict since it depends

on the nature of the learning task, dataset size, class dis-

tribution, as well as on the type and amount of noise.

Therefore, we believe that selecting the optimal param-

eters us and os should be done through a separate vali-
dation data.

3.2.1. The synthetic minority over-sampling technique

Sampling strategies such as replication and under-

sampling are commonly used to counter the problem

of imbalanced class distributions in a given dataset.

The class imbalance, however, is closely related to the

feature space and not merely to the data space. Conse-
quently, replicating the minority class or under-sam-

pling the majority class might not help in overcoming

the inherent bias of a classifier towards the majority

class. The sparsity of the minority class in the feature
space would dictate that the new instances be created

in order to further populate the feature space.

SMOTE works in the feature space and creates syn-

thetic positive examples in the K-neighborhood of the

desired number of true positive examples. In the case

of continuous features, for each selected true positive
example x, one of the K = 5 nearest neighbors, x 0, is ran-

domly chosen. Then, each feature i of the new synthetic

example is constructed as xi þ ðxi � x0iÞÆrand(0,1). For the
categorical features, the new examples are constructed by

taking the majority vote of all the corresponding feature

values among the five nearest neighbors. Thus, SMOTE

has an effect of both populating and expanding the deci-

sion region of the minority class.

3.3. Learning algorithms

For the self-containment of this paper, here we briefly

present the classifiers used in our study: logistic regres-

sion models, decision trees, and neural networks. We

also use bagging [55] with each of the algorithms to

see if the performance can be improved by considering
simple ensembles.

3.3.1. Logistic regression

Logistic regression is a widely used statistical ap-

proach for classification. In two-class problems we use

logit, the simplest version of logistic regression, in which

the probability of class membership is defined as

pðy ¼ 1jxÞ ¼ 1

1þ e�bT �x
;

where b is a k · 1 vector of real-numbered coefficients.

Assuming all nT data points in the training set are

equally likely and independent of one another, the opti-
mal coefficients b* are found by maximizing the follow-

ing likelihood expression

lðbÞ ¼
YnT
i¼1

pðyi j xi; bÞ

¼
YnT
i¼1

1

1þ e�bT�xi

� �yi

� 1� 1

1þ e�bT�xi

� �1�yi

:

After taking the logarithm, the above function is maxi-
mized using standard iterative optimization techniques.

Here we use optimization based on the QR least-squares

method which is accurate even in the cases of ill-condi-

tioned data matrices [56]. Once the optimal coefficients

b* are found, classification of a query example x is based

solely on the dot product b*TÆx.

3.3.2. Decision trees

Decision trees are one of the most popular models

used in the machine learning community. Model learn-

ing starts with all the training examples at the root node

of a tree. The root node is then partitioned into several
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groups based on the best single feature according to

some measure such as information gain or gini-metric.

After the data points are split, the procedure recursively

continues for each of the newly generated nodes with

only a subset of the examples from its parent node.

The tree can be grown until some stopping condition
is satisfied (e.g., minimum description length) or it can

be fully grown and then pruned based on various criteria

(e.g., error-based or rule-based pruning). Although sin-

gle decision trees might not generalize well, it has been

shown that ensembles of trees can significantly improve

classification performance over single models. In this

study, we employ the C4.5 classifier [57], which uses

information gain for splitting and error-based pruning
for overfitting prevention.

3.3.3. Neural networks

Two-layer feed-forward neural networks are universal

approximators of bounded functions if provided enough

data [58]. The expected number of data points necessary

for successful learning is linear with the number of

weights, but the worst-case scenario for difficult concepts
requires an exponential number of examples. In addition,

it is not always clear how to select the size of the hidden

layer and parameters of the learning algorithm. Here

we use the Levenberg–Marquardt algorithm [59] to train

small- andmedium-sized networks and the resilient back-

propagation approach [60] for cases of large networks.

3.3.4. Bagging

Bagging is a well-known method of combining multi-

ple predictors constructed over bootstrap samples

drawn from the original dataset D, in which the aggre-

gate prediction is obtained using majority voting by all

trained models. Bagging can be successfully used with

unstable learning algorithms and is generally a variance

reduction mechanism [55]. Our choice of bagging over

other ensemble methods (e.g., boosting) was motivated
by its simplicity, small sensitivity to noise, and easy par-

allelizability of training in practical situations.

3.3.5. Influence of binary attributes on learning

Although feature selection may substantially reduce

the number of attributes, the samples may still remain

relatively high-dimensional and sparse. This situation

is especially undesirable for logistic regression models
since it may cause collinearity problems during training

[61]. Therefore, we used an additional dimensionality

reduction based on principal component analysis

(PCA). Decision trees and neural networks were trained

on the selected feature sets both with and without PCA.

