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Abstract. In a concept learning problem, imbalances in the distribution
of the data can occur either between the two classes or within a single
class. Yet, although both types of imbalances are known to affect nega-
tively the performance of standard classifiers, methods for dealing with
the class imbalance problem usually focus on rectifying the between-class
imbalance problem, neglecting to address the imbalance occuring within
each class. The purpose of this paper is to extend the simplest proposed
approach for dealing with the between-class imbalance problem—random
re-sampling—in order to deal simultaneously with the two problems. Al-
though re-sampling is not necessarily the best way to deal with problems
of imbalance, the results reported in this paper suggest that addressing
both problems simultaneously is beneficial and should be done by more
sophisticated techniques as well.

1 Introduction

Imbalanced data sets are inductive learning domains in which one class is rep-
resented by a greater number of examples than the other. 1 Several methods
have previously been proposed to deal with this problem including stratifica-
tion (re-sampling or down-sizing approaches), cost-based learning, and one-sided
learning. In this paper, we will only focus on stratification methods, though the
close relationship between cost-based and stratification based learning makes the
observations made in this paper applicable to cost-based learning as well.

Although stratification approaches have previously been shown to increase
classification accuracy [Kubat and Matwin1997, Ling and Li1998], none of these
studies took into consideration the fact that both between-class and within-class
imbalances may occur. In the context of this study, a between-class imbalance
corresponds to the case where the number of examples representing the posi-
tive class differs from the number of examples representing the negative class;
? This research was supported by an NSERC Research Grant.
1 Throughout this paper, we focus on concept-learning problems in which one class

represents the concept while the other represents counter-examples of the concept.
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and a within-class imbalance corresponds to the case where a class is composed
of a number of different subclusters and these subclusters do not contain the
same number of examples. The within-class imbalance problem along with the
between-class imbalance problem are instances of the general problem known as
the problem of small disjuncts Holte et al.1989 which can be stated as follows:
Since classification methods are typically biased towards classifying large dis-
juncts (disjuncts that cover a large number of examples) accurately, they have a
tendency to overfit and misclassify the examples represented by small disjuncts.

The purpose of this paper is to show that the within-class imbalance prob-
lem and the between-class imbalance problem both contribute to increasing the
misclassification rate of multi-layer perceptrons. More specifically, the study dis-
tinguishes between different types of imbalances and observes their effects on
classification accuracy with respect to perfectly balanced situations or rebal-
anced ones in artificial domains. It then derives an optimal re-balancing strategy
which it tests on a real-world domain.

2 Experiments on Artificial Domains

This section presents a systematic study of the generalized imbalance problem
in two cases. The first case, the symmetrical case, involves data sets that have as
many subclusters in each class. The second case, the asymmetrical case, involves
data sets that have more subclusters in one class than in the other.

2.1 The Symmetric Case

In order to study the effect of between-class and within-class imbalances as
well as to choose an appropriate solution to these problems in the case of a
symmetrical domain, we generated a series of variations of the X-OR problem in
which the data distribution differed from one experiment to the other. We then
tested the relative accuracy performance of a standard Multi-Layer Perceptron
with fixed parameters. These experiments gave a sense of which tasks are more
or less difficult to learn by this standard classifier.

Task. The X-OR domain used in this experiment is depicted in Figure 1(a).
Each class is composed of two subclusters located at the bottom left and top
right corner in the case of the positive class (positive instances are represented by
‘?’) and at the top left and bottom right corners in the case of the negative class
(negative instances are represented by ‘o’). The subclusters are non-overlapping
and, in the original domain, each subcluster contains 1,500 training examples.
The testing set is distributed in the same way, except for the size of each subclus-
ter which is of 500 examples. Unlike for the training set, the size of the testing
set remains fixed for all the experiments. This means that even if the training
set contains less data in one subcluster than in the other, we consider the small
subcluster to be as important to classify accurately as the larger one. In other
words, the cost of misclassifying the small subcluster is considered to be as high
as the cost of misclassifying the larger one.
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Fig. 1. Experiment on a Symmetric Artificial Domain

Experiments. Starting from the original domain, four series of experiments
were conducted which changed the between-class balance or the within-class
balance of the negative class by modifying the size of the negative subclusters
either at the same rate or at a different one while the size of the positive sub-
clusters was either kept fixed or modified simultaneously. These experiments
were named: 1) Symmetric Balanced Balance (SBB), 2) Symmetric Balanced
Imbalance (SBI), 3) Symmetric Imbalanced Balance (SIB), and 4) Symmetric
Rebalanced Balance (SRB), where the first term indicates that there are as many
subclusters in the positive and negative class, the second one represents the sta-
tus of the within-class cluster relation and the third one represents the status of
the between-class cluster relation.

