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Abstract— Many real-world data sets exhibit skewed
class distributions in which almost all cases are allotted
to a class and far fewer cases to a smaller, usually more
interesting class. A classifier induced from an imbalanced
data set has, typically, a low error rate for the majority
class and an unacceptable error rate for the minority
class. This paper firstly provides a systematic study on
the various methodologies that have tried to handle this
problem. Finally, it presents an experimental study of these
methodologies with a proposed mixture of expert agents
and it concludes that such a framework can be a more
effective solution to the problem. Our method seems to
allow improved identification of difficult small classes in
predictive analysis, while keeping the classification ability
of the other classes in an acceptable level.

Index Terms— supervised machine learning, imbalanced
data sets, expert agents.

I. I NTRODUCTION

T Ypically classifiers are expected to be able to
generalize over unseen instances of any class with

equal accuracy. For example, in a two-class domain of
positive and negative instances, the classifier will per-
form on an unseen set of instances with equal accuracy
on both the positive and negative classes. This of course
is the ideal situation. In many applications classifiers are
faced with imbalanced data sets, which can cause the
classifier to be biased towards one class. This bias is the
result of one class being heavily under represented in
the training data compared to the other classes. It can be
attributed to the way in which classifiers are designed.
Inductive classifiers are typically designed to minimize
errors over the training instances. Learning algorithms,
because of the fact that the cost of performing well on
the over-represented class outweighs the cost of poor
performance on the smaller class, can ignore classes
containing few instances. Moreover, the difficulty to
distinguish between the rare cases (i.e., true exceptions)
and noise is also responsible for poor performance on
the minority class.

For a number of application domains, a huge dis-
proportion in the number of cases belonging to each

class is common. For instance, in detection of fraud in
telephone calls [9] and credit card transactions [25],
the number of legitimate transactions is much higher
than the number of fraudulent transactions. Moreover,
in direct marketing (Ling and Li, 1998), it is common
to have a small response rate (about1%) for most
marketing campaigns. Other examples of domains with
intrinsic imbalance can be found in the literature such
as rare medical diagnoses [27] and oil spills in satellite
images [16]. Thus, learning with skewed class distri-
butions is an important issue in supervised learning.

The machine learning community has mainly ad-
dressed the issue of class imbalance in two ways. One
is to assign distinct costs to training instances [7].
The other is to re-sample the original dataset, either by
oversampling the minority class and/or under-sampling
the majority class [15]; [12]. Although many methods
for coping with imbalanced data sets have been pro-
posed, still remain open questions. One open question
is whether simply changing the distribution skew can
improve predictive performance systematically. Another
question is whether we can tailor learning algorithms to
this special learning environment so that the accuracy
for the extreme class values can be improved.

To handle the problem, we developed an Agent-based
Knowledge Discovery (ABKD) method that combines
the two fields of Distributed Artificial Intelligence and
Machine Learning. In ABKD, an agent is a software
entity that can 1) interoperate with its data source and/or
other agents, 2) receive/gather raw data, 3) process and
learn from the data source or from other sources, and
4) coordinate with other agents to produce relevant and
useful information. Adopting agent technology provides
parallelism, improves the speed and the reliability of
learning and assists developers in designing distributed
learning systems. The effectiveness of our approach is
evaluated over eight imbalanced datasets using the C4.5
[22], 5NN [1], Naive Bayes [6] as classifiers and the
geometric mean of accuracies as performance measure
[16]. In the following section we briefly describe the
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used machine learning techniques and we explain the
reasons for their poor performance in imbalance data
sets. Section 3 reviews the attempts for handling imbal-
anced data sets, while section 4 presents the details of
our approach. Section 5 presents experimental results
comparing our approach to other approaches. Finally,
section 6 discusses the results and suggests directions
for future work.

II. L EARNING TECHNIQUES AND ALGORITHMS

A small imbalance in the class distribution is not
serious, but when some classes are heavily under-
represented, many machine-learning methods are likely
to run into problems. Cases belonging to small classes
are lost among the more frequent cases during learning,
and, consequently, classifiers such as decision trees,
Bayesian networks and instance-based classifiers are
unable to classify correctly new unseen cases from the
minority classes. In the following subsections we briefly
describe decision trees, Bayesian networks and instance
based classifiers and we refer to the reasons for their
poor performance in minority class of imbalance data
sets.

A. Decision trees

Murthy [20] provides a recent overview of existing
work in decision trees and a taste of their usefulness
to the newcomers in the field of machine learning.
Decision trees are trees that classify instances by sorting
them based on feature values. Each node in a decision
tree represents a feature in an instance to be classified,
and each branch represents a value that the node can
take. Instances are classified starting at the root node
and sorting them based on their feature values.

