
Roughly BalancedBagging for Imbalanced Data

Shohei Hido∗ Hisashi Kashima∗

Abstract

Imbalanced class problems appear in many real applications
of classification learning. We propose a novel sampling
method to improve bagging for data sets with skewed class
distributions. In our new sampling method “Roughly Bal-
anced Bagging” (RB Bagging), the number of samples in
the largest and smallest classes are different, but they are
effectively balanced when averaged over all subsets, which
supports the approach of bagging in a more appropriate way.
Our method is different from the existing bagging methods
for imbalanced data which draw exactly the same numbers of
majority and minority examples for the sampled subset data.
In addition, our method makes full use of all of the minority
examples by under-sampling, which is efficiently done by
using negative binomial distributions. RB Bagging outper-
forms the existing “balanced” methods and other common
methods, as shown by the experiments using benchmark and
real-world data sets.
Keywords: bagging, imbalanced data, sampling, negative
binomial distribution.

1 Introduction

In real world applications, we often encounter data sets
whose class distribution is highly skewed. For example,
the number of patients is much smaller than the number
of healthy people in medical diagnosis data for normal
populations. Again, the number of fraudulent actions is
much smaller than that of normal transactions in credit card
usage data. When a prediction model is trained on such an
imbalanced data set, it tends to show a strong bias toward
the majority class, since typical learning algorithms intend
to maximize the overall prediction accuracy. In fact, if
95% of the entire data set belongs to the majority class, the
model might ignore the remaining 5% of minority examples
and predict that all of the test examples are in the majority
class. Even though the accuracy will be 95%, the examples
of the minority class will be absolutely misclassified. The
misclassification cost for the minority class, however, is
usually much higher than that of majority class and should
not be ignored. In addition, the class distribution in a test set
may be different from that of the imbalanced training set. In

∗IBM Research,Tokyo Research Laboratory, 1623-14 Shimotsuruma,
Yamato-shi, Kanagawa, 242-8502 Japan.{hido, hkashima}@jp.ibm.com

such cases the trained model will perform poorly on the test
set.

To address this practically important problem, many
studies have been conducted to improve learning algorithms
for imbalanced data [5]. They mainly consist of re-sampling
methods [4, 16], boosting-based algorithms [6, 15] and cost-
sensitive ensemble approaches [9, 11, 22]. Bagging [2] has
also been applied to classification problems with class im-
balances. However, the only technique applied in the pre-
vious works is to correct the skewness of the class distri-
bution in each sampled subset by using under-sampling or
over-sampling. For example, the under-sampling methods
typically sample a subset of the majority class data so that
its size is equal to the size of the minority class data, and
the methods use all of the data from the minority class, since
every derived subset includes exactly the same number of
majority and minority examples, the trained model performs
equally for all classes. While such a strategy seems intu-
itive and reasonable at first sight, we claim that such exist-
ing strategies do not truly reflect the philosophy of bagging.
Since the original bagging does bootstrap sampling from the
whole data set independently of the class labels. the class
distribution of each sampled subset varies according to the
binomial distribution (or multinomial distribution for multi-
class classification), and the averaged class distribution over
all subsets tends to agree with the original class distribution.
In contrast, in the existing bagging methods for imbalanced
data, each subset has exactly the same class distribution as
the desired (typically, uniform) distribution. Therefore, we
can say that this allow us room to improve the performance
of bagging for imbalanced data by using the philosophy of
bagging in a more appropriate way. To the best of our knowl-
edge, there is no previous work addressing this issue empiri-
cally or theoretically.

Our contributions in this paper are summarized as fol-
lows:

• A new under-sampling technique using a negative bino-
mial distribution for bagging on imbalanced data.

• Justification of the proposed sampling method as an
approximation of the original bagging.

• Extensive experimental evidence that RB Bagging
works better with appropriate metrics.

The rest of this paper is organized as follows. Section 2

143

providesthe basis for the imbalanced class problem. We ex-
plain RB Bagging and its sampling technique in Section 3.
We introduce the bagging-based algorithm to generate train-
ing subsets and to build an ensemble model. We address how
to equalize the probability of choosing each class for a sam-
ple, rather than the sample size. The technique allows the
class distributions of subsets to become slightly imbalanced
and different. We discuss the interpretation of our sampling
method as an approximation of bagging for the imbalanced
class problem in Section 3.4. Section 4 describes the perfor-
mance metrics and comparable learning algorithms for the
evaluation. In Section 5, we investigate the performance of
RB Bagging in experiments using benchmark and real-world
data sets. Section 7 gives a brief summary and considers fu-
ture work.

2 Imbalanced Class Problem

Real-world data set often has the problem ofclass imbal-
anceor skewed class distributionin which the examples of
the majority class outnumber those of the minority examples.
This results not only from skewness in the class prior distri-
butions, but from sampling bias. In such cases, the fraction
of the minority class data can be 10% or even less. With such
imbalanced training data sets, supervised classifiers face dif-
ficulty in the prediction of data with the minority class label.
Since their purpose is typically to maximize the overall pre-
diction accuracy, their predictions are strongly biased toward
the majority class.

Table 1 shows an example of this problem as a confusion
matrix. The rows show the sample sizes of actual classes
in a test set and the columns represent the prediction by a
classification model. In this case all majority examples are
predicted correctly. Though the prediction accuracy is higher
than 95%, most of the minority examples are misclassified as
belonging to the majority.

