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Abstract

Image processing techniques have proved to be effective for the improvement of
radiologists’ diagnosis of lung nodules. In this paper, we present a computerized system
aimed at lung nodules detection; it employs two different multi-scale schemes to identify the
lung field and then extract a set of candidate regions with a high sensitivity ratio. The main
focus of this work is the classification of the elements in the very unbalanced candidates set, by
the use of support vector machines (SVMs). We performed several experiments with different
kernels and differently balanced training sets. The results obtained show that cost-sensitive
SVMs trained with very unbalanced data sets achieve promising results in terms of sensitivity
and specificity.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and materials

The chest radiography is by far the most common type of procedure for the initial
detection and diagnosis of lung cancer; it is even preferred to more sensitive and
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precise techniques (e.g. MRI and CT) due to its non-invasivity characteristics,
radiation dose and economic considerations. Several studies in the last two decades
(e.g. [9,12]) explain the difficulties of the technical production of the radiographic
image and its correct diagnostic interpretation; this is also proved by impressive
numbers reporting both diagnosticians’ error rate and the patients’ mortality. Since
no improvement of these results has been observed even when employing more
sophisticated imaging techniques, the use of computer programs for radiographs
analysis has been suggested by studies that also show the potentiality of early
diagnosis improvement [5]. This is why in the last two decades a great deal of
research work has been devoted to the development of systems aimed at lung nodules
detection. Although a wide variety of them have been already proposed the problem
is still open (see [11] for a review).

In this paper, we describe the results obtained by our recently developed method
which extracts a first set of candidate nodules and then classifies them to discard the
false positives. The classification was performed using both neural networks (NN),
with several architectures, and support vector machines (SVMs), with different
kernels and different settings of their parameters. Since true and false positives were
greatly unbalanced, we applied a cost-sensitive approach to improve the sensitivity
of the classifiers. We present only the results obtained with SVMs since they are the
most robust and promising.

2. Candidate nodules extraction

We briefly sketch here the candidate extraction scheme which is composed of three
consecutive processing steps.

At first the borders of the lung field are precisely defined by an algorithm which
perform a multi-scale analysis of the image and works under no assumption. To get
more information about the lung structure, a further processing is aimed at
separating the visible lung area from those parts hidden behind the spine, the
diaphragm and the heart (not visible lung area), where lung nodules may still be
present (Fig. 1). The overall algorithm, and the comparison with other methods
presented in the literature, are reported in [4] where it is shown that this is a good
initialization step for a lung nodules detection system.

B —
Fig. 1. Original image containing a subtle nodule in the hidden areas; lung image area; enhanced image;
regions image containing an extremely subtle nodule.
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The second step is also based on a multi-scale framework; it processes the
segmented lung area, to produce an enhanced image (Fig. 1) where the visibility of
the nodules is much improved, notwithstanding their particular size, grey level and
contrast characteristics. We think that a multi-scale approach is the missing part of
the methods presented in the literature.

The image thus produced is the input of another method which extracts the nodule
candidate regions at different radius values, and combines them. The result is a
regions image (Fig. 1) whose pixel values are computed during the extraction scheme.
Both the enhancement and the extraction schemes are described in details in [2]. The
method has been tested on the standard JSRT database [8], containing 247
radiographs: 93 of patients with no disease, and 154 containing lung nodules with
different levels of detection subtleties and sizes. The overall number of regions
extracted is 31 100, about 125 regions per image, and only 5 true positives lost out of
154. The comparison of these results with those of the only two methods presented in
the literature, and tested on the same database ([1,7]) prove the better performance
of the method [4].

To reduce the number of the extracted candidates we calculated for each region
more than 100 features and performed a statistical analysis to select a set of 16 most
representative ones (see [4] for their detailed description).

The novelty of this set is that it includes some features that are strictly related to
the values computed during the extraction of the candidates; this is due to the
observation of the strong dependency between the regions obtained and the
algorithm used to extract them. Their efficacy is indeed proved by the fact that their
combination by means of simple rules can discard more than 22 000 candidates. The
drawbacks of a rule-based system are the empirically set thresholds used by the rules,
which necessarily bring to a lack of robustness with respect to different databases.
For this reason we experimented different learning machines such as NN and SVMs,
using as input the same set of 16 features. In the following we will describe just the
experiments with the SVMs which gave the most promising results.

