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Abstract

Supervised classification problems in which the class sizes are very different are common. In such cases, nearest

neighbour classifiers exhibit a non-monotonic relationship between the number of nearest neighbours and misclassi-

fication rate of each of the two classes separately.
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1. Introduction

We assume we have available a design (or

training) set consisting of measurement vectors
and known class membership labels for a set of n
cases, and the aim is to use these data to construct

a rule to assign new cases to their correct class

when only their measurement vector is observed.

Many tools are available for constructing such

assignment rules (see, for example, Hand (1997),

McLachlan (1992), Ripley (1996), Webb (1999)).

In this article we are concerned with the k-nearest
neighbour method applied in two-class problems

where one of the classes is much larger than the

other. We begin by outlining some background on

unbalanced class problems and on nearest neigh-

bour methods.

In many practical problems, the class sizes are
very different. Denoting the probability that a

randomly chosen case will belong to class i by pi,

i ¼ 0; 1, we will assume (w.l.g.) that p1 � p0. Ex-

amples of such situations arise in medical screen-

ing, where generally the disease class is much

smaller than the non-disease class, in credit scor-

ing, where the bad risk customers often form less

than 10% of the applicant base, and in fraud de-
tection and money laundering, again where the

�bad� class is much smaller than the �good� class.
For example, in a study of credit card transactions,

Brause et al. (1999) say that �the probability of

fraud is very low (0.2%) and has been lowered in a

preprocessing step by a conventional fraud de-

tecting system down to 0.1%,� and Hassibi (2000)

remarks �Out of some 12 billion transactions made
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annually, approximately 10 million––or one out of

every 1200 transactions––turn out to be fraudu-

lent. Also, 0.04% (4 out of every 10,000) of all

monthly active accounts are fraudulent.�
We can distinguish two situations: those in

which the classes are perfectly separable, and those
in which they are not. �Perfectly separable� here
means that the space X in which the measurement

vectors lie can be partitioned into two (each not

necessarily connected) regions, such that pðxj0Þ,
the probability density function or mass function

for class 0, is zero in one region and pðxj1Þ is zero
in the other. This means that points at any given x
can come from only one possible class, and all we
need to do is to characterise the regions (or the

decision surface separating them). If the classes are

perfectly separable, then the disproportionate class

sizes causes no problem in principle. Of course,

this does not mean that finding the decision sur-

face in the space of measurement vectors, X , may

not be difficult in practice. The machine learning

community has often worked from the basis that
the classes are perfectly separable (even going so

far as to describe situations where the pðxjiÞ dis-

tributions overlap as �noisy�). In contrast, the sta-

tistical community has usually seen the problem as

one in which the probability distributions pðxjiÞ
overlap. Hand (1997, Section 11.7) speculates that

this may be because the computer science and

machine learning community has often worked on
artificial or man-made problems (e.g., character

recognition), in contrast to the statistical commu-

nity. In practice, real problems where the classes

are perfectly separable are rare.

A simplistic classification rule will assign a new

point to class 1 if

pð1jxÞ > 1=2 ð1Þ

and to class 0 otherwise. Here pðijxÞ is the prob-

ability that a point with measurement vector x will
belong to class i, and in practice the pðijxÞ will be
estimated from the design set. However, such a

rule makes the implicit assumption that the two

different kinds of misclassification (classifying a

class 0 case to class 1 and vice versa) are equally

serious. Hand (1997) has argued that this is very

rarely an appropriate assumption. The inappro-

priateness of such an assumption is easily illus-

trated in the extreme situation in which pð1; xÞ >
pð0; xÞ for all x, where pði; xÞ is the joint proba-

bility of i and x. This means that it is more likely

that an observation with measurement vector x
will have come from class 1 for all x. In such a
situation, rule (1) would assign all points to class 1.

This would not be appropriate in medical screen-

ing or identifying fraudulent credit card trans-

actions, since such a rule would simply assign

everyone to the disease-free or non-fraudulent

classes respectively, on the grounds that this mini-

mises the overall number of misclassifications.