In other words, SBB corresponds to the experiment in which the four sub-
clusters (positive or negative) are of the same size; SBI corresponds to the case
where although there are as many examples in the two positive subclusters and
the two negative subclusters respectively, there are overall more positive exam-
ples than negative ones; SIB corresponds to the case where the size of the overall
positive set equals that of the negative one, but although the two positive sub-
clusters are of the same size, the two negative ones are of different sizes; finally,
SRB corresponds to the case where the SIB data set has been re-balanced by
resampling each subcluster (positive and negative) to make it match the size
of the largest subcluster present in the training set (this largest subcluster is
necessarily one of the negative subclusters).

Within each experiment set, 10 different degrees of between-class or within-
class imbalance were considered, following an exponential rate of size de-
crease. More specifically, the imbalance was created by decreasing the size of
the subcluster(s) targetted by the particular approach at hand at a rate of
original subcluster size

2i with i = 0..9. For example, when i = 5, the SBB set is com-
posed of two positive and two negative subclusters of size ceiling(1,500

25 ) = 47;
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the SBI set contains two positive subclusters of size 1, 500 each and two negative
subclusters of size ceiling(1,500

25 ) = 47, each; The SIB set contains two positive
subclusters of size 1, 500 each one negative subcluster of size ceiling(1,500

25 ) = 47
and one negative cluster of size 3, 000 − 47 = 2, 953.

As mentioned previously, the size of the parameters of the neural networks
used for these experiments were kept fixed since we are not interested in whether
a neural network can solve the X-OR problem (which we know is always possi-
ble given sufficient ressources), but rather in which tasks cause it more or less
difficulty. The parameters we chose—since they were adequate for the original
domain—were of 4 hidden units and 200 training epochs. The training procedure
used was Matlab’s default optimization algorithm: the Levenberg-Marquardt
procedure. The network used sigmoidal functions in both its hidden and out-
put layer. After being trained, the networks were tested on the testing set. The
experiments were all repeated 5 times and the results of each trial averaged.

Results. The results of all the experiments in this section are reported in Fig-
ure 1(b). In this figure, the results are reported in terms of four quantities: num-
ber of false negatives for positive subcluster 1 (fn1), number of false negatives
for positive subcluster 2 (fn2), number of false positives for positive subcluster
1 (fp1), number of false positives for positive subcluster 2 (fp2). The results
are also reported for each level of imbalance starting at level 0 (no imbalance)
reported in the front row to level 9 (largest imbalance) reported in the back
row. The results are reported in terms of number of misclassified examples in
each subcluster. In each case, the maximum possible number of misclassified
examples is 500, the size of each testing subcluster. The results were reported
in the following order: SBI, SIB, SRBand SBB. This order corresponds to the
least accurate to the most accurate strategy and was chosen to allow for the best
perspective on a single graph.

In more detail, the results indicate that the results on the SBI strategy are
the least accurate because it causes both negative subclusters a high degree of
misclassification. The positive class, on the other hand, is generally well classi-
fied. This can be explained by the fact that, in this experiment, both negative
subclusters have smaller sizes than the positive ones.The degree of imbalance
observed between the two classes, however, does not appear to be an impor-
tant factor in the misclassification rates observed (remember, however, that the
imbalance level grows exponentially which means that the absolute difference
between two consecutive levels is greater at the begining than it is at the end).
The results on the SIB domain are a little more accurate than those on the
SBI domain since this time, only one of the two negative subclusters—the one
represented by the smallest number of examples—suffers from some misclassifi-
cation error. The third set of results, the set of results obtained when using a
rebalancing sampling strategy so as to rectify the SIB problem is shown to be
effective although, as the degree of within-class imbalance in the negative class
increases, the re-sampling strategy is shown to loose some accuracy in the orig-
inally small but re-sampled subcluster, though this loss is much smaller than



Concept-Learning 71

the loss incurred when no re-sampling is used.2 This result can be explained
by the fact that re-sampling the same data over and over is not as useful as
having individual data points belonging to the same distribution (as shown by
the fourth set of results on the SBB domain). Indeed, a re-sampling strategy
may rectify the imbalance problem but it does not introduce all the information
necessary to prevent the inductive learner to overfit the training examples. On
the contrary, it probably encourages some amount of overfitting in the originally
small negative subcluster.