3. Candidates classification using SVMs

In this section we present the results of the candidates classification performed
with SVMs.

To evaluate the performance of a generic classifier two quantities are usually used.
These are the sensitivity (sens.) and the specificity (spec.) and they are respectively
defined as

TP TN
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where TP is the number of true positives, i.e. the positive examples correctly
classified as positives, TN is the number of true negatives, FP is the number of false
positives, i.e. the negative examples incorrectly classified as positives, and FN are the
false negatives.
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Our aim is to obtain a high sensitivity, in order to detect all the positive examples
without a significant loss in specificity; from a medical point of view it is indeed
crucial to detect all the positive examples, but at the same time we need to
significantly reduce the number of false positives.

The data set is composed of 31100 nodule candidates (with only 149 positive
examples), each candidate being represented by 16 features (see Section 2).

For the different experiments we performed a stratified random split of the data in
training and test sets according to a train/test ratio equal to % We randomly repeated
the above process 10 times, obtaining 10 pairs of training and test sets. In all the
experiments we normalized the components of the data vectors to 0 mean and
unitary standard deviation.

We applied SVMs with linear, polynomial and Gaussian kernels, varying the
regularization parameter (in the literature usually referred to as the C parameter)
between 0.001 and 1000, the degree of polynomial kernels between 2 and 6 and the
“width” (¢ parameter) of Gaussian kernels between 0.01 and 10000. We computed
the mean error and standard deviation on the training and test sets, and the
corresponding sensitivity and specificity. The train and test mean errors have been
computed averaging between the 10 instances of the training and test set.

Considering the high unbalancing of the candidates set, at first we experimented
with data sets “‘enriched” by positive examples, then we applied SVMs to more
unbalanced data sets whose proportion, of positive to negative examples, is similar
to the very unbalanced original data. Finally we applied a cost-sensitive approach to
improve the sensitivity of SVMs.

3.1. Experiments with “positive-enriched”’ data

For training and testing positive-enriched data sets were built, by considering
separately positive and negative examples. We randomly split the available po-
sitive data in 89 examples for training and 60 examples for testing according to a
train/test ratio equal to % From the set of negative data we extracted without
replacement a number of negative examples equal to five times the number of
positive data, both for the training and the test set, obtaining respectively 89 x 5 =
445 negative examples for the training set, and 60 x 5 = 300 negative examples for
the test set.

The experiments generally gave poor results with all the models: even if the
average test error generally obtained is quite good (on the average it is equal to 0.11)
and the specificity is high (on the average it is equal to 0.96), the corresponding
sensitivity is very low (between 0.41 and 0.48 in the models with the lowest test
error). Even if we rank the SVM models with respect to the sensitivity level, in the
best case we achieved a value of 0.53, losing about half of the true nodules (Table 1).
Note that in Table 1 and in the following tables d stands for degree of polynomial
kernels and ¢ refers to the width of Gaussian kernels.

We also ran experiments using a larger set of features, such as those generated
through Gabor filters. Nevertheless, we obtained even worse results (data not
shown).
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Table 1
Best SVM models with respect to the sensitivity (““positive-enriched” data set)

SVM kernel Sens. Spec. Test Stdev Train Stdev
Poly d =3, C =200 0.5333 0.9273 0.1383 0.0133 0.0579 0.0059
Poly d =2, C = 1000 0.5317 0.9237 0.1417 0.0093 0.0607 0.0061
Poly d =4, C = 1000 0.5317 0.8807 0.1775 0.0156 0.0139 0.0051
Gauss. ¢ = 100. C = 1000 0.5300 0.9003 0.1614 0.0195 0.0328 0.0080
Poly d =6, C =200 0.5300 0.8897 0.1703 0.0126 0.0150 0.0047
Poly d =5, C = 1000 0.5300 0.8740 0.1833 0.0143 0.0047 0.0032

3.2. Experiments with very unbalanced data

Analyzing the outputs of the SVMs, we observed that many positive examples are
“strongly” classified as negative: i.e. the corresponding real-valued discriminant
function is largely negative for many positive nodules. Even if, in principle, this may
be due to the mislabeling of some examples, we suspected that a too small size of the
training data might also play a significant role. To verify this hypothesis, we
employed larger training sets, even if this necessarily involves a larger unbalance
between positive and negative examples, since we have a very limited number of
positive nodules.

