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Abstract. Developing a Computer-Assisted Detection (CAD) system for 
automatic diagnosis of pulmonary nodules in thoracic CT is a highly 
challenging research area in the medical domain. It requires a successful 
application of quite sophisticated, state-of-the-art image processing and pattern 
recognition technologies. The object recognition and feature extraction phase of 
such a system generates a huge imbalanced training set, as is the case in many 
learning problems in medical domain. The performance of concept learning 
systems is traditionally assessed with the percentage of testing examples 
classified correctly, termed as accuracy. This accuracy measurement becomes 
inappropriate for imbalanced training sets like in this case, where the non-
nodules (negative) examples outnumber nodule (positive) examples. This paper 
introduces the mechanism developed for filtering negative examples in the 
training so as to remove ‘obvious’ ones, and discusses alternative evaluation 
criteria. 

1   Introduction 

Early detection of lung cancer is crucial in its treatment. Conventionally, radiologists 
try to diagnose the disease, by examining computed tomography (CT) images of the 
subject’s lung and then deciding if each suspicious object, i.e., region of interest (ROI) 
is a nodule or a normal tissue. The manual radiological analysis of CT images is a 
time consuming process. Therefore, developing a Computer-Assisted Detection 
(CAD) system for automatic diagnosis of pulmonary nodules in thoracic CT is a 
highly challenging research area in the medical domain [1]. 

Achievement of this task requires the successful application of state-of-the-art im-
age processing and pattern recognition techniques. The image processing tasks are 
followed by nodule detection and feature extraction processes. This often results in 
large, imbalanced data sets with too many non-nodule examples, since it is important 
to avoid missing any nodules in the images. Constructing an accurate classification 
system requires a training data set that represents different aspects of nodule features. 
This paper assumes an object has been detected and deals with the subsequent object 
learning. It focuses on the problem of extremely imbalanced training sets, (i.e. the 
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relatively high number of negative non-nodule results, compared to the low number of 
positive nodule results.) 

Informally, a good performance on positive examples and negative examples is ex-
pected rather than one at the cost of the other. However, the classification perform-
ance in this kind of task cannot be expressed in terms of the average accuracy since 
the training set is extremely imbalanced in that the non-nodules (negative) examples 
heavily outnumber the nodule (positive) examples, and classifiers tend to over-fit non-
nodule examples. Another problem with the training set is the training time due to the 
huge size of the data set. Filtering/eliminating some negative examples would help 
solve both problems so long as it does not deteriorate the learning performance. 

2   Discovering Safe Regions in the Feature Space 

Training sets for concept learning problems are denoted by pairs [x, c(x)], where x is a 
vector of attribute values of an example and c(x) is the corresponding concept label. In 
our case, c(x) is either positive or negative. Nevertheless, there is always a huge dif-
ference between the prior probabilities of the positive and negative examples. In other 
words, negative examples are represented by a much greater number of examples than 
the positive ones in the training data set, as is often the case in many learning prob-
lems of medical domain. 

 

 

Fig. 1. An example of imbalanced training sets with two attributes 

 
In an extremely imbalanced training data set (see Fig. 1), many sections of the 

feature space for x vectors, i.e., feature space, are likely to be comprised of those 
pairing with majority-class only and also quite far from the ones pairing with minority-
class examples. Furthermore, radiologists believe that nodule cases have certain 
characteristics that would locate them in certain areas of feature space only. In other 
words, there should be many nodule free regions in the feature space. In summary, a 
learning model is constructed through following steps: 
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1. Discovering ‘safe’ regions in the feature space, where only negative examples exist. 
2. Constructing filtering rules each of which defines the corresponding  ‘safe’ region. 
3. Eliminating training examples covered by these regions from the training data set. 
4. Training a classifier or classifiers with the modified training set. 

 
This paper focuses on reducing/filtering an imbalanced training set, which is part 

of our CAD system. Therefore, the last step is out of the scope of this paper. 
 