The feature that best divides the training data would
be the root node of the tree. The same process is then
repeated on each partition of the divided data, creating
sub trees until the training data are divided into subsets
of the same class. At each level in the partitioning
process a statistical property known as information gain
is usually used to determine which feature best divides
the training instances [22].

A decision tree, or any learned hypothesis h, is said
to overfit training data if there exists another hypothesis
h’ that has a larger error than h when tested on the
training data, but a smaller error than h when tested on
the entire data set. There are two common approaches
that decision tree induction algorithms can use to avoid
overfitting training data: 1) Stop the training algorithm
before it reaches a point in which it perfectly fits the
training data, 2) Prune the induced decision tree.

For the scope of our study the most well-known
decision tree algorithm - C4.5 [22] - was used. One

of the latest researches that compare decision trees and
other learning algorithms is made by Tjen-Sien Lim
et al. [26] and shows that the mean error rates of
most algorithms are sufficiently similar and that their
differences are statistically insignificant. But, unlike
error rates, there are huge differences between the
training times of the algorithms. C4.5 has one of the
best combinations of error rate and speed.

The reason of poor performance of decision tree
classifiers in minority class is that most of the clas-
sifiers employ a post-pruning method. Any node can be
removed and assigned the most common class of the
training instances that are sorted to the node in question.
Thus, if a class is rare, decision tree algorithms often
prune the tree down to a single node that classifies all
instances as members of the common class leading to
poor accuracy on the instances of minority class.

B. Naive Bayes

Probabilistic classifiers and, in particular, the naive
Bayes classifier, are among the most popular classifiers
in the machine learning community and they are used
increasingly in many applications. Naive Bayes (NB)
classifier is the simplest form of Bayesian network
(Jensen, 1996) since it captures the assumption that
every feature (a1, a2, ... ai) is independent of the rest
of the features, given the state of the class feature V.

The formula used by the Naive Bayes classifier is:

vmax = max
vj∈V

P (vj)
∏

i

P (ai|vj)

where V is the target output of the classifier and P(ai|vj)
and P(vi) can be calculated based on their frequency in
the training data.

For numerical features, one can model the component
marginal distributions in a wide variety of ways. The
simplest would be to adopt some parametric form
e.g. marginal Gaussian estimators. The assumption of
independence is clearly almost always wrong. How-
ever, Friedman [10] explains why simple naive Bayes
method remains competitive, even though it provides
very poor estimates of the true underlying probabilities.
Good probability estimates are not necessary for good
classification; similarly, low classification error does
not imply that the corresponding class probabilities are
being estimated (even remotely) accurately. In addition,
[6] performed a large-scale comparison of Naive Bayes
classifier with state-of-the-art algorithms for decision
tree induction and instance-based learning on standard
benchmark datasets, and found it sometimes to be
superior to each of the other learning schemes even on
datasets with substantial feature dependencies.

The extreme skewness in class distribution is prob-
lematic for Näıve Bayes because the prior probability
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of the majority class overshadows the differences in the
attribute conditional probability terms.

C. Instance-based learning

Instance-based learning algorithms belong to the
category of lazy-learning algorithms [18], as they
delay the induction until classification is performed.
One of the most straightforward instance-based learning
algorithms is the nearest neighbour algorithm [1]. K-
Nearest Neighbour (kNN) is based on the principle that
the value of the label of an unclassified instance can
be determined by observing the class of its nearest
neighbours.

In general, instances can be considered as points
within an n-dimensional instance space where each of
the n-dimensions corresponds to one of the n-features
that are used to describe an instance. The absolute
position of the instances within this space is not as
significant as the relative distance between instances.
This relative distance is determined by using a dis-
tance metric. Ideally, the distance metric must minimize
the distance between two similarly classified instances,
while maximizing the distance between instances of
different classes [1]. In our study, we made use of
the well known 5-NN algorithm using the Euclidean
distance as distance metric.

In imbalanced data sets as the number of the instances
of the majority class grows, so does the likelihood that
the nearest neighbour of any instance will belong to
the majority class. This leads to the problem that many
instances of the minority class will be misclassified.

III. R EVIEW OF EXISTING TECHNIQUES FOR

HANDLING IMBALANCED DATA SETS

A classifier induced from an imbalanced data set has,
typically, a low error rate for the majority class and
an unacceptable error rate for the minority class. The
problem arises when the misclassification cost for the
minority class is much higher than the misclassification
cost for the majority class. In this situation, it is
important to accurately classify the minority class in
order to reduce the overall cost.