These results, thus, suggest that balancing a domain with respect to the
between-class problem is not sufficient since, if within-class imbalances are
present, the classifier will not be very accurate.

2.2 The Asymmetric Case

Although the experiments of the previous section gave us an idea of the effect
of between-class and within class imbalances on the classification accuracy of a
multi-layer perceptron, they only considered the case where there are as many
subclusters in the positive and the negative class. The question asked in this
section is how to handle the case of within-class and between-class imbalance
when the number of subclusters in each class is different. In particular, we are
interested in finding out whether, in such cases, better classification can be
expected when all the subclusters (independently of their class) are of the same
size and, thus, the two classes are represented by different numbers of examples
or when all the subclusters within the same class are of the same size, but
altogether, the class sizes are the same.

0

100

200

300

400

500

Number of    
Misclassified
Examples     

Degree of Relative 
Imbalance between  
the two classes    

0 

5 

9 

fn1 
fn2 

fp1 
fp2 

fp3 
fp4 

fn1 
fn2 

fp1 
fp2 

fp3 
fp4 

Asymmetric 
Balanced Imbalance 

 Balanced Balance 
Asymmetric 

(a) Test Set (b) Results

Fig. 2. Experiment on an Asymmetric Artificial Domain

2 In a couple of isolated cases, one of the positive subclusters also seems to be affected,
but the significance of this observation is unclear.
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Task. In order to answer this question, we generated a new test set closely
related to the X-OR problem of the previous section. As a matter of fact, the
test set represents the X-OR problem plus two new negative subclusters, both
located on the same diagonal as the two positive subclusters, but just outside
the square formed by linking the four subclusters of the X-OR problem. This
new problem is depicted in Figure 2(a) with ‘?’ representing positive examples
and ‘o”s representing negative ones.

Once again, each subcluster of the training set is originally represented by
1,500 examples, independently of its class. Like in the previous section, the
testing set is distributed in the same way, except for the size of each subcluster
which is of 500 examples.

Experiments. In this section, two series of experiments were conducted that
only changed the between-class balance. The within-class balance was untouched
(since its effect was already tested in the previous section) although the size of
the subclusters belonging to each class, respectively, was allowed to differ. These
experiments were named: Asymetric Balanced Balance (ABB) and Asymetric
Balanced Imbalance (ABI), where the first term indicates that there are differ-
ent numbers of subclusters per class, the second term represents the status of
the within-class cluster relation and the third one represents the status of the
between-class cluster relation. In other words, ABB corresponds to the exper-
iment in which the two positive subclusters are of the same size and the four
negative subclusters are of the same size, but the negative subclusters are half
the size of the positive ones so that, altogether, the two classes have the same
number of training instances; ABI corresponds to the case where all the positive
and negative subclusters are of the same size and, thus, the two classes have
different numbers of training instances.

Again within each experiment set, 10 different degrees of between-class
or within-class imbalance were considered, following an exponential rate of
size decrease. As before, the imbalance was created by decreasing the size of
the subcluster(s) targetted by the particular approach at hand at a rate of
original subcluster size

2i with i = 0..9. For example, when i = 5, the ABB Set
has two positive subclusters of size ceiling(1,500

25 ) = 47 and four negative sub-
clusters of size floor( 1,500

2×25 ) = 23, with no between-class imbalance; Similarly,
the ABI set is composed of two positive and four negative subclusters of size
ceiling( 1,500

25 ) = 47, each, thus creating a between-class imbalance of 94 exam-
ples.