We are focusing on such binary classification problems.
We assume that the negative examples and the positive
examples belong to the majority class and the minority class,
respectively. Let us denote byxi an input feature vector
of d-dimensional real-valued or nominal-valued variables,
by yi ∈ {neg, pos} the class label ofxi, and byD =
{(x1, y1)...(xn, yn)} the training data set whose class labels
are highly skewed.

Table 1: Imbalanced confusion matrix
Predicted negative Predicted positive

Actual Truenegative (TN) Falsepositive (FP)
negative 400 0
Actual Falsenegative (FN) Truepositive (TP)
positive 20 4

In summary, our goal is defined as follows.

DEFINITION 2.1. (IMBALANCED CLASS PROBLEM)
Given the imbalanced data setD, estimate a prediction
model that performs well when evaluated by performance
metrics that balance the accuracies for both class labels.

The “performance metrics” in the definition will be de-
scribed in Section 4.1.

3 Roughly Balanced Bagging

3.1 Bagging for Imbalanced DataBagging is one of
the ensemble-based meta-learning algorithms which samples
subsets from the training set, building multiple base learn-
ers and aggregating their predictions to make final predic-
tions [2].

Let K denote the number of base learners. Data setD is
converted intoK equal-sized subsets{D1, · · · , DK} using
bootstrap sampling. Letfk(x) be the base model trained
on thek-th subsetDk, and fA(x) be the final ensemble
model. The output offA(x) is aggregated from the set of
base models{f1(x), f2(x), . . . , fK(x)}. ThoughfA(x) is
originally determined by voting of the predicted class labels,
we use the average of the estimated probabilitypk(y|x) as
follows.

fA(xi) =
1
K

K∑
k=1

pk(yi|xi)

This is because the averaged probability is known to result
in higher prediction accuracies than label voting [10].

There are several studies which explain why bagging
improves the predictive performance by reduction of the
variance of the mean squared error. The amount of im-
provement depends on the bias-variance decomposition for
base learners, which suggests that unstable models with high
variances such as decision trees are preferable as the base
learner for bagging rather than stable ones like logistic re-
gression [2].

In contrast to the boosting-based algorithms [6, 15]
for imbalanced data sets, bagging has been less attractive
since its simple strategy leaves little space for handling
class imbalance except changing the bagged sizeK and its
subset sampling strategy. Tao et al. proposed a balanced
sampling approach to perform bootstrap sampling only on
the negative class so that its size is equal to the number
of positive examples, and keep the entire positive examples
in all subsets [20]. However, the original bagging chooses
each bootstrap sample independently of the class labels,
which results in the class distribution of each subset not
being exactly the same as the original class distribution.
Therefore it is unclear whether the aggregated model based
on such exactly balanced subsets preserves the advantage of
the original bagging or not.

144

• Inputs:
D is thetraining data set
L is the base learner
K is the number of base learners
xi is an example drawn from the test set

• Build Roughly Balanced Bagging Model(D, L, K):
Divide D into negative setDneg and positive setDpos

Fork = 1 to K
DrawNneg

k from the negative binomial
distribution (3.1) withn = Npos

k andq = 0.5
SetNpos

k as the size ofDpos (i.e. |Dpos|)
Let Dneg

k beNneg
k examples sampled

from Dneg with or without replacement
Let Dpos

k beNpos
k examples sampled

from Dpos with or without replacement
Build a modelfk(x) by applyingL to

Dneg
k andDpos

k

Combine allfk(x) into the aggregated modelfA(x)
ReturnfA(x)

• Predict (fA(x), xi, y):
CalculatepA(y|xi) = 1

K

∑K
k=1 pk(y|xi) for all y

Let ŷ = arg maxy∈L pA(y|xi)
Returnŷ

Figure 1:The RB Bagging Algorithm

3.2 Algorithm Based on the problem identified in the
previous subsection, we aim to provide a natural extension of
bagging for imbalanced data sets that reflects the philosophy
of bagging in a more appropriate way. We believe the
proposed approach will perform better in imbalanced data
domains. The class distribution in the sampled subsets
should be corrected to build base learners that can perform
fairly for both of the classes. Also, we need to avoid
information loss in the usual bootstrap sampling of rare
positive examples.

We propose theRoughly Balanced Bagging(RB Bag-
ging for short) to address these requirements. Figure 1 de-
scribes the algorithm. As with the original bagging, the in-
put to the algorithm consists of a training datasetD, a base
learnerL, and a constant parameterK for the number of
base learners. The important point is how to determine the
numbers of samples for both classes here. We set the num-
ber of positive samples equal to that in the original dataset.
If they are sampled without replacement, all of the positive
examples will be contained in all of the sampled subsets. In
contrast, the number of negative samples is decided proba-

bilistically according to thenegative binomial distribution,
whose parameters are the number of minority (i.e. positive)
examples and the probability of successq = 0.5, which will
be discussed in detail later in Section 3.3. The key is that the
examples of both classes are drawn with equal probability,
but only the size of the negative samples vary, and the num-
ber of positive samples is kept constant since it is small. As
reported by Friedman and Hall [13], there are no significant
changes in results, and either sampling with replacement or
sampling without replacement can be used. In prediction,
the aggregated model simply outputs the class label with the
highest average probability estimated by the base models.