 

 

(a) 
Ellipse Regions 

 

 

(b) 
Rectangular Regions  

Fig. 2. Determining safe regions 

Figure 2 illustrates two examples of determining such regions for the imbalanced 
set with two attributes mentioned above. In a multidimensional space, those regions 
can be thought of as distinct hyper-ellipsoids or hyper-cuboids. Assuming the training 
data is a representative set of the problem it is plausible to construct rules for 
specification of those regions, and to label any test point satisfying any of these rules 
(i.e., being inside one of those regions) as non-nodule (i.e., negative). Such a rule not 
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only diminishes the training data set for the subsequent classifier but also could be a 
filtering and first-level classification mechanism for ‘easy’ non-nodule test examples1. 

First, a clustering (unsupervised learning) algorithm is applied to the whole 
(imbalanced) training set, which divides the data set into a specified number of 
distinct groups. Then, the ‘pure’ negative clusters, which consist of negative examples 
only, are marked. For each of these pure clusters, a hyper-ellipsoid or a hyper-cuboid 
is specified, and all examples of these clusters are removed from the training set of the 
subsequent classifier. 

The algorithm for determining these safe regions in terms of hyper-ellipsoids is as 
follows: 
1. Group the whole training set into a certain number of clusters using an appropriate 

clustering and mark the pure negative clusters. K-means clustering [2] and Gaus-
sian mixture model (GMM) clustering [3] with expectation maximization (EM) [4] 
are used in this study.  

2. For each cluster, set the center (c) of the corresponding hyper-ellipsoid to its mean 
vector (m) as defined below: 

jj mc = . (1) 

3. For each cluster, set the initial radius values in all dimensions/attributes in terms of 
its standard deviation vector as follows2. 

jj sr *3= . (2) 

 

 

 

Fig. 3. Shrinking an ellipses to avoid a positive example 

4. As shown in Fig. 3 on two-dimensional space for the sake of simplicity, for any 
positive training example (e) falling in a region, first determine the dimension (k) 
where the difference between example’s value and the center is the biggest (vk) as 
follows: 

                                                           
1  Classifiers mostly fail on the examples close to the decision boundaries, hence these exam-

ples are difficult to classify. On the contrary, the examples far from the decision boundaries 
could be considered ‘easy’ examples.   

2  This formula makes sure that at least 99% (probably all) of the samples in the cluster are 
covered assuming they have a normal (i.e., Gaussian) distribution. Other heuristics could be 
applied instead. E.g., center and radius might be determined by minimum and maximum 
attribute values for the cluster.  
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jcevvv jjjjk  allfor  where)max( −== . (3) 

 
5. Then, update (i.e., shift) the center value in that dimension and modify the radius 

values in all dimensions (j) as follows: 

otherwise4/)*2*3(

 if4/)*2*3(

kkkk

kkkkkk

rcec

cercec

−+=′
<++=′

. 
(4) 

4/)*2( kkk rvr +=′ . (5) 

kjjrrrr kkjj ≠′=′   where allfor /* . 

 

(6) 

Note the radiuses in all dimensions as well as the radius in the dimension with the 
maximum difference are recalculated, but also radiuses in all other dimensions are 
recalculated. Otherwise, the new region includes (even though relatively small but 
potentially not safe) areas that are outside the original region due to the shift of the 
center. 

Similarly, the algorithm for determining these regions in terms of hyper-cuboids is 
as follows: 

1. The first step is the same as in the previous algorithm. 

2. Initially, define a hyper-cuboid for each cluster in terms of minimum and maximum 
values in each dimension as follows: 

jjj smmin *3−= . (7) 

jjj smmax *3+= . (8) 

where m denotes mean vector of the cluster while s is the standard deviation vector. 
 
 

Fig. 4. Shrinking a rectangular to avoid a positive example 
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3. As shown in Fig. 4 on two-dimensional space for the sake of simplicity, for any 
positive training example (e) falling in a region, first determine the dimension (k) 
where the difference between example’s value and the center is the biggest (vk), and 
then either update the min value in that dimension if it is smaller than the example’s 
value (as in Fig. 4), or update the max value otherwise as follows: 

4/)*2( kkkk emaxminnmi ++=′ . (9) 

4/)*2( kkkk emaxminxma ++=′ . (10) 

Once rules are constructed, the first part, i.e., the proposed filtering scheme for an 
overall classification system is complete. In learning phase of a two-stage classifica-
tion system, this rule-based mechanism act as a filtering scheme for the training data 
to the classifier in the second stage, while it operates as a first-stage detection of 
‘easy’ negative test cases in the test/classification phase. 