3.4. Performance evaluation

A typical goal of a Bayesian optimal classifier [62] is

to minimize the average cost or risk of applying a clas-
sifier to an unseen data point x. The average cost C

for a classifier f(x) is given by

C ¼
X
i2Y

X
j2Y

pðijjÞ � pUðjÞ � cði; jÞ; ð1Þ

where indices i and j denote the predicted and actual

class of the data point, pU(j) is a prior probability of

class j in the unlabeled dataset, and p(ijj) is the condi-

tional probability that predicted class is i given that
the true class is j. The penalties of classifying a data

point into the class i when the actual class is j are repre-

sented by a 2 · 2 matrix with elements c(i, j). Minimiza-

tion of the average cost requires precise knowledge of

the a priori class distribution pU as well as of the penal-

ties c(i, j). However, in many practical situations the esti-

mates of classification penalties may be hard to obtain

so that it is reasonable to use c(i, j) = 0 if i = j, and c(i,
j) = 1 otherwise. We refer to such a penalty matrix as

a zero-one matrix.

We estimate the predictor�s conditional probabilities
p(ijj) using cross-validation on out-of-sample test sets

from the labeled dataset. The a priori class distribution

pU can, on the other hand, be estimated experimentally

in the lab [63] or computationally using unlabeled data

[64,65]. Estimates p(1j1) and p(0j0) are commonly called
sensitivity (sn) and specificity (sp) and are calculated in

each cross-validation iteration from the confusion ma-

trix. The final estimates are obtained by averaging over

all iterations.

In cases of a zero-one penalty matrix, it is of interest

to estimate predictor�s performance for the general case

of unknown priors. This is accomplished by plotting

the receiver operating characteristics (ROC curves).
The ROC curve is plotted as sn as a function of

1 � sp and thus shows the tradeoff between sensitivity

and specificity that can be obtained using the same pre-

dictor, usually by shifting the decision threshold or by

changing the class distribution in the training set. Gi-

ven the imbalanced nature of protein data, an ROC

plot may be more informative about predictor�s perfor-
mance than the expected cost as it allows one to visu-
alize tradeoffs between sensitivity and specificity. The

best predictor in the ROC sense closely follows the

left-hand border and then top border of the diagram.

To numerically evaluate ROC performance, we calcu-

late the area under the curve (AUC) using the trape-

zoid rule.

3.5. Prediction of protein characteristics on large unla-

beled datasets

In this section, we combine our strategy for learning

from noisy and imbalanced labeled data with clustering

and estimation of class priors from unlabeled data. We

will show later that effective schemes for combining bio-

logically related tasks can be presented through this



Fig. 1. Block-diagram of the composite classifier f(x) whose

construction incorporates partitioning unlabeled dataset DU, and

then iteratively combines estimation of class distribution pU,i and

model construction fi(x) for each cluster i. fi(x) is constructed using

labeled dataset DL and knowledge about pU,i. c(x) is the clustering

algorithm.
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framework. Let DL and DU be the sets of labeled and

unlabeled data as defined at the beginning of Section

3. Suppose now that DU can be divided into nC non-

overlapping clusters, with nC > nL > nU, such that the

class distributions for any two clusters i and j differ.

That is, pU,i = [pU,i(0) pU,i(1)]
T „ pU,j = [pU,j(0) pU,j(1)]

T,
for all i, j 2 {1,2,. . .,nC} and i „ j. Let c(x) be the algo-

rithm that partitions DU, i.e., maps X onto

{1,2,. . .,nC} according to some criterion. The predictor

construction now proceeds separately for each cluster

DU,i as follows.

Since the true class distribution pU,i is unknown, we

initially assume that it is balanced, i.e., pU,i = [1/2 1/

2]T, although prior knowledge can be used for a better
guess. As a result of this assumption, we use a balanced

training set, i.e., pT = pU,i = [1/2 1/2]T, constructed from

DL to train a classifier fi(x). Important by-products of

model training are its prediction accuracies on majority

and minority classes, estimated using cross-validation.

Following the notation of Section 3.4, we denote these

two accuracies as p(0j0) and p(1j1). Now, we apply the

predictor fi(x) to dataset DU,i and calculate the relative
frequencies of predicted examples of both classes

qU,i = [qU,i(0) qU,i(1)]
T. In the matrix form qU,i can be ex-

pressed as

qU;i ¼ P � pU;i;

where

P ¼
pð0j0Þ 1� pð1j1Þ

1� pð0j0Þ pð1j1Þ

� �
:

With known P and qU,i an improved estimate of the
class distribution pU,i can be obtained as

pU;i ¼ P�1 � qU;i:

This completes the first step of the algorithm. Starting

from the newly estimated pU,i, it is iteratively applied un-

til both the best predictor fi(x) and the estimate of the

class distribution pU,i converge. In each iteration, how-

ever, model fi(x) is not necessarily learned using

pT = pU,i. Instead, the optimal class distribution in the

training set is selected according to the ROC plots. In
the same way, the optimal size of the training set nT is

selected based on an already characterized performance

of the classifier. Since, in general E[P�1] „ E[P]�1, im-

proved estimates of pU,i can be obtained using boot-

strapping during both model training and estimating

qU,i, as proposed by Vucetic and Obradovic [64]. Here,

we modified their algorithm by using ROC plots to se-

lect pT and data sampling to speed up the estimation.
Non-convergence of fi(x) and pU,i may indicate error

in estimating P or a significant difference in data gener-

ators of DL and DU.

