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Abstract 

In this paper, we present a new rule induction algorithm for 
machine learning in medical diagnosis. Medical datasets, as 
many other real-world datasets, exhibit an imbalanced class 
distribution. However, this is not the only problem to solve for 
this kind of datasets, we must also consider other problems 
besides the poor classification accuracy caused by the classes 
distribution. Therefore, we propose a different strategy based on 
the maximization of the classification accuracy of the minority 
class as opposed to the usually used sampling and cost 
techniques. Our experimental results were conducted using an 
original dataset for cardiovascular diseases diagnostic and three 
public datasets. The experiments are performed using standard 
classifiers (Naïve Bayes, C4.5 and k-Nearest Neighbor), 
emergent classifiers (Neural Networks and Support Vector 
Machines) and other classifiers used for imbalanced datasets 
(Ripper and Random Forest). In all the tests, our algorithm 
showed competitive results in terms of accuracy and area under 
the ROC curve, but overcomes the other classifiers in terms of 
comprehensibility and validity. 
 
Key words: machine learning, imbalanced datasets, medical 
diagnosis, accuracy, validity and comprehensibility. 
 
1. Introduction 
Many real-world datasets exhibit an imbalanced class 
distribution, where there exists a majority class with 
normal data and a minority class with abnormal or 
important data. Fraud detection, network intrusion and 
medical diagnosis are examples of this kind of datasets; 
however, opposite to other machine learning applications, 
the medical diagnostic problem does not end once we get 
a model to classify new instances. That is, if the instance 
is classified as sick (the most important class) the 
generated knowledge should be able of provide the 
medical staff with a novel point of view about the given 
problem. This could help to apply a medical treatment on 
time to avoid, delay, or diminish the incidence of the 
disease. Then, besides the classification accuracy, we 
should also consider the comprehensibility of diagnostic 
knowledge. Furthermore, we must consider an additional 
problem, the selection of relevant attributes (or risk 
factors). We should be focused over changeable attributes 
(can be changed with medical treatment) such as blood 
pressure or cholesterol levels and should not consider 
non-changeable attributes such as age and sex (usually 
good attributes for classification). This makes even harder 
the classification task. 

Another important issue is that medical datasets used for 
machine learning should be representative of the general 
incidence of the studied disease. This is important to make 
possible the use of the generated knowledge with other 
populations. Therefore, the over-sampling and under-
sampling techniques (Kubat and Matwin 1997, Chawla et 
al. 2002) frequently used to balance the classes and to 
improve the minority class prediction of some classifiers, 
could generate biased knowledge that might not be 
applicable to the general population due to the artificial 
manipulation of the datasets. For this reason, we propose 
a different strategy that tries to maximize the 
classification accuracy of the minority class (sick people) 
without modifying the original dataset. Thus, each of the 
steps of our algorithm is guided to reach this objective. 
Since we are dealing with binary classification problems, 
the majority class accuracy is guaranteed by default. 
 
In section 2 we describe the methodology of our 
algorithm. In section 3, we present a brief description of 
the datasets and classifiers used in our experiments. We 
then compare (section 4) the performance of our 
algorithm with some standard classifiers, emergent 
classifiers, and classifiers specifically used for imbalanced 
datasets. This comparison makes reference to the 
accuracy, comprehensibility and validity (only for the 
symbolic classifiers) of the obtained results. In section 5 
we show an analysis of the results and finally, in section 6 
we present our conclusions and future work. 
 
2. Methodology 
In this section we propose a new algorithm called 
REMED (Rule Extraction for MEdical Diagnostic). The 
REMED algorithm includes three main steps:  1) attributes 
selection, 2) selection of initial partitions, and finally 3) 
rule construction. 
 
2.1 Attributes Selection 
For the first step we consider that in medical practice the 
collection of datasets is often expensive and time 
consuming. Then, it is desirable to have a classifier that is 
able to reliably diagnose with a small amount of data 
about the patients. In the first part of REMED we use 
simple logistic regression to quantify the risk of suffering 
the disease with respect to the increase or decrement of an 



attribute. We always use high confidence levels (>99%) to 
select attributes that are really significant and to guarantee 
the construction of more precise rules. Other important 
aspect to mention is that depending on the kind of 
association established (positive or negative) through the 
odds ratio metric, we build the syntax with which each 
attribute’s partition will appear in the rules system. This 
part of the algorithm is shown in the top of figure 1. 
 