3.3 Negative Binomial SamplingWhen a subset is cho-
sen by bootstrap sampling over two equally-sized datasets,
one of which belongs to the positive class and the other to
the negative class, then the class distribution in the resultant
subset must vary, but it also follows the binomial distribu-
tion with probabilityq = 0.5. When we are given an imbal-
anced class dataset, to sample an equally-balanced subset,
we choose each class with probability0.5, and draw a sam-
ple uniformly at random from the dataset belonging to the
chosen class, and repeat this procedure until the size of the
sampled subset reaches some fixed size.

However, this sampling method cannot control the size
of the minority samples. Also, we would like to use the
under-sampling to make sure to use (almost) all of the mi-
nority class data. Therefore we use the negative binomial
distribution to achieve this purpose. The negative binomial
distribution is a probability distribution of the number of fail-
uresm in Bernoulli trials given the number of successesn,
which is defined by the following probability mass function:

(3.1) p(m|n) =
(

m + n − 1
n

)
qn(1 − q)m

wherep is the probability of success. For our purpose, we set
q = 0.5. Note that the negative binomial distribution with
integer parametern is also called Pascal distribution though
the parameter can be positive real number in general.

Figure 2 shows the distribution ofm with q = 0.5

0 3 6 9 12 16 20 24

Value of m

P
ro

ba
bi

lit
y

0.
00

0.
04

0.
08

Figure 2: Distribution of the negative binomial distribution
(q = 0.5, n = 10)

145

and n = 10. We can observe thatm falls aroundn =
10 with high probability. When we use sampling without
replacement, there is a small chance of the sample sizem
being larger than the number of data objects of the majority
class. In such a case, we simply setm = |Dneg|.

3.4 Justification of the Proposed Sampling MethodOur
sampling method essentially depends on the widely used
concept calledunder-sampling, which tries to make full use
of minority class examples. At the same time, we also
aim to naturally extend the original bagging to handle the
imbalanced class problem by subset sampling.

Let us review the details of subset sampling in the
original bagging. Basically, its bootstrap sampling (sampling
with replacement) draws an i.i.d sample from the empirical
joint distributionp(x, y) a fixed number of timesN (usually,
N = |D|). The point is that the bootstrap sampling can
be separated into two steps using decompositionp(x, y) =
p(x|y)p(y). First we determine the sample size of each class
according to the prior probabilityp(y). In fact, the sample
size of each class follows a binomial distribution. For a
balanced class distribution (p(y) = 0.5 for bothy) then the
density distribution of sample size|Dk

y | is:

(3.2) p(|Dk
y | = m|M) =

(
M
m

)
0.5M

Second we draw|Dk
y | samples as determined by the condi-

tional probabilityp(x|y), which is done by taking|Dk
y | sam-

ples uniformly at random from the examples belonging to
the classy.

In order to address the imbalanced class problem, we
perform sampling under the balanced class distribution. The
simplest way to do this is to use the balanced priorp′(y =
neg) = p′(y = pos) = 0.5 instead of the truep(y) in
the first step. Then the sample size of each class varies
according to the balanced binomial distribution (3.2), where
the number of positive samples and that of negative samples
are equal on average. This is the most natural extension of
the original bagging to cope with class imbalance.

However, strangely enough, none of the previous work
adapts the bootstrap sampling in this way. Since the simple
implementation described above cannot guarantee the size of
the positive examples in each subset, some of models might
contain only so small a fraction of the positive examples that
the base model works poorly for the positive class. Instead,
the existing algorithms fix the sample size, and draw the
same number of samples from both classes for each subset.
This means that the number of samples from each class
is replaced by its expected value instead of sampling the
number of samples itself. Though such an exactly balanced
sampling method performs better for imbalanced data set
than the original bagging, it seems to be still an open problem
to explain why it works. The difficulty we face is that there

is a conflict between the bootstrap sampling and the under-
sampling. To the best of our knowledge, there is no such
extension that satisfies both requirements simultaneously.

To resolve the conflict, we ease the restriction of the
equal-size subsets. Our sampling strategy can be interpreted
as repeating instance-by-instance sampling that selects the
sampled class based onp′(y) = 0.5 and draws one exam-
ple from the class until the total size of the sampled positive
examples reaches the size of all of the positive examples. Us-
ing this technique we can implement the balanced sampling
usingp′(y) = 0.5 and make full use of the positive exam-
ples at the same time. Actually, the method is equivalent to
bootstrap sampling where the sample size of each class is
selected according to a negative binomial distribution with
p′(y) = 0.5. Though the size of the subsets differs slightly
from subset to subset, they are almost balanced on average,
which is the same as the case of the original bagging.

Based on the above discussion, we can say that, by
using the negative binomial sampling, the RB Bagging both
preserves the nature of the original bagging and makes
effective use of the information of all of the minority class
data. We will evaluate the effectiveness of the proposed
approach more precisely in Section 5.

4 Evaluation

In this section, we review several performance metrics to
evaluate learning algorithms on imbalanced data sets. Then
we review several algorithms that we will use as the base
learner and comparison methods in the experiment.

4.1 Performance Metrics We review seven performance
metrics commonly used for the evaluation of methods for the
imbalanced class problem. Let us denote byDtest the test set
(Ntest = |Dtest|). We assume that the prediction results are
given in the same form as Table 1.