Instead, it is necessary to weight the two types
of misclassification according to their relative se-

verities, or costs. Let the cost of misclassifying a

class i case be ci. Now, if points at x are assigned to

class 1, the loss at x is c0pð0jxÞ. Similarly, if points

at x are assigned to class 0, the loss at x is c1pð1jxÞ.
The minimum loss at x is thus achieved by as-

signing points at x to class 1 if c0pð0jxÞ < c1pð1jxÞ
and to class 0 otherwise. This is equivalent to the
condition

pð1jxÞ > c0=ðc0 þ c1Þ: ð2Þ

It follows that the overall loss, L ¼ p0c0m0 þ
p1c1m1, with mi the probability that a class i case is
misclassified, will be minimised by assigning cases

to class 1 if pð1jxÞ > c0=ðc0 þ c1Þ and to class 0
otherwise. We call the ratio c0=ðc0 þ c1Þ, with

which pð1jxÞ is compared, the classification

threshold. In unbalanced problems, of the kind

with which we are concerned in this paper, mis-

classifications of the smaller class will be much

more serious than that of the larger class, so that

c0 � c1. In what follows, without loss of generality

we will rescale the costs so that ðc0 þ c1Þ ¼ 1, so
that the classification rule becomes

Assign points at x to class 1 when pð1jxÞ > c0
and to class 0 otherwise: ð3Þ

Rules of this form will be applicable whether or

not the classes are perfectly separable.

In practice, the pðijxÞ must be estimated from

the data. Some strategies adopt the �sampling�
paradigm, in which the class conditional distribu-

tions, pðxjiÞ, are separately estimated from the
appropriate design set points, and then combined
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to yield an estimate of pðijxÞ using Bayes theorem.

For example:

pð1jxÞ ¼ p1pðxj1Þ=½p1pðxj1Þ þ p0pðxj0Þ�:

A popular example of such a method is linear

discriminant analysis. This is based on first and

second moments of the two class conditional dis-

tributions, and assumes that they have the same

covariance matrix. This common covariance ma-

trix is estimated from the weighted sample matri-

ces in each of the classes. This means that the

estimate of the matrix will be dominated by the
sample matrix of the larger class. If the matrices in

the two groups are not really the same, this can

lead to substantial bias. Other strategies adopt the

diagnostic paradigm, in which pðijxÞ is estimated

directly––for example, logistic discriminant ana-

lysis. Ripley (1996) points out that methods in

which estimated parameters are used in parametric

forms for pðijxÞ are likely to be biased.
There are also practical considerations when

one class is much larger than the other. If one class

has a million design set points and the other a

thousand, it seems computationally inefficient, and

largely superfluous, to retain all of the first class.

Several strategies to ease these difficulties have

been proposed. A common one is to subsample

from the design points in the larger class, so that
the two classes contribute similar numbers of

points. Alternatively, each design set point from

the larger class can be downweighted in the likeli-

hood, so that it contributes less in the parameter

estimation. In each case, appropriate counter-

adjustments are made at the classification stage.

Such strategies seem rather unsatisfying––it would

be preferable not to discard information. A third
alternative is to assign different weights to the

different kinds of misclassification, as described

above. This seems the strategy with the soundest

theoretical base, and is the strategy we adopt be-

low. Most of the work on this problem seems to be

algorithmic rather than model centred, and much

of it has appeared in the data mining literature.

Examples of papers discussing the issue are Faw-
cett (1996), Cardie and Howe (1997), Kubat and

Matwin (1997), Lee (2000) and Ling and Li (1998).

Nearest neighbour methods estimate the pðijxÞ
by the proportion of class i points amongst the k

nearest neighbours to the point x to be classified.

This requires a choice of a distance metric and a

choice of the parameter k. Euclidean distance is

often used for the distance metric, but this is only

appropriate if the variables are commensurate. If,

as will typically be the case, they are measured in
different units or on different scales, it is necessary

to adopt an appropriate standardisation. The op-

timum standardisation, and hence optimum met-

ric, is defined in terms of the unknown contours of

pð1jxÞ, so an iterative procedure can be used in

which a first approximation to pð1jxÞ yields a first

approximation to the best metric, which serves to

give better estimates of pð1jxÞ, which in turn yields
a better metric, and so on. Discussions of optimal

choice of metric are given in (Fukunaga and Flick,

1984; Hastie and Tibshirani, 1994; Henley and

Hand, 1996; Myles and Hand, 1990).