Finally, this iterative procedure is repeated for each

cluster DU,i, resulting in nC classifiers fi(x),
i 2 {1,2,. . .,nC}, as illustrated in Fig. 1. Thus, the con-

struction of a composite predictor f(x) integrates parti-

tioning of the unlabeled data with iterative estimation

of the class distribution (from unlabeled data) and pre-

dictor construction (from the labeled data) for each of

the nC clusters. In Section 4.5 and 4.6, we consider

two different types of partitioning, both based on prior

knowledge, in the task of predicting phosphorylation
sites from the amino acid sequence.
4. Experimental results and discussion

We start this section by discussing the biological

meaning of the protein data that we used and details

of the dataset construction process. Then, we evaluate
all approaches from Sections 3.1, 3.2 and 3.3 using six

protein datasets. Section 4.2 presents the comparison

of various feature selection methods, while Section 4.3

evaluates our strategy for noisy and class imbalanced

datasets and discusses the behavior of different classifi-

cation algorithms. Finally, Sections 4.4 and 4.5 evaluate

methods discussed in Section 3.5.

4.1. Datasets

We selected 6 datasets constructed by our group

either previously or as a part of this study. All datasets

are publicly available upon request.

1. PHOSHOSS is a dataset of phosphorylation sites for the

amino acid serine (S). A phosphorylation site repre-
sents a single amino acid (S, T or Y) to/from which

the phosphate group can be attached/detached during

cell regulation. A set of examples was constructed by

combining PhosphoBase [66] with 832 phosphorylat-



Table 1

Datasets: basic characteristics

Dataset Number of

features

Number of

positive examples

Number of negative

examples

PHOSHOSS 480 613 10,798

PHOSHOST 480 140 9051

PHOSHOSY 480 136 5103

BOUNDARYOUNDARY 480 123 3386

CAAM 300 942 17,974

DISORDERISORDER 300 4706 94,336
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able proteins extracted from Swiss-Prot [67]. Positive

examples were created from 25-residue long frag-

ments centered at all serine residues annotated as

phosphorylation sites (the central residue was later

excluded from the feature construction process).

The remaining serine sites from the same set of pro-
teins were included in the negative set, as phosphory-

lation was not observed despite assaying the protein.

All fragments with sequence identity 30% or more

with any other fragments were removed thus making

the dataset non-redundant. In cases where one nega-

tive and one positive fragment were similar, the neg-

ative fragment was eliminated as less reliably labeled.

2. PHOSHOST is a dataset of phosphorylation sites for
amino acid threonine (T), extracted using the same

procedure as for PHOSHOSS.

3. PHOSHOSY is a dataset of phosphorylation sites for

amino acid tyrosine (Y), extracted using the same

procedure as for PHOSHOSS and PHOSHOST. As compared

to serine and threonine, phosphorylation of tyrosine

may involve a different mechanism of attaching/de-

taching the phosphate group due to the presence of
an aromatic ring in its structure. In addition, tyrosine

residues are, as well as other aromatic amino acids,

strongly associated with stable secondary structure

and buried positions in a protein. On the other hand,

threonine is moderately associated with the presence

of fixed secondary structure (ordered regions), while

serine is strongly associated with both surface posi-

tion and lack of stable secondary structure, i.e., disor-
dered regions [18].

4. Positive examples of the BOUNDARYOUNDARY dataset were

constructed using a set of 24-residue long sequence

fragments around order/disorder boundaries

extracted from a set of 151 proteins containing 161

disordered regions at least 30 residues in length [40].

One half of the negative set was built from a set of

290 non-redundant completely ordered proteins [40]
while the other half was built using non-boundary

fragments from the existing set of 161 disordered

regions. Balance of completely ordered and disor-

dered segments in the negative set was maintained

in order to prevent the predictor from adapting to

protein disorder anywhere in the sequence.

5. The CAAM dataset was built from 40 non-redundant

proteins containing 42 calmodulin binding regions
selected from the Calmodulin Target Database

[68]. The set of positive instances was built using

42 regions that represent three classes of calmodulin

targets whose binding activity depends on the con-

centration of calcium. The negative set consists of

all residues not involved in calmodulin binding

from the same set of 40 proteins. A sliding window

of length 15 was used to create data examples.
Seven terminal residues were excluded from all

proteins.
6. The DISORDERISORDER dataset was constructed from 980

non-redundant proteins from the Protein Data Bank

(PDB) characterized by X-ray diffraction. All resi-

dues in stretches from 3 to 30 whose atom coordi-

nates were missing from the corresponding PDB

files were assigned to the disorder class, while all
other residues were assigned to order. This way of

class labeling is highly susceptible to large amounts

of noise due to the inability to account for crystal

contacts, disorder-to-order transition upon binding

with partners (that were crystallized together with

target proteins), and ordered segments whose struc-

ture is hard to refine, e.g., wobbly domains [18].