Prediction Accuracy.
Prediction accuracy represents the population of the cor-
rectly predicted examples. In the case of imbalanced class
problem, as mentioned in Section 2, an overly simple model
which predicts all test examples as the negative class might
maximize the accuracy. Therefore we do not put so much
weight on the naive accuracy in this paper.

Accuracy =
TN + TP

TN + FN + TP + FP

F-measure.
The F-measure combines PrecisionTP/(TP + FP) and
RecallTP/(TP + FN) on the prediction of positive class.
A higher F-measure value indicates that the model performs
better on positive class balancing of FP and FN.

F−measure =
2 × Precision × Recall

Precision + Recall

146

G-mean.
The G-meanis calculated as the product of the prediction ac-
curacies for both classes. Even if a model classifies the neg-
ative examples correctly, a poor performance in prediction
of the positive examples will lead to a low G-mean value.
In fact, the G-mean is quite important to measure the avoid-
ance of the overfitting to the negative class and the degree to
which the positive class is ignored.

G−mean =

√
TN

(TN + FP)
× TP

(TP + FN)

Mean Squared Error.
The Mean Squared Error (MSE) shows the error of the
estimated probability of the actual class labelyi. A model
which gives a precise probability estimation can reduce the
MSE. Though it uses the true posterior probabilitypT (yi|xi)
as the answer by original definition, we usually do not know
pT (yi|xi) in real-world data sets. Instead, in general MSE is
empirically calculated assumingpT (yi|xi) = 1.

MSE =
1

Ntest

Ntest∑
i=1

(1 − p(yi|xi))2

Impro ved Squared Error.
The MSE is commonly used as a metric of estimated prob-
ability. Even if the model predicts all class labels correctly,
however, the MSE will still becomes high if the probability
estimation is unstable. Alternatively, Fan et al. introduced
the Improved Squared Error (ISE) [10]. ISE accounts for
the probability error only if the model classifies the example
incorrectly. In other words, the ISE combines the accuracy
and the MSE into one value. Note that we assume the pre-
diction threshold of the estimated probability in the binary
classification is fixed as 0.5.

ISE =
1

Ntest

Ntest∑
i=1

(1 − min(1.0,
p(yi|xi)

0.5
))2

ROC Curve and AUC.
From the early stages of research on imbalanced data, The
ROC curves have been the primary metric to evaluate the
performance of algorithms. The curves represent the trade-
off between the TP and FP and the upper curve corresponds
to better performance in learning from imbalanced data. The
Area Under ROC Curve (AUC) is a value which indicates
the extent of the area below a ROC curve. In contrast to the
difficulty of identifying clear advantages in multiple crossed
ROC curves, the order of the AUC values on the classifica-
tion results is proved to be equivalent to the order of their
significances in the statistical tests including Wilcoxon’s
test [1]. Therefore, we focus on the value of AUC as a metric
rather than the complicated ROC curves.

4.2 Algorithms for Imbalanced Data Even for imbal-
anced class problems, decision tree algorithms, especially
C4.5 [18], are the most widely used approaches. It is well-
known that bagging with tree algorithms is a good idea since
the aggregation is effective against the instability of trees by
reducing the variance in the MSE [2, 10]. In contrast, more
stable models such as logistic regression are not appropriate
as the base learner. For this reason, we use C4.5 as the base
learner for the RB Bagging and other ensemble methods in
Section 5.

Following the previous work [6, 15], we used Ad-
aBoost [12] and RIPPER [8] as the comparison algorithms
in the experiments. Boosting is a family of ensemble algo-
rithms that assigns larger weights to the misclassified ex-
amples from the current base model and trains the next
base model using the new weights. If the base learners are
strongly biased toward negative examples, then boosting can
revise the weights of the misclassified positive examples and
automatically cope with the imbalanced class problem. Ad-
aBoost [12] is the most successful boosting algorithm. RIP-
PER is a rule based algorithm that generates rule sets using
an MDL-based (Minimum Description Length) stopping cri-
teria and does greedy pruning of the rules to minimize their
description length. Since rules are generated for each class,
RIPPER also performs well for imbalanced data sets.

5 Experiment

5.1 Data Sets and Experimental SettingsWe summarize
the characteristics of the nine data sets including benchmark
and real-world data set evaluated in our experiments in
Table 2. Following the earlier studies [1, 6, 15], we randomly
choose eight frequently used benchmark data sets from
the UCI repository [17]. The multi-class data sets were
converted into binary data sets which include the minority
labels shown in the “Min. Label” column. The examples
of the other classes are assigned the majority label. The
largest data set has 20,000 items and the ratio of the smallest
minority class ranged from 34.77% to 3.95%. Note that

Table 2: Summary of the imbalanced data sets
Data set Size #Attr. Min. label %Minority

Diabetes 768 8 pos 34.77%
Breast 286 9 malignant 34.48%

German 1000 20 bad 30.00%
E-Coli-4 336 7 iMU 10.42%
Satimage 6435 36 4 9.73%

Flag 194 28 white 8.76%
Glass 768 9 6 7.94%

*RealF 6651 77 low 4.99%
Letter-A 20000 16 a 3.95%

147

RealF isthe real-world data set that we were given by a
financial company.