The choice of k in nearest neighbour methods

determines the bias/variance trade-off in the esti-

mator––larger values will generally have more bias

but less variance. Moreover, k must also be much
smaller than the smaller class––which can be rel-

evant when one class is much smaller than the

other. A study by Enas and Choi (1986) led to the

suggestion that k 	 n2=8 or k 	 n3=8 was reason-

able, and, more empirically, choice by cross-

validation is often adopted. Holmes and Adams

(2002) describe a Bayesian approach which inte-

grates over the choice of k.
The computational load can often be substan-

tial with nearest neighbour methods, since it is

necessary to search the entire design set to identify

the nearest neighbours to x. For this reason, sev-

eral authors have proposed strategies for discard-

ing superfluous points––those points which can

be discarded without adversely affecting nearest

neighbour classification performance. Such strat-
egies are especially appropriate in situations where

one class is much larger than the other, and lead to

a much better strategy for discarding points than

the simple random subsampling mentioned above.

Methods for this have been proposed by Hart

(1968), Gates (1972), and Hand and Batchelor

(1978).

The next section describes the impact of the
choice of k on nearest neighbour rule classification

performance when the classes are unbalanced.
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Section 3 gives an illustration using some personal

loan data. Section 4 presents some conclusions.

2. Effect of extreme cost ratios

From Section 1, the k-nearest neighbour clas-

sification rule assigns a point with measurement

vector x to class 1 if k1=k > c0, and otherwise to

class 0, where k1 is the number of class 1 points

amongst the k design set points closest to x. If

pð1jxÞ is constant in the neighbourhood of x, then
the probability that a class 1 point at x is correctly

classified by this rule is

M1j1ðxÞ ¼
X

X

k
k1

� �
pð1jxÞk1ð1
 pð1jxÞÞk
k1 ; ð4Þ

where X ¼ fk1 : k1 > kc0g. Here MijjðxÞ is to be

read as the probability that a class j point with

measurement vector x will be classified into class i.
More generally, when pð1jxÞ is not constant in

the neighbourhood of x, M1j1ðxÞ is the asymptotic

probability that a class 1 point at x will be cor-

rectly classified, when k is fixed and the design set

size increases. The overall asymptotic probability

of correctly classifying class 1 points is thus

M1j1 ¼
Z

M1j1ðxÞpðxj1Þdx ð5Þ

and we can take this as an approximation to the

proportion correctly classified in the large sample

case. Similar expressions, M0j0ðxÞ and M0j0 apply

for class 0 points.

We are concerned with the unbalanced class size

case, so that c0 � c1, and explore what happens as

k increases.
(i) Points at x are classified into class 1 if

k1 > kc0. When k is such that ðk 
 1Þ=k6 c0,
k1 > kc0 if and only if k1 > k 
 1. That is, when k is
such that k6 ð1
 c0Þ
1

, points will only be clas-

sified into class 1 if k1 ¼ k––if all of the k-nearest
neighbours belong to class 1. The probability of

this is pð1jxÞk (assuming pð1jxÞ to be constant near

x). We see immediately from this that the proba-
bility of correctly classifying a class 1 point will

decrease as k increases, provided k6 ð1
 c0Þ
1
.

When c0 is large, as we would expect in the un-

balanced case with class 1 the larger class, k will be

less than ð1
 c0Þ
1
for k which takes large values.

For example, if misclassifying a class 0 point is

regarded as 99 times as serious as misclassifying a

class 1 point, then the probability of correctly

classifying class 1 points decreases monotonically

(from pð1jxÞ) as k increases from 1 all the way up
to 100. Such a large value of k may be of the order

of, or possibly even larger than, the number of

smaller class design set points in unbalanced

problems.