2.2 Partitions Selection 
The second part of REMED comes from the fact that if an 
attribute  has been statistically significant in the 
prediction of a disease, then its mean 

x
x  (mean of the 

values of the attribute) is a good candidate as initial 
partition of the attribute. We sort the examples by the 
attribute’s value and from the initial partition of each 
attribute, we search the next positive example (class = 1) 
in the direction of the established association. Then, we 
calculate a new partition through the average between the 
value of the found example and the value of its 
predecessor or successor. This displacement is carried out 
only once for each attribute. This can be seen in the 
middle part of figure 1. 
 
2.3 Rules Construction 
In the last part of the algorithm, we build a simple rule 
system of the following way: 
 
if (ei,1 ≥ p1) and (ei,j ≤ pj) and … and (ei,m ≥ pm) then class = 1 
else class = 0 
 
where ei,j denotes the value of attribute j for example i, pj 
denotes the partition for attribute j and the relation  ≥  or  ≤  
depends on the association attribute-disease. 
 
With this rule system we make a first classification. We 
then try to improve the accuracy of our system by 
increasing or decreasing the value of each partition as 
much as possible. For this we apply the bisection method 
and calculate possible new partitions starting with the 
current partition of each attribute and the maximum or 
minimum value of the examples for this attribute. We 
build a temporal rule system changing the current 
partition by each new partition and classify the examples 
again. We only consider a new partition if it diminishes 
the number of false positives (FP) but does not diminish 
the number of true positives (TP). This step is repeated for 
each attribute until we overcome the established 
convergence level for the bisection method or the current 
rule system is not able to decrease the number of FP 
(healthy persons diagnosed incorrectly). This part of the 
algorithm is exemplified at the bottom of figure 1. 
 
We can appreciate that the goal of REMED is to maximize 
the minority class accuracy at each step, first selecting the 
attributes that are strongly associated with the positive 

class. Then stopping the search of the partition that better 
discriminates both classes in the first positive example, 
and finally trying to improve the accuracy of the rule 
system but without diminishing the number of TP (sick 
persons diagnosed correctly).  
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Figure 1. The outline of the REMED rule induction 
method. 
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3. Datasets and Classifiers 
All the datasets have two classes and with the exception 
of the cardiovascular disease dataset, all were obtained 
from the UCI repository (Murphy and Aha 1994). In all 
the cases we only considered changeable (as discussed 
before) and continuous attributes (with more uncertainty 
than discrete attributes). 
 
3.1 Cardiovascular Disease 
This dataset was obtained from an Ambulatory Blood 
Pressure Monitoring (ABPM) (Mancia 1990) study named 
“The Maracaibo Aging Study” (Maestre et al. 2002) 
conducted by the Institute for Cardiovascular Diseases of 
the University of the Zulia, in Maracaibo, Venezuela. The 
final dataset was conformed by 312 observations and at 
the end of the study 55 individuals registered a 
cardiovascular disease (one of the world’s most important 
causes of mortality). 
 
The attributes considered were the mean of the readings 
of systolic blood pressure (SBP) and diastolic blood 
pressure, systolic global variability (SGV) and diastolic 
global variability measures with the average real 
variability  (Mena et al. 2005) and systolic circadian 
variability (SCV) (Frattola et al. 1993), represented with 
the gradient of the linear approximation of the readings of 
SBP. All the attributes were calculated from the ABPM 
valid readings during the period of 24 hours and the 
dataset did not present missing values. 
 
3.2 Hepatitis 
This is a viral disease that affects the liver. The attributes 
considered were the levels of albumin (AL), bilirrubin 
(BL), alkaline phosphatase and serum glutamic 
oxaloacetic transaminase in the blood. The final dataset 
was conformed by 152 samples, with 30 positive 
examples and a rate of missing values of 23.03%. 
 
3.3 Hyperthyroid 
This is an extremely imbalanced dataset with 3693 
negative samples and only 79 positive samples. The 
attributes considered to evaluate this disease of the thyroid 
glands were: thyroid-stimulating hormone (TSH), 
triiodothyronin (T3), total thyroxine (TT4), T4 uptake 
(T4U) and free thyroxine index (FTI). The dataset 
presented 27.07% of missing values.  
 