The subset of proteins containing disordered regions
does not overlap with the set of 151 proteins used for

the BOUNDARYBOUNDARY set. Data points were constructed

using a sliding window of length 15, while seven res-

idues at each terminus were excluded from all

sequences. The number of ordered residues from

any protein was limited to 100.

For all protein datasets we used orthogonal data rep-
resentation. An overview of the datasets is presented in

Table 1.

4.2. Evaluation of feature selection methods

We used Fisher�s permutation test to select relevant

features from the protein datasets. To substantiate our

choice for using this approach, we estimated classifica-
tion costs of the models in which the best features were

selected according to the four criteria from Section 3.1:

information gain, v2 test, bi-normal separation, and per-

mutation test. For each of the feature selection criteria,

we estimated classification costs in the cases in which the

best 40, 60, 80, and 100 features were retained. In all

cases the classifiers were constructed using ensembles

of 30 neural networks, the a priori class probabilities
in the unlabeled datasets were assumed to be equal,

while the penalty matrix was assumed to be zero-one.

Based on these parameters the class distributions of all

training sets were set to pT = [1/2 1/2]T. In order to make

the comparisons feasible, we evaluated all methods

using the four smaller datasets.



Table 2

Comparative performance evaluation for the four feature selection

filters

Feature selection criterion Wins � losses Wins Losses

Information gain 8 13 5

v2 test �7 7 14

Bi-normal separation �23 1 24

Permutation test 22 22 0

Classifiers were trained for PHOSHOSS, PHOSHOST, PHOSHOSY, and BOUNDARYOUNDARY

datasets using the best 40, 60, 80, and 100 features and their classifi-

cation error was stored. For each pair (number of retained features,

dataset) six pairwise comparisons among the feature selection methods

were made. A win or a loss was assigned when there was statistically

significant difference between the performances of the classifiers. Wins

and losses were summed over all pairwise comparisons. The winning

(losing) method was declared in 43 out of 96 comparisons.
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The relative performance of the four feature selec-

tion schemes was compared using a standard pairwise

win/loss methodology (e.g., see [21]). For each number

of retained features, i.e., 40, 60, 80, and 100, we com-

pared classification costs corresponding to all pairs of

feature selection methods. For example, in the case
when the best 40 features are retained, there are six

pairwise comparisons among the four feature selection

criteria for each of the four datasets. If one method in

the pairwise comparison was significantly better than

the other, it scored a ‘‘win’’ (+1 point), while if it

was significantly worse it scored a ‘‘loss’’ (�1 point).

Therefore, a win or a loss was assigned only in situa-

tions in which the two classification costs differed and
there was no overlap in confidence intervals. The over-

all quality of each feature selection method was then

expressed as the difference between the number of wins

and the number of losses over all datasets and num-

bers of retained features (Table 2). This comparison

strategy is sensitive to small differences between the

algorithms.

4.3. Evaluation of different strategies for class imbalance

As a preprocessing step to model training and evalu-

ation, a permutation test based feature selection proce-

dure was performed on all datasets. We used p-value

thresholds of 0.1 for the four smaller datasets and

0.001 for the two larger datasets. This reduced the

dimensionality of the different datasets to the following:
PHOSHOSS–221, PHOSHOST–91, PHOSHOSY–112, BOUNDARYOUNDARY–175,

CAAM–132, and DISORDERISORDER–125 features. All models

were trained using the reduced set of features.

In order to systematically evaluate performance of

the approach from Section 3.2, we trained all classifiers

using different sizes and class distributions of the train-

ing set. For each dataset, we evaluated all combinations

of us 2 {5, 10, 15, 25, 50, 75, 100, 125, 150, 175, 200,
300, 400} and os 2 {0, 100, 200, 300, 400, 500} for a

variety of learning parameters. However, due to space
issues, the results summarized in Table 3 show the

AUC scores only for the best performing models for

each type of a classifier. Note that due to the separately

performed feature selection and model training, the re-

sults in Table 3 may not represent unbiased estimates of

the predictors� performance. However, this fact had a
minor effect on the relative comparisons between the

methods.

Logistic regression predictors benefited most from a

combination of replication-based minority over-sam-

pling in all cases, while the best performance of neural

networks and decision trees was obtained using

SMOTE. However, the best performance was not con-

sistently observed for any specific minority over-sam-
pling quantity. As discussed in Section 3, several

factors contribute to this: dataset size, class distribution,

concept, and type and amount of noise. Thus, in practi-

cal situations the optimal minority over-sampling (if

necessary) has to be determined experimentally using a

hold-out validation set.

The influence of ensemble averaging was consider-

ably positive for all types of classifiers (Table 3). As ex-
pected, the smallest difference between single models and

ensembles of models was observed for logistic regres-

sion, as it was the most stable classifier used in this

study.

Interestingly, for five out of the six available datasets

the best overall performance results were obtained for

ensembles of logistic regression models (Table 3). Logis-

tic regression is a robust procedure which is not sensitive
to moderate amounts of noise in the training sets. High-

dimensionality of the data and relatively small sample

density for all five datasets likely had an effect that clas-

sifiers with moderate expressive power performed well

enough. Neural networks require higher sample density

in order to take advantage of their potential and this ef-

fect has been confirmed on DISORDERISORDER where they signif-

icantly outperformed other models. Finally, decision
trees did not perform as well as the other two classifiers.