We compared two models based on the proposed algo-
rithm with seven models based on the other algorithms. We
tested RB Bagging with sizeK = 100, with and without
replacement, using C4.5 as the base learner. We also imple-
mented the Exactly Balanced Bagging and Breiman’s origi-
nal bagging of equal size ensembles. For the usual models
and base learners, we employed the widely used data min-
ing tool Weka[21]. C4.5, AdaBoost and RIPPER are imple-
mented as J48, AdaBoostM1 and JRip respectively in Weka.
The single C4.5 tree is constructed to see the difficulties of
learning on the data sets. The following two models are Ad-
aBoost with sizeK = 100 and200 (number of iterations).
Their base learners were also C4.5. As a rule-based algo-
rithm, we made use of two models based on RIPPER with
the numbers of optimizationsOptimize set to 2 and 10. The
other parameters are all the same as the default parameters
in Weka.

All of the experiments and the statistical processing
were performed in the statistical language environment
R [19]. In the following experiments, we ran ten-fold cross
validation in a stratified manner so that the training set and
test sets preserve the same class distributions as the origi-
nal sets. Then we calculated six metrics: AUC, MSE, ISE,
F-measure, G-mean, and Accuracy as taken from the perfor-
mance metrics introduced in Section 4.1. The value of each
metric is averaged over ten trials.

5.2 Benchmark Data SetsWe summarized the perfor-
mance metrics resulting from the eight models for the bench-
mark data sets in Table 3 and Table 4.

Surprisingly, on the Diabetes, German and Satimage
data sets, RB Bagging consistently outperformed Exact Bal-
anced Bagging for all of the metrics. The results suggests
our approach to make use of the roughly balanced subset is
promising. Our algorithm also worked better compared to
the usual algorithms including original bagging. The differ-
ences are clear in AUC and the G-mean.

The Flag data set shows that the values of the F-measure
and G-mean with original bagging, C4.5, and AdaBoost are
zero. These extreme observations show that they failed com-
pletely in the prediction of positive examples in every trial.
In contrast, RB Bagging showed well-balanced performance
for this difficult data set especially for AUC and the G-mean.
While RIPPER had higher accuracy than RB Bagging, it
seems to be slightly overfitted toward the correct classifica-
tion of negative examples.

On the Glass data set, RB Bagging had the same accu-
racy as AdaBoost and outperformed it in the other metrics
except for MSE.

The Letter-A data set indicates that AdaBoost worked
nearly perfectly and outperformed RB Bagging in all of

the metrics except for AUC. The reason would be that this
problem is so easy that a single C4.5 tree can provide
acceptably high performance. We conclude that it is difficult
to make the ensemble model based on RB Bagging converge
to the Bayesian error in these simple cases.

Let us review the performance for each metric. AUC
is the place RB Bagging worked best, especially on Dia-
betes, German, and Flag. Interestingly, RB Bagging always
resulted in a quite low ISE value even if it has a larger MSE
than others. This indicates that RB Bagging tends to fail
only if it becomes less confident and the estimated proba-
bility p(yi|xi) is around 0.5. The advantages of RB Bag-
ging for the MSE and F-measure are unstable and less clear
for all algorithms. As expected, RB Bagging showed lower
prediction accuracy for most data sets due to the incorrect
classification of negative examples. Breiman’s original bag-
ging does not outperform RB Bagging for AUC except for
the Letter-A data set, though it consistently works well for
the MSE and prediction accuracy.

5.3 Real-world Data SetThe RealF examples consist of
eleven processed features of the customers for seven months
in the loan business. Though we cannot make the data
set public due to privacy and confidentiality issues, it is
definitely valuable to evaluate the prediction algorithms for
imbalanced data with a real-world application.

The motivation in analyzing this data set is to estimate
the condition of customers in order to more quickly stop
doing business with bad customers, since the increase of
uncollectable debts has a large impact on the profits of such
companies. The class label is the risk of a customer, low or
high, determined after six months. In this data set, there is
a clear difference between the performance of RB Bagging
and the others especially for AUC. The relative performances
of the algorithms are identical compared to those of the
benchmark data sets. By putting importance on the high risk
customers, only RB Bagging had well balanced AUC and G-
mean values. In contrast, the other algorithms showed strong
bias toward the prediction of the low risk (i.e. majority)
customers. Therefore, RB Bagging can be used to detect
untrusted customers and to reduce the debts. This clear
advantage assures that our method is also promising for real-
world applications.

In summary, RB Bagging almost always outperforms
Exact Balanced Bagging by all of the metrics. It usually
worked better than the other algorithms for AUC, ISE and
G-mean. The values of MSE and F-measure were also
comparable. As mentioned in Section 4.1, the trade-off
between accuracy and emphasizing the minority is basically
unavoidable. Seeing the overall accuracy as the balancing
factor, the accuracy of RB Bagging seems more acceptable
than that of Exact Balanced Bagging.