3.4 Breast Cancer 
The Wisconsin prognostic breast cancer dataset consists 
of 10 continuous-valued features computed from a 
digitized image of a fine needle aspirate of a breast mass. 
The characteristics of the cell nucleus present in the image 
were: radius (R), texture (T), perimeter (P), area (A), 
smoothness (SM), compactness (CM), concavity (C), 
symmetry (S), concave points and fractal dimension . The 

mean (me), standard error (se), and "worst" (w) or largest 
(mean of the three largest values) of these features were 
computed for each image, resulting in 30 features. They 
also considered the tumour size (TS) and the number of 
positive axillary lymph nodes observed (LN). The dataset 
was conformed of 151 negative samples and 47 positive 
samples. Only 2.02% of the data presented missing 
values. 
 
3.5 Classifiers 
To compare the experimental results of REMED we used 
the standard classifiers: Naïve Bayes , C4.5 and 1-Nearest 
Neighbor (1-NN). We also used emergent classifiers such 
as the Multi-Layer Perceptron (MLP), Radial Basis 
Function Neural Networks (RBF-NN), and Support Vector 
Machines (SVM) and other two classifiers used for 
imbalanced datasets: Ripper (Cohen 1995) and Random 
Forest (Chen, Liaw, and Breiman 2004). 
 
4. Experimental Results 
With the exception of REMED, all the classifiers were 
obtained from the Weka framework (Witten and Frank 
1999). We used SMO (Platt 1998) as the SVM classifier. 
In all the cases we applied the 10-fold cross validation 
technique to avoid overfitting. The performance of the 
classifiers is presented in terms of accuracy (Acc), 
sensitivity (Sens), specificity (Spec), and area under the 
ROC curve (AURC). The results are summarized in tables 
1 trough 4. For those classifiers that do not include an 
attribute selection step we provided them with logistic 
regression* or gain ratio** in case that this enhanced 
their result in terms of AURC. The confidence level 
established for REMED to select the statistically 
significant attributes appears in parenthesis. 
 
Table 1: Results for the Cardiovascular Disease Domain 

Classifier Acc Sens Spec AURC 
REMED (99%) 81.09 32.73 91.44 62.78 
1-NN ** 73.40 27.27 83.27 60.60 
Naïve Bayes 80.13 21.82 92.61 58.61 
MLP 79.49 12.73 93.77 55.06 
Random Forest 78.53 12.73 92.61 55.05 
RBF-NN 81.73 3.64 95.33 51.45 
C4.5 81.09 1.82 98.05 50.73 
SMO 81.73 0 100 50 
Ripper 81.09 0 98.44 50 

 
Table 2: Results for the Hepatitis Domain 

Classifier Acc Sens Spec AURC 
REMED (99.99%) 78.29 66.67 81.15 74.38 
Naïve Bayes 83.55 50 91.80 69.09 
1-NN * 78.95 50 84.43 68.94 
MLP 86.84 46.67 96.72 67.96 
RBF-NN * 82.24 46.67 91.80 67.91 
C4.5 84.21 40 95.08 65.52 
Ripper 80.26 33.33 91.80 63.01 
Random Forest 79.61 30 91.80 61.75 
SMO 83.55 13.33 100 55.30 



Table 3: Results for the Hyperthyroid Domain 
Classifier Acc Sens Spec AURC 

Naïve Bayes 96.79 96.20 96.80 83.19 
REMED (99.99%) 98.30 73.42 98.84 76.86 
Ripper 98.28 69.62 98.89 75.68 
RBF-NN 98.28 54.43 99.21 70.64 
MLP 98.41 51.90 99.40 69.81 
1-NN * 91.70 50.63 92.58 69.22 
C4.5 98.38 48.10 99.46 68.47 
Random Forest 98.46 44.30 99.62 67.11 
SMO 98.20 17.72 99.92 57.03 
 

Table 4: Results for the Breast Cancer Domain 
Classifier Acc Sens Spec AURC 

REMED (99%) 62.63 46.81 67.55 67.88 
Naïve Bayes 64.65 44.68 70.86 66.60 
1-NN 68.69 36.17 78.81 63.83 
MLP 62.63 27.66 78.81 60.66 
Random Forest 62.63 14.89 92.72 55.90 
C4.5 68.18 14.89 84.77 55.85 
Ripper 73.74 6.38 94.70 52.54 
RBF-NN 75.25 2.13 98.01 50.85 
SMO 76.26 0 100 50 
 
As we previously mentioned, besides of the classification 
accuracy, comprehensibility is an important issue for 
machine learning in medical diagnosis. Without any doubt 
the symbolic learning classifiers (decision trees and rules) 
offer better comprehensibility than the rest of the machine 
learning classifiers. In tables 5, 6, 7, and 8 we show the 
rule systems produced by each symbolic classifier. In 
some cases, where the classifier performance in terms of 
AURC was very low (< 55%), Weka did not show the 
respective rule system (that is why in table 5 only 
REMED appears and in table 8 Ripper does not appear). 
In these rules we can see how many attributes were 
chosen by REMED in the attribute selection phase (i.e. for 
the Cardiovascular Disease domain, REMED chose the 
SBP, SGV, and SCV attributes). We also analyze the 
validity of the obtained rules, comparing them with some 
well-known risk factors for each disease. 
 