A simple method that can be used to imbalanced
data sets is to reweigh training instances according to
the total cost assigned to each class [5]. The idea
is to change the class distributions in the training set
towards the most costly class. Suppose that the instances
of the positive class are four times more than the
instances of the negative class. If the number of negative
instances are artificially increased by a factor of four,
then the learning system, aiming to reduce the number
of classification errors, will come up with a classifier
that is skewed towards the avoidance of error in the

negative class, since any such errors are penalised four
times more.

Japkowicz [11] discussed the effect of imbalance in
a dataset. She mainly evaluated two strategies: under-
sampling and resampling. Two resampling methods
were considered. Random resampling consisted of re-
sampling the smaller class at random until it consisted
of as many samples as the majority class and “focused
resampling” consisted of resampling only those minor-
ity instances that occurred on the boundary between the
minority and majority classes. Random under-sampling
was also considered, which involved under-sampling the
majority class samples at random until their numbers
matched the number of minority class samples; focused
under-sampling involved under-sampling the majority
class samples lying further away. She noted that both
the sampling approaches were effective, and she also
observed that using the sophisticated sampling tech-
niques did not give any clear advantage in the domain
considered.

Kubat and Matwin [15] also selectively under-
sampled the majority class while keeping the original
population of the minority class with satisfied results.
Batista et al. [2] used a more sophisticated under-
sampling technique in order to minimize the amount of
potentially useful data. The majority class instances are
classified as “safe”, “borderline” and “noise” instances.
Borderline and noisy cases are detected using Tomek
links, and are removed from the data set. Only safe
majority class instances and all minority class instances
are used for training the learning system. A Tomek link
can be defined as follows: given two instances x and
y belonging to different classes, and be d(x, y) the
distance between x and y then a (x, y) pair is called
a Tomek link if there is not a case z, such that d(x, z)
< d(x, y) or d(y, z)< d(y, x).

Both, under-sampling and over-sampling, have
known drawbacks. Undersampling can throw away po-
tentially useful data, and over-sampling can increase the
likelihood of occurring overfitting, since most of over-
sampling methods make exact copies of the minority
class instances. In this way, a symbolic classifier, for
instance, might construct rules that are apparently ac-
curate, but actually, cover one replicated instance.

Another approach is that of Ling and Li [17].
They combined over-sampling of the minority class
with under-sampling of the majority class. However,
the over-sampling and under-sampling combination did
not provide significant improvement. Chawla et al.
[4] propose an over-sampling approach in which the
minority class is over-sampled by creating “synthetic”
instances rather than by over-sampling with replacement
with better results.

Changing the class distribution is not the only way



S. B. KOTSIANTIS AND P. E. PINTELAS “MIXTURE OF EXPERT AGENTS FOR HANDLING IMBALANCED DATA SETS” 49

to improve classifier performance when learning from
imbalanced data sets. A different approach to incorpo-
rating costs in decision-making is to define fixed and
unequal misclassification costs between classes. Cost
model takes the form of a cost matrix, where the cost
of classifying a sample from a true class j to class
i corresponds to the matrix entryλij . This matrix is
usually expressed in terms of average misclassification
costs for the problem. The diagonal elements are usually
set to zero, meaning correct classification has no cost.
We define conditional risk for making a decisionαi as:

R(ai|x) =
∑

i

λijP (vj |x)

The equation states that the risk of choosing class
i is defined by fixed misclassification costs and the
uncertainty of our knowledge about the true class of
x expressed by the posterior probabilities. The goal in
cost-sensitive classification is to minimize the cost of
misclassification, which can be realized by choosing the
class (vj) with the minimum conditional risk.

An alternative to balancing the classes is to develop
a learning algorithm that is intrinsically insensitive to
class distribution in the training set. An example of
this kind of algorithm is the SHRINK algorithm [16]
that finds only rules that best summarize the positive
instances (of the small class), but makes use of the
information from the negative instances.

MetaCost [7] is another recently proposed method
for making a classifier cost-sensitive. The procedure
begins to learn an internal cost-sensitive model by ap-
plying a cost-sensitive procedure, which employs a base
learning algorithm. Then, MetaCost procedure estimates
class probabilities using bagging and then re-labels the
training instances with their minimum expected cost
classes, and finally relearns a model using the modified
training set.

Furthermore, Schapire et al. [23] gave different
weights for false positives and false negatives to apply
AdaBoost than bagging in text-filtering. AdaBoost uses
a base classifier to induce multiple individual classi-
fiers in sequential trials, and a weight is assigned to
each training instance. At the end of each trial, the
vector of weights is adjusted to reflect the importance
of each training instance for the next induction trial.
This adjustment effectively increases the weights of
misclassified instances and decreases the weights of
the correctly classified instances. Fan et al. [8] also
proposed a similar technique. Their intuition was that
in addition to assigning high initial weights to costly
instances, the weight-updating rule should also take cost
into account and increase the weights of costly mis-
classification more but decrease the weights of costly
correct classification less.