3   Evaluation Criteria 

Statisticians generally formulate the performance with a confusion matrix shown in 
Table 2 that characterizes the classification behavior of a concept learning system [5]. 
Based on this matrix, the traditional accuracy, i.e., the percentage of testing samples 
classified correctly, is calculated as follows: 

 

Table 1. Confusion matrix 

  Predicted TN: the number of true negatives 
  Negative Positive FN: the number of false negatives 

Negative TN FP FP:  the number of false positives Real 
Positive FN TP TP:  the number of true positives 

 
 

FPTPFNTN

TPTN
accuracy

+++
+= . 

(11) 

 
However, this bare accuracy measurement becomes inappropriate in the case of 

imbalanced training sets [6]. In this case, researchers choose different criteria for the 
performance. For instance, information retrieval community prefers to work with so 
called precision and recall. Below is the formulization of these measurements based 
on the confusion matrix: 
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FPTP

TP
precision

+
= . 

(12) 

TPFN

TP
recall

+
= . 

(13) 

These quantities are sometimes amalgamated into a single value called F-measure 
by giving them equivalent or different weights. When both precision and recall are 
considered equally important, the F-Measure (F) is computed as follows: 

recallprecision

recallprecision
F

+
= **2

. 
(14) 

A common alternative for the combination is the geometric mean (g) of precision 
and recall values as given below [7]: 

recallprecisiong *= . (15) 

As in the F-measure formula in Equation 14, this metric reaches high values only if 
both precision and recall are high and in equilibrium. 

There are also other criteria such as Receiver Operating Characteristic (ROC) curve 
analysis3, the one frequently used for the problems in medical domain [8]. All these 
measurements are more suitable than the simple accuracy value as a performance 
metric for the systems learning from highly imbalanced training set.  

However, the scheme here is not a complete system for such a task. Rather, it will 
constitute part of such a system as a first-level detection of negative examples. 
Therefore, the criteria used for the filtering scheme consist of error ratio (ER) on the 
test set and filtering ratios (FR) on the test set and as well as the train set. Following 
are the formulae: 

TPFN

FN
ER

+
= . 

(16) 

FPTN

TN
FR

+
= . 

(17) 

Error ratio indicates how reliable it is in terms of not missing any positive example, 
whereas the filtering ratio shows how useful it is with respect to detecting/eliminating 
as many negative examples as possible. It is aimed to get a low error ratio with as 
much a high filtering ratio as possible. 

                                                           
3  Originally, ROC curve analysis was developed during World War II for the analysis of radar 

images as a signal detection theory. It was used to measure the ability of radar receiver 
operators in deciding if a blip on the screen is an enemy target, a friendly ship, or just noise. 
However, it was recognized as useful for interpreting medical test results after the 1970's. 
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4   Experiments 

The whole data used in the experiments consisted of 152382 examples such that only 
739 were positive examples while 151643 were negative examples with 8 attributes. 
The data were normalized and randomized in a pre-processing task since the attributes 
were in diverse ranges. In addition, the positive and negative examples were sepa-
rately split into 5 groups each so as to apply 5-fold cross-validation so that the prior 
probabilities of the classes are the same for each fold. More precisely, for a particular 
fold one fifth of positive examples and one fifth of negative examples formed a valida-
tion set while the rest of the whole data was the train set.  

The program written to run experiments had 3 options: the clustering method (k-
means or GMM), the number of clusters and the regions shape (hyper-ellipsoid or 
hyper-cuboid). Table 2 reports the filtering results when training sets in folds were 
clustered into groups of 250 using the k-means method. There was one problem with 
the fourth and fifth training sets. The method failed to cluster data into 250 groups and 
for this reason these two were clustered into 200 groups instead. On the other hand, 
clustering with GMM in place of k-means did not change these results much.  
 