Of course, the probability of correctly classify-

ing class 0 points is inversely related to the prob-

ability of misclassifying class 1 points. In this

situation, class 0 points are correctly classified
whenever k1 < k, and this will happen with prob-

ability ½1
 pð1jxÞk�, increasing monotonically with

k for k6 1=ð1
 c0Þ.
(ii) Now consider what happens when k exceeds

ð1
 c0Þ
1
. In particular, suppose that k >

ð1
 c0Þ
1
, but k6 2ð1
 c0Þ
1

. It can be easily

shown that now a class 1 point will be correctly

classified, that is k1 > kc0, if k1 ¼ k or k1 ¼ k 
 1,
but not k1 ¼ k 
 2. Firstly, if k1 ¼ k then k1 > kc0
immediately, since c0 < 1. Secondly, from k >
ð1
 c0Þ
1

it follows that ðk 
 1Þ > kc0, so that if

k1 ¼ k 
 1, then, k1 > kc0. Thirdly, if k6 2ð1

c0Þ
1

it follows that k 
 kc0 6 2, from which

ðk 
 2Þ6 kc0, so that if k1 ¼ k 
 2 then k1 6 kc0. It
follows that the probability that a class 1 point will

be correctly classified is pð1jxÞk þ kpð1jxÞk
1 

ð1
 pð1jxÞÞ. Now

pð1jxÞk þ kpð1jxÞk
1ð1
 pð1jxÞÞ

¼ pð1jxÞk
1½pð1jxÞ þ kð1
 pð1jxÞÞ�

and this is greater than pð1jxÞk
1
when k > 1, so

that the probability of correctly classifying a class

1 point increases as k increases through ð1
 c0Þ
1
,

before it starts decreasing again.

Once again, the probability of correctly clas-

sifying class 0 points changes inversely to this,

jumping down as k crosses the ð1
 c0Þ
1
threshold.

Let us summarise the phenomena described

in (i) and (ii). First, as k increases from 1 up to

ð1
 c0Þ
1
, so the probability of correctly classify-

ing class 1 points decreases monotonically. How-

ever, as k increases through ð1
 c0Þ
1
, so this

probability jumps up.
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Similar calculations to the above show that this

pattern is then repeated. The probability of cor-

rectly classifying a class 1 point decreases mono-

tonically with increasing k, until increasing k by 1

leads to an increase in the number of possible

values of k1 for which k1 can be greater than kc0.
When this happens the probability of correctly

classifying a class 1 point increases, before begin-

ning another decline. The probability of correctly

classifying class 0 points changes in the reverse

direction. Plots of the probability of correct clas-

sification (or incorrect classification, of course)

against k, for each of the two classes separately,

will therefore show a sawtooth pattern.
All of the above is all very well, but it is based

on the assumption that pð1jxÞ is constant. In fact,

of course, this probability varies with x. We need

to integrate the probability of correct classification

over the X space, as shown in Eq. (5). Now, al-

though the values of the decreases and increases

in the probability of correctly classifying class 1

points will depend on the local probability pð1jxÞ,
the sign of the change (i.e., an increase or a de-

crease in the probability) is the same for all such

probabilities. Furthermore, since the patterns will

be based on the same k the changes will occur in

phase. This means that, when they are aggregated

as in (5), the overall sawtooth pattern will still be

evident.

How should we expect changing c0 to influence
this effect? Again, for simplicity, for the moment

assume that pð1jxÞ is constant. Then the effect will

be most pronounced when c0 is near the mode of

the binomial distribution Bðk; pð1jxÞÞ. For prob-

lems with unbalanced classes, we would generally

expect small classes to be associated with large c0,
as discussed in Section 1. That is, problems with

unbalanced classes are likely to lead to this phe-
nomenon.

We have remarked that the sawtooth pattern

will have the opposite shape for the two classes––

deterioration in proportion correctly classified for

one class is associated with improvement in pro-

portion correctly classified for the other class. This

means that when one puts the two classes together

the two effects will tend to cancel out. Perhaps this
is why the effect appears not to have been reported

before: by far the most popular measure of pre-

dictive accuracy in theoretical studies of classifi-

cation rule performance is misclassification rate,

which sets c0 ¼ c1 (even though this is seldom

appropriate––see Hand (1997)) and aggregates the

numbers misclassified in the two classes.