Under-sampling and SMOTE shifted the inductive bias

of the decision trees towards the minority class, which

had a significant increase in sensitivity, but at a higher

expense of specificity. Thus, neural networks and logistic

regression models achieved a higher true positive rate at

a lower false positive rate. Despite our efforts to prevent

overfitting, decision trees still did not generalize well on
the unseen, non-homologous protein data. Two repre-

sentative examples of the ROC curves, corresponding

to the experiments summarized in Table 3, are shown

in Figs. 2 and 3.

4.4. Prediction of phosphorylation sites: clustering using

functional keywords

Here we evaluate the approach from Section 3.5 in

the prediction of the serine, threonine, and tyrosine



Table 3

AUC scores [%] for different classifiers on the six protein datasets

Minority over-sampling (%) Logistic regression Decision trees Neural networks

1 Model 30 Models 1 Model 30 Models 1 Model 30 Models

PHOSHOSS 0 78.9 80.1 67.6 74.7 75.4 79.6

100 80.0 81.0 64.3 69.6 77.6 80.6

200 80.5 81.0 63.8 70.3 77.6 80.0

300 80.4 81.1 63.5 69.8 78.7 79.9

400 81.0 81.0 63.8 70.0 78.2 79.6

500 81.1 81.2 63.4 69.8 78.3 79.9

PHOSHOST 0 82.7 85.7 72.0 78.0 75.7 84.6

100 82.9 85.9 71.4 79.1 77.6 85.4

200 83.0 85.3 71.2 79.5 79.8 83.4

300 82.2 85.0 72.3 79.6 80.2 83.8

400 82.4 84.2 72.7 78.4 80.5 82.7

500 82.0 84.0 72.3 79.1 79.4 82.3

PHOSHOSY 0 83.9 88.1 70.4 76.5 74.6 84.6

100 84.6 88.3 73.1 78.5 79.5 86.5

200 85.8 88.1 72.3 77.8 79.5 85.9

300 85.9 88.1 72.6 77.1 80.9 86.0

400 85.4 87.9 72.9 76.8 81.5 85.5

500 85.2 87.3 73.6 76.8 81.4 85.3

BOUNDARYOUNDARY 0 73.4 77.4 61.1 66.5 62.6 77.1

100 75.3 78.8 63.0 68.6 68.0 77.8

200 74.5 77.8 63.3 69.4 72.7 77.3

300 75.0 78.3 64.5 68.3 70.7 77.3

400 76.1 78.0 64.1 68.5 71.4 77.2

500 75.7 77.4 64.2 69.9 73.3 76.1

CAAM 0 82.7 82.7 68.7 76.1 80.9 82.4

100 82.8 83.2 69.3 74.7 81.7 81.9

200 82.9 83.2 69.6 74.0 81.9 82.0

300 82.9 83.1 69.8 73.3 81.5 81.8

400 82.7 83.3 69.7 73.1 81.3 81.4

500 82.5 82.8 69.8 73.3 81.2 81.4

DISORDERISORDER 0 70.4 71.5 61.8 66.1 68.3 71.4

100 70.4 71.4 61.8 65.0 70.3 75.9

200 70.6 71.3 62.0 64.9 71.9 77.9

300 70.7 71.7 62.2 64.6 72.6 79.1

400 70.9 71.7 62.0 64.7 73.5 80.5

500 70.7 71.3 61.7 63.9 74.3 81.2

Values in bold indicate best performing classifiers for each model type over six particular minority over-sampling amounts. For the logistic regression

models, minority over-sampling was performed using replication, while for the decision trees and neural networks it was performed using SMOTE

[36].
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phosphorylation sites on a set of human proteins from

Swiss-Prot. The objective of this experiment was two-

fold. Its first part was designed to quantify the cost

reduction (if any) in cases where the a priori class distri-

bution is iteratively estimated and then used to train a

classifier as compared to the situation where a predictor

was simply trained using a balanced class distribution or

the class distribution observed in the labeled dataset.
The second part of the experiment was designed to test

and quantify whether clustering unlabeled data com-

bined with estimating class priors in each cluster can

provide an additional decrease in classification cost.

Partitioning of the unlabeled data (human proteins)

was performed according to functional categories
associated with each protein in its Swiss-Prot entry,

thus imposing a restriction that all data points from

a single protein have to belong to the same cluster.

We considered the following functional categories,

indicated by the Swiss-Prot keywords: transcription

(857 proteins), transport (593), structural (54), regula-

tion (851), inhibitor (113), degradation (59), cytoskel-

eton (134), cancer (231), biosynthesis (245),
membrane (179), and other. Group ‘‘other’’ contained

proteins not associated with any of the functional key-

words used for other groups and was ignored further.

