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Adaptive algorithm for training pPRAM neural
networks on unbalanced data sets

S. Ramanan, T.G. Clarkson and J.G. Taylor

A novel algorithm for training pyramidal pPRAM neural networks
on an unbalanced training set is proposed. The behaviour of the
standard reinforcement learning algorithm is analysed and an
adaptive learning rate algorithm that modifies the reinforcement
learning algorithm based on readily available a priori class
probability is developed.

Introduction: In an automatic target recognition (ATR) problem,
we frequently face the problem of under-represented classes
because of the presence of non-target objects in great numbers in
real scenario images [1]. It is also difficult to obtain the required
number of target objects. This poses severe problems in training
neural networks as the learning process becomes biased towards
the majority class, ignoring the minority classes and leaving them
poorly trained at the end of the training stage. The learning proc-
ess also becomes slower and it takes a longer time to converge to
the expected solution.
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Training on unbalanced training sets: To demonstrate the detrimen-
tal effect of an unbalanced training set on the learning process,
two-class data sets S1, S2 and S3 with unbalanced ratio 1.36, 3.72
and 8.81, respectively, were used in the experiments. A pyramidal
pRAM neural network [2] structure using the reinforcement learn-
ing rule was employed. Simulations were left running until there
was no further decrease in training error and generalisation error.
In the case of data set S1, the network settled on a solution which
classified both classes correctly. However, this was not the case for
data sets S2 and S3. The average error per pattern in each class is
plotted for data set S2 in Fig. 1 as training progressed. It is appar-
ent from these results that the network has converged onto a solu-
tion favouring the majority class [3]. The same experiment was

repeated a number of times and the results resembled the previ-
ously obtained ones. Further investigation revealed that most of
the memory contents (weights) of the network’s output layer
PRAM were close to zero. Similar behaviour was observed when
the network was trained on training set .S3.

Adaptive learning rate: Reinforcement learning is used to search
for optimal parameter settings in feedforward pRAM networks
for pattern recognition applications. The version of the reinforce-
ment learning rule used for training the pRAM net is given below
[4].

Ac, (t) = plla — au)r + M@ — a)p](t) x 6us (1)
where p and A are learning rates, r and p are reward and penalty
factors, o, is the memory content and a is the pRAM output. It is
proved in [5] that in the case of an unbalanced training set, the

length of the weight change vector for class C;, Ax(C,), is propor-
tional to the size of the training set 7, i.e.

B(|Aa(Cy)]?) _ n} -

E(|Aa(Co)[?) T n3
where E() denotes the expectation with respect to memory con-
tents (weights) o and n,, n, are sizes of the training sets. In the
case of n, > n,, the length of the weight change vector of the dom-
inant class C, is very large. It is also proved [5] that the dot prod-
uct of Aa(C)) and A(C,) is always negative in the first few
iterations, i.e.

Ag(Cy) - Aa(C2) <0 (3)

Since the length Ao(C,) is much larger than the length of
Ao(C,), the overall weight change vector Ao will be in the direc-
tion of the majority class. Therefore, Aot does not always point in
the best direction to minimise the error of both classes in a two
class problem in an unbalanced training set case. To overcome this
bias, we choose a direction » which bisects the angle between
A(C)) and Aa(C,) because it is guaranteed to be a downhill direc-
tion for both classes (see Fig. 2).
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Fig. 2 Weight change vectors AXC;), AC,) and AQ™”

Therefore, by using the results obtained in eqns. 2 — 4, we can
show that

Ag™(t) = K ~{AQ<Cl) + Z—l ‘ AQ(CQ)} 5)

where K is the magnitude factor. As the direction of steps taken in
the weight space contributes to bypass the convergence onto poor
local minima, we can omit the magnitude factor in eqn. 5 and sim-
plify the modified algorithm. Further, multiplication of A(C,) by
n,/n, can be associated with the learning algorithm. This can be
accomplished by having an adaptive learning rate (ALR), ie. a
learning rate that varies according to the class of the training pat-
tern presented to the network. If the selected base learning rate is
p, in the adaplive training strategy, pc; and pc, should be as fol-
lows

' n
per =p and pex=—p (6)
no

We rewrite the standard reinforcement algorithm for the pRAM
neuron as follows:
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Aoy (t) = pella — o)r + Ae(@ ~ o )p)(t) X bui (7)
where p, and A, are expressed by

pPCy if C= Cl .