All of the above discussion has been in terms of
the proportions of the two classes which are mis-

classified by the rule. However, sometimes it is

more useful to work in terms of the proportion of

those predicted to lie in a class which actually do

lie in that class. For example, in consumer credit

scoring (Hand, 2001; Hand and Henley, 1997;

Thomas, 2000) a common measure is the �bad rate

amongst accepts�. Applicants for loans are classi-
fied as good or bad risks, with the former being

offered loans, and the proportion of these which

turn out to be bad risks is the key measure. The

same sort of argument as that followed above also

applies in this case. Moreover, since one generally

is not concerned with the proportion of goods

rejected (this is unmeasurable), there is no oppor-

tunity for cancellation. This means that the phe-
nomenon can be especially important with such

measures.

3. An example

We illustrate the ideas using a data set of un-

secured personal loans, which follow-up has
shown to have 11% �bads� (according to a partic-

ular definition of default) and 89% �goods�. We

take the �bads� as being the smaller class, class 0.

We split the data into a design set of 3088 and a

test set of 18,530 customers.

Fig. 1 shows the proportion of class 1 and class

0 points correctly classified, using c0 ¼ 0:9, for k
from 1 to 99 in steps of 2. The sawtooth pattern is
very striking. It is also noticeable that the oscilla-

tions remain large, even for k as large as 99 and

beyond––that is, about a third of the size of the

smaller class in the design set.

Figs. 2 and 3 show, respectively, similar plots

using thresholds c0 ¼ 0:8 and c0 ¼ 0:7. Again the

sawtooth pattern is evident, though not as pro-

nounced as with more extreme c0, as expected. The
differences in absolute values of the traces for the

smaller class (the solid line) between Figs. 1–3 is

D.J. Hand, V. Vinciotti / Pattern Recognition Letters 24 (2003) 1555–1562 1559



striking. This is simply a consequence of the dif-
ferent values of c0. In Fig. 1, for example, mis-

classifying elements of the smaller class carries a

heavy penalty, so the threshold is arranged so that

few are misclassified. In Figs. 2 and 3, however, the

penalty is not so great, so it is acceptable to have a

lower proportion of the smaller class correctly

classified.

Fig. 4 shows the total loss L ¼ p0c0m0 þ p1c1m1

(see Section 1) for different values of k, with

c0 ¼ 0:9. As predicted, this does not show a saw-

tooth pattern––the losses arising from the mis-

classifications of elements of the two classes tend
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to cancel out, an improvement for one class being

matched by a deterioration for the other.

In Section 2 we remarked that a similar oscil-

lating path should be expected using measures

based on the proportion of those predicted to be in

each class which really were in that class. Fig. 5
shows the bad rate amongst accepts for the unse-

cured personal loan data using c0 ¼ 0:9. The

sawtooth pattern is clear––all the way up to and

beyond k ¼ 100.

4. Conclusion

Nearest neighbour supervised classification

methods have many attractive properties. How-

ever, many of these are based on asymptotic ar-

guments. In problems where the classification

threshold lies near 0 or 1, as generally is the case in

situations where one class is much larger than the

other, the fact that k is finite results in a non-

monotonic relationship between the proportion of
each class correctly classified as k varies. This

means that, in general, larger k may not yield

better performance than smaller k. In the data set

used in Section 3, for example, Fig. 5 shows that a

k value of 49 leads to a smaller bad rate amongst

accepts than a k value of 91.

Taking this to an extreme, with unbalanced

class problems there is the real possibility that the
probability of correctly classifying a class 1 point

will decrease as k increases right up to and beyond

the number of points from the smaller class in the

design set. This happens if the number of points

from the smaller class in the design set is less than

ð1
 c0Þ
1
. In such case, the best classification rule

for predicting class 1 membership will be based on

k ¼ 1.
The phenomenon is less important when the

misclassifications from the two classes are aggre-

gated, since then the effects on the two classes

cancel out, and a performance curve (of overall

loss) which is relatively smooth results, showing

performance improving with increasing k. This

may be one of the reasons why the phenomenon

appears not to have been reported before: loss, and
in particular misclassification rate, is a very pop-

ular measure of the performance of classification

rules (even though misclassification rate is based

on the assumption of equal costs, which is seldom

appropriate).
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