In total, this set of nC = 10 functional subsets con-

tained 3316 human proteins with nU = 3,116,794 resi-

dues. Separated per residue, the set contained



Fig. 2. ROC curves for the ensembles of logistic regression models,

neural networks, and decision trees for the PHOSHOSY dataset. Sensitivity

(sn) and specificity (sp) were calculated for various fractions of

minority and majority examples in the training set. Minority over-

sampling of 100% was used for all three classifiers (see Table 3).

Fig. 3. ROC curves for the ensembles of logistic regression models,

neural networks, and decision trees for the DISORDERISORDER dataset.

Sensitivity (sn) and specificity (sp) were calculated for various fractions

of minority and majority examples in the training set. Minority over-

sampling was 300% for logistic regression models, 0% for decision

trees, and 500% for neural networks (see Table 3).

Fig. 4. Expected classification costs with standard errors for the three

scenarios of model construction for the proteins involved in regulation.

Scenario 1: pT = [1/2 1/2]T – training class distribution was balanced;

Scenario 2: pT = pL – training class distribution was identical to that in

the labeled data; Scenario 3: pT = pU,regulation – training class distribu-

tion is iteratively estimated for the regulatory proteins. The results

signify estimating class priors during model construction.

Table 4

Expected classification costs and standard errors in the prediction of

phosphorylation sites in human proteins

Method Serine Threonine Tyrosine Overall

With clustering 18.6 ± 0.0 5.9 ± 0.0 10.9 ± 0.0 13.8 ± 0.0

Without clustering 19.4 ± 0.0 6.4 ± 0.0 11.2 ± 0.1 14.4 ± 0.0

Class distributions in the unlabeled data were estimated both for the

clustered and non-clustered cases. Clustering was performed using

protein�s functional class. Confidence intervals of 0.0 indicate values

below 0.05.
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1,777,976 serine, 947,268 threonine, and 391,550 tyro-

sine residues.

In the first experiment for each phosphorylation
predictor we compared three scenarios of model build-

ing: (i) the predictor is constructed using the balanced

class distribution, i.e., pT = [1/2 1/2]T, (ii) the predictor

is constructed using the original class distribution in

DL, i.e., pT = pL, and (iii) predictor building and class

distribution estimators are iteratively applied as de-

scribed in Section 3.5. These scenarios were compared

using the estimated average cost from Eq. (1). In the
study of Vucetic and Obradovic [64] it was shown

on artificial data that a similar class distribution esti-

mator converged to within 1% of the true class distri-

bution. Based on their results, we assumed that the

estimated and true a priori class distributions were

identical. Confidence intervals were estimated using
bootstrapping. A comparison of the three scenarios

for the regulatory proteins is shown in Fig. 4, while

the complete results for all 10 clusters are given in

the Appendix.

In the second experiment (Table 4) we compared

two scenarios of model building: (i) the class distribu-

tion is estimated using the original unlabeled dataset,

and (ii) the unlabeled data is initially clustered followed
by class distribution estimation on each partition. In

the first situation, the classification cost was estimated

by directly applying Eq. (1), while in the second case

it was calculated as a weighted average of the costs

for each cluster. The weights were calculated as the

fractions of residues belonging to each functional

category.
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The results from Fig. 4 suggest that estimating class

priors in the unlabeled dataset may be an important step

in model learning. Furthermore, clustering based on

functional keywords provided a cost decrease of 4.1%.

Separated per each phosphorylatable residue, the cost

reduction was 4.1% for serine, 7.8% for threonine, and
2.7% for tyrosine sites (Table 4).

4.5. Prediction of phosphorylation sites: clustering using

disorder prediction

In this section, we investigate the effects of clustering

based on a different type of prior knowledge. We con-

sider a set of 53,630 eukaryotic proteins from Swiss-
Prot, again with the task of predicting phosphorylation

sites. As a partitioning algorithm c(x) we employ the

VL2 predictor of long intrinsically disordered regions

[15] which was designed to output the likelihood that a

residue belongs to an intrinsically disordered region 30

consecutive residues or more in length.

Unlabeled dataset DU was constructed using the ori-

ginal set of eukaryotic proteins. Then, c(x) was applied
to DU with the effect that all residues with the prediction

score below 0.5 were assigned group label ‘‘order’’, while

all remaining residues were assigned group label ‘‘disor-

der’’. We denote these two partitions as DU,o and DU,d.

Therefore, in contrast to the setup of Section 4.4, we re-

moved the restriction that all residues from the same

protein must belong to the same cluster.

As in the previous section, we compare the clustered
with the non-clustered version of the algorithm, apply-

ing estimation of class priors in both cases. The average
Table 5

Expected classification costs and standard errors in the prediction of

phosphorylation sites in eukaryotic proteins

Method Serine Threonine Tyrosine Overall

With clustering 12.2 ± 0.2 4.8 ± 0.1 4.1 ± 0.1 8.1 ± 0.2

Without clustering 19.7 ± 0.4 6.2 ± 0.2 4.6 ± 0.1 12.2 ± 0.3

Class distributions in the unlabeled data were estimated both for the

clustered and non-clustered cases. Clustering was performed on a per

residue basis using a predictor of disordered regions VL2 [15].