We used a positive versus negative ratio equal to %, hence obtaining respectively
89 x 30 = 2670 negative examples for the training set and 60 x 30 = 1800 negative
examples for the test set. Even though, in this case, the SVMs can learn from more
examples, the best sensitivity achieved is equal to 0.32, meaning that the training set
is probably too unbalanced.

3.3. Experiments with cost-sensitive SV Ms

Based on the fact that we deal with very unbalanced data, we tried to outweigh
errors on positive examples, introducing a cost-sensitive approach to improve the
sensitivity of the SVMs.

In the framework of the SVM optimization problem we may introduce
regularization parameters C, and C_ to be able to adjust the cost of
misclassifications of false positives versus false negatives. Hence the minimization
problem associated to linecar 1-norm SVMs is translated into the following one,
where asymmetrical loss functions are used [6]:

iy;=+1 JY
subject to  y(W-xx +b)=1— ¢, ®))
& =0,
1<k<n,

Minimize w-w + C+ Z fi + C_ Z fj
1
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Table 2
Results with very unbalanced data and asymmetrical cost functions: best SVM models with respect to the
sensitivity

SVM kernel Sens. Spec. Test Stdev Train Stdev
Poly d =7, C =0.001, Cy = 100 0.9458 0.5566 0.4311 0.0334 0.4215 0.0352
Poly d =3, C =0.01, Cy = 100 0.9458 0.5249 0.4618 0.0369 0.4481 0.0370
Poly d =4, C =0.01, C; = 100 0.9288 0.5929 0.3964 0.0364 0.3864 0.0347
Gauss. ¢ = 1000. C = 10, Cr = 100 0.9254 0.5364 0.4512 0.0351 0.4423 0.0384
Linear d = 6, C = 0.01, Cy = 100 0.9254 0.5062 0.4805 0.0376 0.4750 0.0364
Poly d =4, C =0.001, C¢f = 50 0.9051 0.6490 0.3429 0.0266 0.3339 0.0337
Gauss. 0 =100. C=2, C; =50 0.8880 0.7202 0.2748 0.0201 0.2723 0.0162
Polyd =2, C=0.1, Cf =50 0.8814 0.7007 0.2936 0.0174 0.2862 0.0158

where (Xi, Vi), Xk € [Rd,yk € {—1,+1}, 1<k<n, are the training examples, w € R’ is
the weight vector, ; and ¢; are slack variables associated with positive and negative
examples, and b is the constant factor of the linear function learned by the SVM.

In the experiments presented here we fixed C_ = C and C, = C x Cy, where C
and C; are respectively the regularization parameter and the cost-factor; we ran
experiments where Cy was set equal to 2, 5, 10, 20, 50, 100, so that training errors on
positive examples outweigh errors on negative examples.

Anyway, experiments with “‘positive-enriched” data sets achieved no significant
increment in sensitivity at the expense of a significant decrement in specificity (data
not shown).

On the contrary, applying a cost-sensitive approach with very unbalanced data (3‘—0
ratio between positive and negative examples) we achieved a significant increment in
sensitivity with respect to all the previous approaches (Table 2). Note that the larger
test error obtained with cost-sensitive SVMs (Tables 1 and 2) is mainly due to the
unbalancing of the data. Anyway, our aim is to improve sensitivity in order to detect
most of the real nodules: with relatively low values of C (C<0.01) and quite large
values of the cost factor C¢ (Cy>=50), we obtained sensitivity equal or larger than
0.90 and specificity equal about to 0.70.

Fig. 2 shows the receiver operating characteristic (ROC) curves of cost-sensitive
and standard polynomial and Gaussian SVMs for five different splits of the training
and test sets: cost-sensitive SVMs show better sensitivity and specificity compared
with those of standard SVMs.

4. Conclusions

The results show the effectiveness of cost-sensitive SVMs when dealing with highly
unbalanced data sets, such as the one detected by a system for candidate nodules
extraction. Anyway, this result is probably not sufficient for a population-wide
clinical pre-screening of chest radiographs. Indeed the specificity obtained with high
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Fig. 2. Comparison of ROC curves in standard and cost-sensitive SVMs. (a) Polynomial SVMs (b)
Gaussian SVMs.

sensitivity is too low (about 0.70) to be practical for diagnostic purposes. To increase
the performances of our method, we plan to compute larger sets of features and
employ feature selection techniques together with cost-sensitive SVM methods.
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