148

Table3: Statistics of the experimental results on benchmark data sets (taken from the UCI repository)
Data set Algorithm AUC MSE ISE F-measure G-mean Accuracy

RB Bagging(K=100) 83.5 0.162 0.0490 69.2 76.2 76.3
RB Baggingw/ replace (K=100) 83.7 0.161 0.0487 70.4 77.2 77.5
Exact BalancedBagging (K=100) 82.7 0.173 0.0541 67.5 74.7 74.1

Original Bagging(K=100) 83.4 0.157 0.0513 63.8 71.2 76.4
Diabetes C4.5 (pruned) 76.6 0.193 0.106 59.0 67.6 73.3

AdaBoost (K=100) 79.6 0.244 0.239 63.7 71.4 75.1
AdaBoost (K=200) 78.9 0.255 0.251 63.0 70.9 74.1

RIPPER (Optimize=2) 69.5 0.193 0.0854 58.6 67.1 73.6
RIPPER (Optimize=10) 71.2 0.188 0.0885 61.5 69.5 74.9
RB Bagging(K=100) 98.8 0.0359 0.0182 94.1 95.7 95.8

RB Baggingw/ replace (K=100) 98.7 0.0358 0.0181 94.1 95.7 95.8
Exact BalancedBagging (K=100) 98.6 0.0413 0.0257 93.1 95.1 95.1

Original Bagging(K=100) 98.3 0.0374 0.0198 93.7 95.4 95.6
Breast C4.5 (pruned) 96.4 0.0467 0.0332 92.2 94.1 94.6

AdaBoost (K=100) 98.3 0.0293 0.0288 95.7 97.0 97.0
AdaBoost (K=200) 98.2 0.0301 0.0301 95.7 97.0 97.0

RIPPER (Optimize=2) 92.7 0.0619 0.0525 89.6 91.5 93.0
RIPPER (Optimize=10) 92.9 0.0574 0.0522 90.8 92.3 93.8
RB Bagging(K=100) 77.3 0.188 0.0431 77.7 70.1 71.1

RB Baggingw/ replace (K=100) 78.1 0.186 0.0415 77.3 69.9 70.8
Exact BalancedBagging (K=100) 76.0 0.208 0.0566 71.8 67.9 65.9

Original Bagging(K=100) 76.9 0.173 0.0566 82.5 60.4 74.0
German C4.5 (pruned) 66.2 0.227 0.146 80.2 56.3 70.8

AdaBoost (K=100) 71.0 0.249 0.245 83.0 62.6 74.9
AdaBoost (K=200) 70.0 0.249 0.248 82.9 63.4 75.0

RIPPER (Optimize=2) 63.5 0.194 0.0723 81.5 58.4 72.6
RIPPER (Optimize=10) 63.9 0.197 0.0758 80.6 59.9 71.8
RB Bagging(K=100) 94.7 0.0877 0.0365 62.7 89.3 87.5

RB Baggingw/ replace (K=100) 95.7 0.0871 0.0365 61.2 88.9 86.9
Exact BalancedBagging (K=100) 94.0 0.103 0.0516 58.5 88.3 85.7

Original Bagging(K=100) 94.3 0.0460 0.0215 65.3 74.1 93.8
E-Coli-4 C4.5 (pruned) 81.7 0.0523 0.0449 63.7 69.5 94.4

AdaBoost (K=100) 93.7 0.0680 0.0679 62.2 70.1 93.2
AdaBoost (K=200) 93.3 0.0775 0.0756 55.4 65.7 92.0

RIPPER (Optimize=2) 77.1 0.0619 0.0478 57.3 67.8 92.6
RIPPER (Optimize=10) 78.8 0.0671 0.0513 61.6 74.7 91.7

149

Table 4: Continuation of Table 3; Statistics of the experimental results on benchmark data sets (taken from the UCI
repository)

Data set Algorithm AUC MSE ISE F-measure G-mean Accuracy
RB Bagging(K=100) 95.4 0.0785 0.0243 60.5 87.6 89.0

RB Baggingw/ replace (K=100) 95.5 0.0781 0.0235 60.0 87.5 88.8
Exact BalancedBagging (K=100) 95.4 0.0960 0.0344 56.0 88.1 86.0

Original Bagging(K=100) 95.5 0.0424 0.0159 65.9 73.9 94.4
Satimage C4.5 (pruned) 76.1 0.0751 0.0705 57.4 72.5 92.1

AdaBoost (K=100) 96.7 0.0495 0.0492 70.1 76.9 95.0
AdaBoost (K=200) 96.8 0.0503 0.0501 69.5 76.5 94.9

RIPPER (Optimize=2) 74.7 0.0636 0.0481 56.8 70.9 92.3
RIPPER (Optimize=10) 75.8 0.0640 0.0501 58.1 72.4 92.4
RB Bagging(K=100) 75.2 0.178 0.0197 25.8 55.4 72.1

RB Baggingw/ replace (K=100) 74.5 0.179 0.0200 21.3 47.4 71.1
Exact BalancedBagging (K=100) 74.2 0.212 0.0555 22.9 54.0 62.1

Original Bagging(K=100) 61.0 0.0795 0.0600 0.0 0.0 91.3
Flag C4.5 (pruned) 50.0 0.0792 0.0591 0.0 0.0 91.3

AdaBoost (K=100) 67.2 0.0817 0.0574 0.0 0.0 91.3
AdaBoost (K=200) 67.2 0.0817 0.0574 0.0 0.0 91.3

RIPPER (Optimize=2) 61.5 0.0854 0.0566 19.7 23.7 88.6
RIPPER (Optimize=10) 64.8 0.0884 0.0596 28.0 30.9 88.5
RB Bagging(K=100) 96.7 0.0466 0.0231 85.9 92.9 95.8