Like previously and for the same reasons, the size of the parameters of the
neural networks used for these experiments were kept fixed, though, due to the
increased difficulty of the test domain, we increased the number of hidden units to
8. All the other parameters remained the same. These parameters were adequate
for the original domain of Figure 2(a). After being trained, the networks were
again tested on a testing set. The experiments were all repeated 5 times and the
results of each trial averaged.
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Results. The results of all the experiments in this section are reported in Fig-
ure 2(b). In this figure, the results are reported in terms of six quantities: number
of false negatives for positive subcluster 1 (fn1) and positive subcluster 2 (fn2),
number of false positives for positive subcluster 1 (fp1), positive subcluster 2
(fp2), positive subcluster 3 (fp3) and positive subcluster 4 (fp4). The results
are also reported for each level of imbalance starting at level 0 (no imbalance)
reported in the front row to level 9 (largest imbalance) reported in the back row.
The results are reported in terms of number of misclassified examples in each
subcluster. In each case, the maximum number of misclassified examples is 500,
the size of each testing subcluster. The results were reported in the following
order: ABI and ABB since this order corresponds to the least accurate to the
most accurate strategy and was, again, chosen to allow for the best perspective
on a single graph.

In more detail, the results indicate that the results on the ABI domain are
less accurate than those obtained on the ABB domain because they suggest
that the two positive subclusters are prone to misclassification errors whereas
they are generally not in the case of the ABB domain. This can be explained
by the fact that in the ABI domain, the size of the positive class is half that
of the negative one. In most cases, it thus, appears that it is generally better
to be in a situation where the two classes are balanced (with no between- nor
within-class imbalance), even if that means that the size of the subclusters of
the class composed of the greater number of subcluster is smaller than that of
its counterparts in the other class.3

3 An Optimal Re-balancing Strategy

Based on the results obtained in the symmetrical and asymmetrical domains of
section 2, we can now hypothesize on an optimal re-balancing strategy for the
cases where both within-class and between-class imbalances are present in a do-
main. The benefits of this strategy is then tested in a grouped-letter recognition
problem.

3.1 Formulation of the Strategy

Let L be a concept-learning problem with two classes A and B each com-
posed of NA and NB subclusters respectively. Class A is composed of sub-
clusters ai of size ni

a, respectively (with i ∈ {1, 2, ...NA}) and class B is com-
posed of subclusters bj of size nj

b, respectively (with j ∈ {1, 2, ...NB}). Let
maxclusterA = max(n1

a, n2
a, ...nNA

a ) and maxclusterB = max(n1
b , n

2
b , ..., n

NB

b ).
Let, further, maxclasssize = max(maxclusterA × NA, maxclusterB × NB)
and maxclass be the class corresponding to maxclasssize (i.e., class A in case
3 Note, however, that the graph shows several cases where the ABB strategy causes

misclassification to the negative class. These cases, however, are rarer than the cases
where the positive class is negatively affected in the ABI situation.
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maxclusterA ×NA ≥ maxclusterB ×NB and class B, otherwise. Let altclass be
the class not corresponding to maxclass (i.e., altclass=A if maxclass=B and vice-
versa). According to the results of Section 2, L will be learned more accurately
by multi-layer perceptrons if the training set is transformed as follows:

Each subcluster of class maxclass is re-sampled until it reaches size
maxclustermaxclass. At this point, the overall size of maxclass will
be maxclasssize and there will be no within-class imbalance in class
maxclass. In order to prevent a between-class imbalance as well as
within-class imbalances in altclass, each subcluster of altclass is re-
sampled until it reaches size maxclasssize/Naltclass.

This procedure will guarantee no between-class imbalance and no within-class
imbalance although, like in the asymmetrical case above, the size of A’s subclus-
ters may differ from that of B’s.

3.2 Testing the Stategy

In order to determine whether the strategy just derived is practical, we tested our
approach on a real world-domain. In particuliar, we tested the multi-layer per-
ceptron on the letter recognition problem consisting of discriminating between
a certain number of vowels and consonnants.

More specifically, we used the letter recognition data set available from the
UC Irvine Repository. However, we defined a subtask which consisted of recog-
nizing vowels from consonnants and, in order to make our task more tractable,
we reduced the vowel set to the letters a, e, and u and the consonnant set to
the letters m, s, t and w. In addition, rather than assuming the same number
of examples per letter in the training set, we constructed the training data in
a way that reflects the letter frequency in English text.4 The testing set was
always fixed and consisted of 250 data points per letter. The reason why the
distribution of the testing set differs from that of the training set is because
the cost of misclassifying a letter is independent of its frequency of occurence.
For example, confusing “war” for “car” is as detrimental as confusing “pet” for
“pat” even though “w” is much more infrequently used than “e”.