Table 6

Characteristics of unlabeled datasets constructed from eukaryotic proteins

Serine Threonine

Number of examples Estimated priors Number of example

DU 1,527,914 [0.75 0.25]T 1,105,315

DU,o 947,587 [0.96 0.04]T 798,823

DU,d 580,327 [0.40 0.60]T 306,492

For every dataset, its size and estimated fractions of non-phosphorylated vs. p

or Y sites extracted from eukaryotic proteins;DU,o – unlabeled data predicted

[15].
cost for the non-clustered case was calculated by directly

using Eq. (1) on the dataset DU. On the other hand, for

the clustered case the total cost was calculated as

C = CoÆp(order) + CdÆp(disorder). Costs Co and Cd were

calculated using Eq. (1) on datasets DU,o and DU,d,

while p(order) = 1 � p(disorder) represents the fraction
of eukaryotic residues predicted to be ordered by VL2.

The results of this experiment are summarized in Tables

5 and 6. Confidence intervals were estimated using

bootstrapping.

The results from Table 5 illustrate that partitioning

by disorder prediction provided an overall cost reduc-

tion of 33.5%:38.1% for serine, 22.6% for threonine,

and 10.9% for tyrosine sites. Table 6 also suggests that
the estimates of the a priori class probabilities may

provide an interesting ‘‘side-result’’ of the classification

process: in all three cases, and especially for serine res-

idues, regions predicted to be in long intrinsically dis-

ordered regions were estimated to be significantly

more likely to undergo reversible phosphorylation

than the regions predicted to have fixed secondary

structure.
5. Conclusions

In this study we designed a three-stage framework

for automated annotation of protein databases and

identified improvements achieved by our methods in

each stage. In the first stage, we decided to search for
the best feature subset using a filtering approach due

to the high dimensionality of the sample and low infor-

mation content of most individual features (properties

of the data that can be unfavorable to the wrappers).

In Sections 3.1 and 4.2 we employed Fisher�s permuta-

tion test as a feature selection filter and compared its

performance to that of information gain, v2 test, and

bi-normal separation. We provided evidence that the
permutation test fared well as compared to these

techniques.

Fisher�s permutation test has larger applicability

than merely for the selection of binary features that

were exclusively used here. It provides a probabilistic
Tyrosine

s Estimated priors Number of examples Estimated priors

[0.93 0.07]T 626,528 [0.95 0.05]T

[0.97 0.03]T 542,261 [0.97 0.03]T

[0.82 0.18]T 84,267 [0.79 0.21]T

hosphorylated sites are shown. DU – unlabeled data consisting of S, T,

to be ordered;DU,d – unlabeled data predicted to be disordered by VL2
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framework to the feature selection process and is gen-

erally insensitive to the underlying distribution of each

feature. In addition, it does not require quantization of

real-valued features. Thus, in cases when domain

knowledge is used to construct multiple additional

features, Fisher�s permutation test can be used as a
general off-the-shelf technique. A disadvantage of

non-parametric tests lies in the computational complex-

ity necessary to accurately evaluate the usefulness of

the features. This problem may even become greater

when datasets are large and when small differences be-

tween classes tend to be statistically significant (this

may complicate automated threshold selection). How-

ever, these downsides can be overcome by combining
multiple test statistics and data sampling. In addition,

the computational burden can be alleviated using par-

allel processing.

In the second stage, we addressed the issue of noise

and class imbalance. We compared different strategies

of model learning that include choices of the number

of examples used, class distribution in the training set,

as well as of the learning algorithm. Surprisingly, in
most cases the best performance results in terms of the

AUC scores were achieved by ensembles of logistic

regression models. These results can be seen in light of

previous studies which recently showed that models

based on linear discriminant analysis [69] and logistic

regression [70] can be improved using bagging. The

instability necessary for variance reduction comes from

different selections of the training sets where on average
approximately 63% of examples are selected in each

bootstrap sample. A large-scale study that compares

the performance of logistic regression and decision trees

across various domains was done by Perlich et al. [70].

Ensembles of logistic regression models were shown to

outperform ensembles of decision trees on small data

sets while ensembles of decision trees outperformed lo-

gistic regression models on large data sets. The prefer-
ence of each classification technique was shown to be

separable by a simple measure of the signal-to-noise ra-

tio (AUC score). Perlich et al. observed that decision

trees generally outperformed logistic regression models

when achievable AUC score is above 80%. Our study,

however, concentrated on high-dimensional datasets

on which logistic regression was found to significantly

outperform decision trees regardless of the signal-to-
noise ratio.

The results from Section 4.3 suggest that a combi-

nation of minority over-sampling and majority un-

der-sampling is beneficial to model learning. In cases

of logistic regression, the best results were obtained

using simple replication of minority examples. On

the other hand, neural networks and decision trees

benefited from SMOTE [36]. We believe that, due to
the small size of samples, low sample density had neg-

ative effect on network learning so that populating the
feature space, even with the noisy synthetic data, facil-

itated the learning process; an effect previously ana-

lyzed and quantified by Magdon-Ismail et al. [54] on

artificially generated datasets. The other factor that

contributed to the learning process is that extra minor-

ity examples enabled using larger pools of majority
data for the same class distribution in the training

set. Finally, performance results achieved by decision

trees were inferior to those of other models, including

the case of an evidently non-linear concept for dataset

DISORDERISORDER. The results obtained on all six datasets

show, to our surprise, that even ensembles of decision

trees could not outperform single logistic regression

models or neural networks. Although further experi-
mentation is needed for a definitive answer, we believe

that such a performance is likely a consequence of the

orthogonal data representation in which no single fea-

ture can provide particularly good class separation

and correlation between the features may be

substantial.