RB Baggingw/ replace (K=100) 96.6 0.0474 0.0240 86.7 92.8 95.8
Exact BalancedBagging (K=100) 95.4 0.0495 0.0257 85.3 92.5 95.3

Original Bagging(K=100) 93.3 0.0368 0.0280 83.3 87.9 95.3
Glass C4.5 (pruned) 93.6 0.0415 0.0371 84.0 89.5 95.3

AdaBoost (K=100) 95.2 0.0418 0.0415 84.8 89.8 95.8
AdaBoost (K=200) 95.2 0.0418 0.0415 84.8 89.8 95.8

RIPPER (Optimize=2) 91.2 0.0373 0.0341 85.5 90.5 96.2
RIPPER (Optimize=10) 89.6 0.0417 0.0385 83.5 88.7 95.8
RB Bagging(K=100) 99.9 0.0103 0.00207 99.4 98.7 98.9

RB Baggingw/ replace (K=100) 99.9 0.0103 0.00219 99.4 98.7 98.9
Exact BalancedBagging (K=100) 99.9 0.0128 0.00300 99.2 98.6 98.4

Original Bagging(K=100) 100 0.00210 0.00100 99.9 97.4 99.7
Letter-A C4.5 (pruned) 98.9 0.00330 0.00305 99.8 97.7 99.6

AdaBoost (K=100) 99.4 0.000557 0.000550 100 99.3 99.9
AdaBoost (K=200) 99.4 0.000550 0.000550 100 99.3 99.9

RIPPER (Optimize=2) 97.9 0.00334 0.00292 99.8 97.8 99.6
RIPPER (Optimize=10) 98.0 0.00311 0.00296 99.8 97.9 99.7

150

Table 5:Statistics of the experimental result on the real-world data set (RealF)
Data set Algorithm AUC MSE ISE F-measure G-mean Accuracy

RB Bagging (K=100) 83.4 0.112 0.0136 92.5 72.4 86.4
RB Bagging w/replace (K=100) 83.4 0.112 0.0140 92.3 72.8 86.2
Exact Balanced Bagging(K=100) 82.5 0.157 0.0275 85.4 72.8 75.5

Original Bagging (K=100) 81.9 0.0321 0.0260 98.2 56.4 96.5
RealF C4.5 (pruned) 65.6 0.0342 0.0308 98.2 55.4 96.4

AdaBoost (K=100) 67.9 0.0332 0.0332 98.3 58.5 96.7
AdaBoost (K=200) 67.8 0.0329 0.0329 98.3 58.8 96.7

RIPPER (Optimize=2) 62.3 0.0367 0.0329 98.0 49.1 96.2
RIPPER (Optimize=10) 64.0 0.0352 0.0316 98.1 52.4 96.3

6 Related Work

A traditional approach for the imbalanced class problem is
intelligent re-sampling. Kubat and Martin proposed one-
sided selection (OSS) based on the under-sampling of the
majority examples which lie around the possible borderline
or noisy area [16]. SMOTE is an over-sampling technique
[4]. The method generates some synthetic minority exam-
ples by interpolating the minority examples carefully so that
it avoids overfit. Their goal, which is to choose the best sub-
set for a single model, is different from our approach to ob-
tain better multiple subsets for an ensemble model.

Boosting could solve the imbalanced class problem
naturally since it automatically assigns greater weights to
the minority examples. In this paper, we compare RB
Bagging with the most successful boosting algorithm, Ad-
aBoost [12]. Recently, boosting algorithms using over-
sampling techniques for class imbalance were presented.
SMOTEBoost [6] applies SMOTE-based over-sampling to
change the total weights of the misclassified minority ex-
amples. While the authors presented favorable experimental
results for the metrics of precision, recall, and F-measure, it
still remains a non-trivial problem to determine what amount
of over sampling is enough. DataBoostIM [15] tries by gen-
erating data to balance not only the class distribution but
also the total weight within the classes. The broad empir-
ical studies show that DataBoostIM generally outperforms
other algorithms including SMOTEBoost. However, there is
no evaluation in terms of AUC, which is the largest advan-
tage of RB Bagging, on the boosted over-sampling methods.
In addition, RB Bagging does not require synthetic examples
which may result in artifacts.

Cost-sensitive algorithms intend to minimize the to-
tal cost of the misclassification when the costs are given.
There are many cost-sensitive algorithms based on the en-
semble methods, such as MetaCost [9], Costing [22] and
AdaCost [11]. Based on a bagging-like ensemble, MetaCost
makes any base learner cost-sensitive. Costing applies cost-
proportionate rejection sampling, but also generates subsets

with slightly imbalanced total-cost-within-class. While these
algorithms can handle the class imbalances with high mis-
classification costs for the minority class, empirical compar-
isons are impossible, since the objectives and performance
metrics are different from ours.

Breiman performed some experiments using the same
data sets from the UCI repository as used in our experi-
ments [2]. He simply duplicated the minority examples and
handled the original bagging so that the multiple replications
of an example in a subset may lead to overfit. In fact, we
re-implemented those experiments and found that it never
outperforms RB Bagging. Gao et al. recently proposed an
ensemble-based framework for a data stream with a skewed
distribution [14]. Chan et al. extended Random Forest [3]
to learn from imbalanced data by performing bootstrap sam-
pling only on the minority class [7]. Since they also draw
exactly the same number of minority and majority exam-
ples, our negative binomial sampling might improve the al-
gorithm, using the slightly imbalanced subsets.