Table 5: Rule System for the Cardiovascular Disease 
Domain 

REMED 
if  SBP ≥ 142.1784 and SGV ≥ 9.2575 and SCV  ≥ -0.4025 then sick 
else  no sick 
 
 

Table 6: Rule Systems for the Hepatitis Domain 
REMED 

if  BL ≥ 1.4 and Al ≤ 3.4 then sick 
else no sick 

Ripper 
if  BL > 1.4 and Al ≤ 3.6 then sick 
else no sick 

C4.5 
if  BL ≤ 3.5 and Al ≤ 2.6 then sick 
if  BL > 3.5 and Al ≤ 3.8 then sick 
else no sick 

Table 7: Rule Systems for the Hyperthyroid Domain 
REMED 

if  FTI ≥ 156 and TT4 ≥ 144 and TSH ≤ 0.25 and  T3 ≥ 1.7 then sick 
else no sick 

Ripper 
if  FTI ≥ 159 and T3 ≥ 3.5 then sick 
if  FTI ≥ 171 and TT4 ≥ 157 and TT4 ≤ 200 and TSH ≤ 0.25 and  
    T3 ≥ 1.5 and T4U ≤ 0.91 then sick 
else no sick 

C4.5 
if  FTI > 155 and TT4 > 149 and  TSH ≤ 0.01 and  T3 ≤ 4 and  
    T4U ≤ 0.91 then sick 
if  FTI > 155 and TT4 > 156 and  TT4 ≤ 167 and  TSH > 0.01 and  
    TSH ≤ 0.26 and  T3 ≤ 4 and T4U ≤ 0.91 then sick 
if  FTI > 155 and TT4 > 167 and  TSH > 0.01 and TSH ≤ 0.26 and  
    T3 ≤ 4 and T4U ≤ 0.85  then sick 
if  FTI > 155 and TT4 > 149 and  TSH ≤ 0.26 and T3 > 4 then sick 
else no sick 

 
Table 8: Rule Systems for the Breast Cancer Domain 

REMED 
If  Ame ≥ 981.05 and Rw ≥ 21.0218 and Pw ≥ 143.4 and Aw ≥ 1419 
     then sick 
else no sick 

C4.5 
if  LN ≤ 3 and TS ≤ 2.1 and SMw > 0.1482 and SMme ≤ 0.111 and 
    Tw ≤ 21.43 then sick 
if  LN ≤ 3 and TS ≤ 2.1 and SMw > 0.1482 and SMme > 0.111 and    
    SMme ≤ 0.115 then sick 
if  LN ≤ 0 and TS > 2.1 and TS ≤ 2.8 and Tme ≤ 26.29 and  
    Rw ≤ 26.51 and Cse > 0.04497 then sick 
if  LN > 0 and LN ≤ 3 and TS > 2.1 and Tme ≤ 20.66 and Rw ≤ 26.51  
    and CMw ≤ 0.429 and CMe ≤ 0.07789 then sick 
if  LN > 0 and LN ≤ 3 and TS > 2.1 and Tme > 20.66 and Rw ≤ 26.51 
    and CMw ≤ 0.429  then sick 
if  LN ≤ 3 and TS > 2.1 and Tme ≤ 26.29 and Rw > 26.51 then sick 
if  LN > 3 and Aw ≤ 2089 and Sw ≤ 0.3277 and Tse ≤ 1.198 and 
    Pse ≤ 3.283 and Tme > 19.22 then sick 
if  LN > 3 and Aw ≤ 2089 and Sw ≤ 0.3277 and Tse > 1.198  and 
    Tse ≤ 1.481 then sick 
if  LN > 3 and Aw ≤ 2089 and Sw > 0.3277 and Tw > 34.12 and 
    Rme > 13.48 then sick 
if  LN > 3 and Aw > 2089 then sick 
else no sick 
 
 
Finally, in order to evaluate the validity of the obtained 
rules we show in table 9 some abnormal values of certain 
attributes that according to the medical literature could 
represent a risk factor of the corresponding disease. 
 