In the third stage, Sections 3.5, 4.4 and 4.5, we

showed that estimation of the a priori class distribution
of the unlabeled data has to be an integral part of mod-

el selection and learning. Learning on balanced samples

or samples with the class distribution from the labeled

data, can have a serious negative impact on the classi-

fication cost. In addition, our results indicate that inte-

grating clustering with estimation of class priors can

lead to significant improvements in classifier perfor-

mance. The clustering methods explored here were
based on functional keywords that were available in

the Swiss-Prot database, but also on our earlier hypoth-

esis that protein phosphorylation is related to intrinsi-

cally disordered protein regions [71]. Therefore, in the

former case the predictor of phosphorylation sites was

improved based on the assumption that proteins that

carry out different functions should be associated with

different fractions of phosphorylatable residues. In the
latter case, the phosphorylation predictor significantly

benefited from the disorder prediction, thus indirectly

utilizing a significantly larger dataset available for con-

structing VL2 [15] for the prediction of phosphoryla-

tion sites. We believe that other types of prior

knowledge can also be beneficial to predicting phos-

phorylation sites through this mechanism of combining

related tasks.
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Appendix

Expected classification costs and standard errors for the three scenarios of training class distributions pT
Functional class
 SERINEERINE
 THREONINEHREONINE
 TYROSINEYROSINE
C1
 C2
 C3
 C1
 C2
 C3
 C1
 C2
 C3
Transcription
 26.7 ± 0.3
 25.2 ± 0.1
 20.3 ± 0.4
 20.9 ± 0.3
 5.8 ± 0.1
 5.5 ± 0.1
 19.0 ± 0.3
 18.8 ± 0.5
 12.4 ± 0.6

Transport
 27.4 ± 0.3
 7.9 ± 0.0
 7.8 ± 0.1
 20.9 ± 0.3
 7.8 ± 0.1
 7.1 ± 0.2
 19.0 ± 0.4
 6.4 ± 0.1
 5.9 ± 0.2

Structural
 26.7 ± 0.3
 23.3 ± 0.1
 19.4 ± 0.3
 20.9 ± 0.3
 5.8 ± 0.1
 5.3 ± 0.1
 19.0 ± 0.3
 4.7 ± 0.1
 4.3 ± 0.1

Regulation
 26.5 ± 0.3
 29.0 ± 0.1
 21.5 ± 0.4
 20.9 ± 0.3
 5.8 ± 0.1
 5.4 ± 0.1
 19.0 ± 0.4
 17.2 ± 0.2
 12.1 ± 0.4

Inhibitor
 27.1 ± 0.3
 15.6 ± 0.1
 14.2 ± 0.2
 20.9 ± 0.3
 9.7 ± 0.1
 8.5 ± 0.2
 18.9 ± 0.4
 8.2 ± 0.1
 7.2 ± 0.2

Degradation
 27.7 ± 0.3
 2.1 ± 0.0
 2.1 ± 0.0
 20.9 ± 0.3
 9.7 ± 0.1
 8.1 ± 0.2
 19.0 ± 0.4
 7.4 ± 0.1
 6.8 ± 0.2

Cytoskeleton
 26.8 ± 0.3
 22.3 ± 0.1
 18.8 ± 0.3
 21.0 ± 0.3
 5.8 ± 0.1
 5.7 ± 0.1
 19.0 ± 0.4
 4.7 ± 0.1
 4.3 ± 0.1

Cancer
 26.7 ± 0.3
 25.2 ± 0.1
 20.0 ± 0.4
 21.0 ± 0.2
 2.9 ± 0.0
 3.0 ± 0.0
 19.0 ± 0.3
 6.5 ± 0.1
 5.9 ± 0.2

Biosynthesis
 27.7 ± 0.3
 3.1 ± 0.0
 3.1 ± 0.0
 20.9 ± 0.3
 9.7 ± 0.1
 8.7 ± 0.2
 19.0 ± 0.4
 7.4 ± 0.1
 6.9 ± 0.1

Membrane
 27.3 ± 0.3
 11.7 ± 0.1
 11.2 ± 0.1
 20.9 ± 0.3
 9.7 ± 0.1
 8.4 ± 0.2
 19.0 ± 0.4
 8.2 ± 0.1
 6.8 ± 0.2
C1 is the classification cost corresponding to the case when pT = [1/2 1/2]T; C2 corresponds to the case when pT = pL; and C3 to the case when pT is

chosen according to the estimated pU,i (separately estimated for each group i). Confidence intervals of 0.0 indicate values below 0.05.
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