= 8
pe {pcz if C=C, ®)
)\t:)\o VCE{Cth} (9)

Simulations and results: The same experiments were repeated for
the three data sets, but this time the learning rates were adapted
according to the class of the input pattern presented. The results
showed that the adaptive algorithm required fewer iterations com-
pared with the standard algorithm, for convergence onto to an
acceptable solution, particularly in the case of S). It is clear from
this experiment that the training set with an unbalanced ratio close
to 1 does not suffer from convergence onto poor local minima but
the adaptive algorithm speeds up the convergence. Fig. 3 shows
the error per example for each class for the pRAM net trained on
data set S, using the ALR algorithm. Comparing the plots in Figs.
1 and 3, we show that by use of the adaptive algorithm the error
for each class is reduced simultaneously during the training phase.
Furthermore, the ALR algorithm guides the learning process
towards a solution that classifies most of the patterns from both
classes.
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Fig. 3 Error per exemplar for each class for ALR algorithm
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Conclusion: We have proposed a novel algorithm for training
pyramidal pRAM neural networks on an unbalanced training set.
The detrimental effect of an unbalanced training set on the learn-
ing process is shown experimentally. Based on the analysis of the
standard reinforcement learning algorithm on an unbalanced
training set, an adaptive learning rate (ALR) algorithm has been
developed. The ALR algorithm uses the readily available a priori
class probability to guide the learning process and to avoid being
trapped into poor local minima.
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325nm bandwidth supercontinuum
generation at 10Gbit/s using dispersion-
flattened and non-decreasing normal
dispersion fibre with pulse compression
technique

H. Sotobayashi and K. Kitayama

325nm bandwidth (at 20dB) supercontinuum generation at
10Gbit/s using dispersion-flattened uniform normal dispersion
fibre along with a pulse compression technique is experimentally
demonstrated with a pumped 3.8ps, 1552nm hybrid modelocked
semiconductor laser. Application to a 50nm wavelength tunable
source is also demonstrated.

Introduction: Short optical pulse sources of wide wavelength tuna-
bility and high repetition rate are important for future optical
communication applications. A supercontinuum (SC) pulse source
is promising because pico-second pulses at several tens of Gbit/s
can be generated over an extremely broad spectral range. It is
some time since 200nm bandwidth SC generation in optical fibres
was first reported [1]. Details of the fibre used in the experiments
have been unknown until recently [2, 3]. Dispersion-flattened and
decreasing fibre whose dispersion decreases from an anomalous
dispersion regime to a normal dispersion regime is the key to
ultra-broadband SC generation. However, dispersion-flattened and
decreasing fibres require a prohibitively difficult fabrication proc-
ess. In this Letter, we describe a more practical and simplified
approach to SC generation.

Design theory: Techniques to generate SC in optical fibres are
divided into two categories. The first is spectrum broadening by
pulse compression using soliton effects in the anomalous disper-
sion regime. The second is spectrum broadening by the accumula-
tion of frequency chirping caused by optical Kerr effects in the
normal dispersion regime. There is an important advantage of the
latter technique over the former one. Nonlinear pulse propagation
in the anomalous dispersion regime tends to generate multiple
pulses with up- and down-chirping. In contrast, the output pulse
after propagation in the normal dispersion regime is always single
pulse and frequency chirping is almost linear up-chirping. Conse-
quently, the output pulse by filtering out from SC is always single
pulse. Normal dispersion is also useful to generate a reduced
intensity fluctuation spectrum [4]. Increasing the input peak power
can generate a wider spectrum. These characteristics are attractive
for the application of a wavelength tunable source.
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Fig. 1 Experimental setup

Experiments: Fig. 1 shows the experimental setup, which is divided
into two parts. In the first part, pulses are compressed in a non-
decreasing anomalous dispersion fibre using higher-order soliton
effects to increase the peak power. In the second part, these nar-
row pulses with high peak power are launched into a dispersion-
flattened and normal dispersion fibre to generate SC.

The input pulses, with pulsewidth 3.8ps and centre wavelength
1552nm from a 10GHz hybrid modelocked semiconductor laser,
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