In the experiments we conducted on these data, the performance of the multi-
layer perceptron was compared to its performance in three different training-set
situations: Imbalance, Naive Re-Balance, Informed Re-Balance, and Uninformed
Re-Balance. The purpose of the Imbalance, Naive Re-Balance, and Informed-
Rebalance experiments is simply to verify whether our optimal-resampling strat-
egy also helps on a real-world domain. The Imbalance experiment consisted of
running the multi-layer perceptron on the letter recognition domain without
4 In particular, we relied on the following frequencies: a: .0856, e: .1304, u: .0249, m:

.0249, s: .0607, t: .1045, w: .0017 and consequently built a training set containing
the following corresponding number of training examples per letter: a= 335 points,
e= 510 points, u= 97 points, m= 97 points, s= 237 points, t= 409 points, w= 7
points. These letters were chosen because of their interesting differing frequencies.
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practicing any type of re-balancing. The Naive Re-Balance strategy consisted of
re-sampling from the negative class (containing 750 training data), ignoring its
internal distribution, until its size reached that of the positive class (contain-
ing 942 training data). The Informed-Rebalance experiment assumes that the
subcluster division of each class is fully known and the data sets are rebalanced
according to our optimal re-balancing strategy.5 In the Uninformed Re-Balance
strategy, no prior knowledge about the data is assumed. In this case, the k-means
unsupervised learning algorithm is used to determine the inner-distribution of
each class, followed by our optimal re-balancing method.6

In all three experiments, the neural networks were optimized using Matlab’s
default optimization algorithm: Levenberg-Marquardt, and the network used
sigmoidal units in both their hidden and output layers. In each experiment, four
different networks were ran five times each with 2, 4, 8 and 16 hidden units. The
results were averaged over the five runs and the best results were reported.

The results obtained on these experiments are reported in Figure 3. In partic-
ular, Figure 3 is composed of 8 clusters of 4 columns each. Within each cluster,
each column corresponds to the performance of each of our 4 strategies. The
leftmost column of each cluster represents the results obtained on the Imbalance
experiment; next are the results obtained with the Naive Re-Balance Strategy;
this is followed with the Informed Re-Balance strategy; and the last column was
obtained using the Uninformed Re-Balance strategy. The rightmost cluster rep-
resents the cumulative results obtained on the overall testing set, while each of
the preceeding cluster represents the results on particular subclusters.
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5 Although this situation is unrealistic, this case is considered since it represents a
lower bound on the results that can be obtained using our re-sampling strategy.

6 An estimate of the number of clusters per class was determined prior to running the
k-means algorithm. Our estimation procedure, however, is sub-optimal and will be
refined in future work, using cross-validation experiments.
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The results shown in Figure 3 suggest that, overall, as can be expected the
Imbalance experiment shows a slightly larger error rate than the Naive Re-
Balance experiment. The Informed Re-balance experiment shows a lower error
rate than the Naive Re-Balance experiment and the Uninformed Re-Balance ex-
periment falls in-between the two results, helping to improve on the imbalanced
results, but not performing quite as well as in the case where the composition
of each class is fully known. In more detail, the results show that the Informed
and Uninformed Re-Balance strategies are particularly effective in the case of
a very small subcluster (w), but that the Uninformed strategy causes a slight
decrease in accuracy in the other subclusters. This is usually not the case for
the Informed strategy and we hope that improving our clustering approach in
the Uninformed strategy will help in reducing this problem.

4 Conclusion and Future Work

It is not uncommon for classification problems to suffer from the problem of class
imbalances. In particular, these imbalances can come in two forms: between-
class and within-class imbalances. Though both problems are well-known and
have been previously considered in the machine learning literature, they have
not been previously considered simultaneously. The purpose of this paper was
to derive a re-sampling strategy that considers both imbalances simultaneously
and demonstrate that even a very simple method for dealing with the problem
can be helpful in the case of drastically imbalanced subclusters.

There are many extensions of this work. First, the experiments on artificial
domains were conducted on unnaturally imbalanced data sets. It would be useful
to repeat these experiments on naturally imbalanced ones. Second, rather than
testing our re-balancing strategy on a balanced domain, it would be more rep-
resentative to test it on a range of class distributions using ROC Hulls or Cost
Curves [Provost and Fawcett2001, Drummond and Holte2000]. Third, it would
be interesting to test our strategy on other classifiers and other domains.7 Fi-
nally, we should try to adapt our strategy to cost-based algorithms that usually
perform more accurately on imbalanced data sets than stratification methods.
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