 

Table 9: Well-known Risk Factors 
disease abnormal values 

Cardiovascular SBP > 140 mmhg  
Hepatitis BL > 1.2 mg/dl 

AL < 3.4 g/dl 
Hyperthyroid FTI > 155 nmol/l 

TT4 > 140 nmol/l 
TSH < 0.4 mlU/l  
T3 >1.8 nmol/l 

 
 
 



5. Results Analysis 
First, we should analyze why it is so difficult to apply 
machine learning to medical diagnosis. One example of 
this is the low performance showed by the used classifiers 
in terms of AURC, since in some cases the best 
performance did not reach 70% (Cardiovascular Disease 
and Breast Cancer domains). One reason of this is that 
most of the datasets are built from longitudinal medical 
studies that consist on observing the apparition of a 
disease in a group of individuals during a specific period 
of time. At the end of the study a binary classification is 
done, and every subject is classified as either healthy or 
sick. However, an individual that presented clear risk 
factors during the period of study, but that his death was 
not caused by the studied disease (i.e. an accident), or at 
the end of the study he did not present the disease (being 
very probable that he developed it just after the end of the 
study), is classified as healthy, and this situation tends to 
confuse the classifiers. In spite of this inconvenient, 
REMED showed a regular performance in all the domains, 
ranked in the first places in terms of AURC and 
sensitivity. Other classifiers with a constant regular 
performance were Naïve Bayes and 1-NN, but these have 
the disadvantage of not being symbolic classifiers and the 
results are not rich in comprehensibility. 
 
With respect to comprehensibility, REMED always 
produces very simple rule systems, conformed only by 
two rules. Ripper also produced simple rule systems in all 
the studied cases, but it was not as precise as REMED. A 
clear example can be seen in the hepatitis domain, where 
apparently both classifiers produced similar rule systems, 
but REMED thoroughly overcomed Ripper in terms of the 
AURC and sensitivity. C4.5 always produced larger rule 
systems than REMED and Ripper. Other advantage of 
REMED for medical domains is that it does not produce 
rules with enclosed intervals (i.e. ). This is 
important because it could represent an inconvenient in 
medical diagnosis, because the risk of developing a 
disease is directly proportional to the increase or decrease 
of a risk factor. Furthermore, the increment or decrement 
of a risk factor could be related to two different diseases 
(i.e. hypothyroid and hyperthyroid). 

bxa ≤≤

 
Other aspect important to analyze is the validity of the 
rule systems. We can appreciate from table 9 that in all 
the cases the rules proposed by REMED are closer to the 
well-known risk factors for each disease. In the specific 
case of the cardiovascular disease domain, the rule 
antecedents related with the BP variability could represent 
new knowledge to be used for the diagnostic of this 
important kind of disease. Moreover, the fact that the rule 
systems of REMED are always supported by a selection of 
attributes with high confidence levels, could provide the 
medical staff enough trust to use these rules in the 
practice. 

6. Conclusions and Future Work 
As we could see from the results, REMED is a very 
competitive algorithm that can be used in the medical 
diagnostic area. However, we should mention that 
REMED does not pretend to be the panacea of machine 
learning in medical diagnostic, but a good approach with 
the desired features to solve medical diagnostic tasks, 
good performance, the comprehensibility of diagnostic 
knowledge, the ability to explain decisions, and the ability 
of the algorithm to reduce the number of tests necessary to 
obtain reliable diagnosis (Kononenko 2001). It is also 
important to mention that the REMED algorithm can be 
scaled to work with larger databases than those used in 
our experiments. This is because the complexity of 
REMED is O(n2) and independently of the number n of 
examples and m initial attributes, REMED always 
produces simple rule systems only composed of 2 rules 
(including the default rule: else class = 0) and with a 
maximum of m conditions per rule. However, we still 
need to work to improve the performance of REMED, a 
possible way to do it could be the combination of REMED 
with Boosting techniques (Freund and Schapire 1996) or 
Cost-Sensitive strategies. We also want to increase the 
versatility of REMED, including modifications that allow 
it to consider discrete attributes, to work with multi-class 
problems and inclusive in some cases to generate rule 
systems with enclosed intervals. This will be done to be 
able to use REMED in other domains with imbalanced 
datasets. 
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