Table 2. Filtering results 

Filtering Ratio Fold No 
Train Set Test Set 

Error on 
Test Set 

1 49.83% 49.54% 4.08% 
2 52.68% 52.76% 2.72% 
3 52.62% 52.48% 8.84% 
4 38.44% 38.11% 2.72% 
5 43.11% 43.53% 2.04% 

 
Average 47.34% 47.28% 4.08% 

 

5   Discussion and Conclusion 

At first glance, the filtering ratios might be considered low. However, remember that 
this scheme alone does not offer a complete classification system. Rather, its provides 
a first stage appraisal of test examples by the system as well as reducing the training 
data set to the classifier in the second-stage. Especially considering the fact that the 
error ratios in all cases are below 9% (i.e., much smaller than those of the classifiers 
trained with the same data set where they were above 15% in all cases), this 
mechanism proves to be useful in reducing the learning time for model-based 
algorithms, and the testing time for case-based algorithms. 

The specification/definition of ‘safe’ regions in the feature space is important. In 
this study, these regions are specified as hyper-cuboids or hyper-ellipsoids for the 
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sake of simplicity of their mathematical definitions and less complexity requirements. 
However, distributions of examples inside clusters are not further investigated to bet-
ter cover examples in the clusters based on the distribution. In this manner, some al-
ternatives will be examined in future study. 

In conclusion, this paper presented a scheme for filtering examples from the 
majority class in an imbalanced training set in general, and for filtering of non-nodule 
examples in particular, which is vital to improve the performance of our CAD system 
for nodule detection. As an initial evaluation of test examples in a classification 
process, this rule-based scheme also makes a contribution by eliminating easy 
negative examples, which bring about the reduction in learning time when a model-
based classifier such as an Artificial Neural Network (ANN), or the reduction in 
decision making when an instance-based classifier such as k-nearest neighbor (kNN) 
is used, in addition to some improvement in performance. Hence, this mechanism also 
enables combination of rule-based and instance-based induction when a case-based 
algorithm is applied in the second stage, which differs from Domingos’ RISE system 
that unifies these two induction strategies [9]. 

References 

1. Lee, Y., Hara, A., Hara, T., Fujita, H., Itoh, S., Ishigaki, T.: Automated Detection of 
Pulmonary Nodules in Helical CT Images Based on an Improved Template-Matching 
Technique. In: IEEE Transactions on Medical Imaging, Vol. 20, No. 7. (2001) 595–604 

2.  MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 
Vol. 1. (1967) 281–297 

3.  Bishop, C..: Neural Networks for Pattern Recognition. Oxford University Press, UK (1995) 
4.  Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM 

Algorithm. In: Journal of the Royal Statistical Society. B39 (1) (1977) 1–38 
5. Nickerson, A., Japkowicz, N., Milios, E.: Using Unsupervised Learning to Guide 

Resampling in Imbalanced Data Sets. In: Proceedings of the Eighth International Workshop 
on Artificial Intelligence and Statistics. (2001) 

6. Kubat, M., Holte, R., Matwin, S.,: Learning when Negative Examples Abound. In: 
Proceedings of ECML-97, Vol. 1224. Springer Verlag,  (1997) 146–153 

7. Kubat, M., Matwin, S.,: Addressing the Curse of Imbalanced Training Sets: One-Sided 
Selection. In: Proceedings of 14th International Conference on Machine Learning, (1997) 
179–186 

8.  Metz, C.: Fundamental ROC analysis. In: Beutel, J., Kundel, H., MetterHandbook, R. (eds.): 
Medical Imaging, Vol. 1. SPIE Press, Bellingham, WA (2000) 751–769 

9.  Domingos, P.: Unifying Instance-Based and Rule-Based Induction. In: Machine Learning, 
Vol. 24, No. 2. (1996) 141–168 

 


	Introduction
	Discovering Safe Regions in the Feature Space
	Evaluation Criteria
	Experiments
	Discussion and Conclusion