7 Conclusion

We addressed the imbalanced class problem from practical
perspectives. Though many ensemble-based algorithms have
been proposed for the problem, bagging has not been used
that often. In this paper, we proposed Roughly Balanced
Bagging (RB Bagging) to equalize the sampling probability
of each class, instead of fixing the sample size as a constant.
The size of the majority examples is determined probabilis-
tically according to the negative binomial distribution. The
class distribution of the sampled subsets becomes slightly
imbalanced as well as the original bagging for balanced data
sets. RB Bagging is successful in both preserving the nature
of the original bagging, and at the same time making effec-
tive use of the information of all of the minority examples.
This aggregated model becomes more robust than the com-
mon approach depending on exactly balanced subsets.

We evaluated our algorithm in the experiments using
nine data sets including the usual benchmark data sets and

151

a real-worlddata set. We compared it with the exactly bal-
anced model and other well-known algorithms such as Ad-
aBoost and RIPPER for imbalanced data. RB Bagging gen-
erally outperformed them, especially for the performance
metrics such as AUC, ISE, or G-mean known to be appro-
priate for the imbalanced class problem. For the real-world
financial data set, RB Bagging showed a very clear advan-
tage. These results show that our approach is practical and
promising.

There are two areas for future work. The first one is
more theoretical analysis to clarify the reason why RB Bag-
ging works better than the other methods. The second one
would be to perform more experiments, especially in com-
parison to the boosting-based algorithms with over-sampling
such as SMOTEBoost and DataBoostIM. Since their data
generation approach and our negative binomial sampling are
not mutually exclusive, it would also be interesting to com-
bine these techniques.

References

[1] G. Batista, R. C. Prati, and M. C. Monard. A study of the
behavior of several methods for balancing machine learning
training data.SIGKDD Explorations Newsletter, 6(1):20–29,
2004.

[2] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[3] L. Breiman. Random forests.Machine Learning, 45(1):5–32,
2001.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. SMOTE: Synthetic minority over-sampling
technique. Journal of Artificial Intelligence and Research,
16:321–357, 2002.

[5] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial:
special issue on learning from imbalanced data sets.SIGKDD
Explorations Newsletter, 6(1):1–6, 2004.

[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer.
SMOTEBoost: Improving prediction of the minority class in
boosting. InProceedings of the Seventh European Confer-
ence on Principles and Practice of Knowledge Discovery in
Databases (PKDD), pages 107–119, 2003.

[7] C. Chen, A. Liaw, and L. Breiman. Using random forest
to learn imbalanced data. Technical report, Department of
Statistics, University of California, Berkeley, 2004.

[8] W. W. Cohen. Fast effective rule induction. InProceedings
of the Twelfth International Conference on Machine Learning
(ICML), pages 115–123, 1995.

[9] P. Domingos. Metacost: A general method for making
classifiers cost-sensitive. InKnowledge Discovery and Data
Mining, pages 155–164, 1999.

[10] W. Fan, E. Greengrass, J. McCloskey, P. S. Yu, and K. Drum-
mey. Effective estimation of posterior probabilities: Explain-
ing the accuracy of randomized decision tree approaches. In
Proceedings of the Fifth IEEE International Conference on
Data Mining (ICDM), pages 154–161, 2005.

[11] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost:
misclassification cost-sensitive boosting. InProceedings
of the Sixth International Conference on Machine Learning
(ICML), pages 97–105, 1999.

[12] Y. Freund and R. E. Schapire. Experiments with a new boost-
ing algorithm. InProceedings of the Thirteenth International
Conference on Machine Learning (ICML), pages 148–156,
1996.

[13] J. Friedman and P. Hall. On bagging and nonlinear estima-
tion, available athttp://www-stat.stanford.edu/˜jhf/, 2000.

[14] J. Gao, W. Fan, J. Han, and P. S. Yu. A general framework
for mining concept-drifting data streams with skewed distri-
butions. InProceedings of the Seventh SIAM International
Conference on Data Mining (SDM), 2007.

[15] H. Guo and H. L. Viktor. Learning from imbalanced data
sets with boosting and data generation: the DataBoost-IM
approach. SIGKDD Explorations Newsletter, 6(1):30–39,
2004.

[16] M. Kubat and S. Matwin. Addressing the curse of imbalanced
training sets: one-sided selection. InProceedings of the
Fourteenth International Conference on Machine Learning
(ICML), pages 179–186, 1997.

[17] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI
repository of machine learning databases, 1998.

[18] J. R. Quinlan.C4.5: programs for machine learning. Morgan
Kaufmann, 1993.

[19] R Development Core Team.R: A language and environment
for statistical computing. R Foundation for Statistical Com-
puting, 2005.

[20] D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging
and random subspace for support vector machines-based rel-
evance feedback in image retrieval.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(7):1088–1099,
2006.

[21] I. H. Witten and E. Frank.Data Mining: Practical Machine
Learning Tools. Elsevier, 2005.

[22] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning
by cost-proportionate example weighting. InProceedings
of the Third IEEE International Conference on Data Mining
(ICDM), page 435, 2003.

152