IV. PROPOSEDTECHNIQUE

Agent Based Knowledge Discovery (ABKD) can
contribute to machine learning and data mining in a
number of ways. First of all, adopting ABKD provides
parallelism, improves the speed and the efficiency of
machine learning. Second, agent concepts assist devel-
opers in designing distributed learning systems. The
encapsulation of variables and methods in the object-
oriented paradigm leads to the idea of encapsulating
learning techniques, and thus developers can reuse agent
objects that contain existing techniques. After defining
the agent objects, the developers can design how the
agent objects interact with one another to generate the
correct results.

Many areas of research employ agent technology, and
thus the definition of an agent varies according to the
focus of the research. For example, research in multi-
agent systems (MAS) commonly characterizes agents
as autonomous and able to plan and coordinate within
an organization for solving a problem. In Agent Based
Knowledge Discovery, an agent is a software entity
that can 1) interoperate with its data source and/or
other agents, 2) receive/gather raw data, 3) process and
learn from the data source or from other sources, and
4) coordinate with other agents to produce relevant
and useful information. Based on this characterization,
many aspects of research in ABKD, such as planning,
coordination, and communication, overlap with other
fields of agent research. This paper, however, limited
the description of agent technology to the context of
machine learning and knowledge discovery.

Our approach is to use the three agents (the first
learns using Näıve Bayes, the second using C4.5 and
the third using 5NN) on a filtered version of training
data and combine their predictions according to a voting
scheme. This technique attempts to achieve diversity
in the errors of the learned models by using different
learning algorithms. The intuition is that the models
generated using different learning biases are more likely
to make errors in different ways. We also used feature
selection of the training data because in small data
sets the amount of class imbalance affects more the
induction and thus feature selection makes the problem
less difficult.

It might be difficult or impossible to find a single
classifier that performs as well as a good ensemble
of classifiers. For a group of abstract level classifiers
each of which outputs only a class label for each input
instance, the means of obtaining a combined decision is
bound to be limited to some sort of voting scheme, with
or without taking prior performance into consideration.
Among the combination methods for abstract-level clas-
sifiers, majority vote is the simplest to implement, since
it requires no prior training [13].
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The goal of feature selection is to reduce the dimen-
sionality of feature space by selecting a subset of the
features and discard the useless. In a given database,
many features can be totally irrelevant or redundant in
terms of predicting the target. Ideally, if we can identify
these features and eliminate them from the training data,
the learning performance would be improved. Mladenic
and Grobelnik [19] proposed a feature subset selection
approach to deal with imbalanced class distribution in
the Information Retrieval domain with good results.

The well-known filter that computes the empirical
mutual information between features and the class [24],
and discards low-valued features was modified for our
method. At this point, it must be mentioned that mutual
information is based on entropy. If the training setS is
partitioned intoV subsetS1, . . . , SV according to theV
different values of a featureX, themutual information
between featureX and class attributeY is defined as:

Gain(X) ≡ info(S) +
V∑

v=1

|Sv|
|S| info(Sv)

However, the mutual information gain criterion has a
strong bias in favor of features with many different
values, thus we rectify this bias by a kind of normaliza-
tion – gain ratio that sometimes is used from decision
tree algorithms [22]. In detail, the bias is rectified by
normalization:

split info(S) = −
V∑

v=1

( |Sv|
|S|

)
log2

( |Sv|
|S|

)

which represents the potential information generated by
dividing S into V partitions, whereas

Gain Ratio(X) ≡ Gain(X)/split info(X)

expresses the proportion of information generated by
the partition.

Features are then selected by keeping those for which
gain ratio exceeds a fixed threshold e. In order to have a
robust selection, we set e to 0.02 of the gain ratio filter,
in an attempt to discard only features with negligible
impact on predictions. However, such a low threshold
can discard many features.

The proposed mixture of expert agents consists of a
Facilitator agent that filters the features of the data set
and passes a copy of the instances in the learning agents.
Then, each learning agent resamples data sets (the
relationship between false negative and false positive
costs is the inverse of the imbalanced priors) and returns
prediction for each instance back to the Facilitator.
Finally, the Facilitator makes the final prediction ac-
cording to majority voting. The pseudocode of our
approach is presented in Table I.

Moreover, our approach is schematically represented
in Figure 2.

TABLE I

REPRESENTATION OF OUR AGENT-BASED APPROACH

1. The Agent Facilitator filters the features of the data set.
2. The Facilitator passes a copy of the Instances to Agent 1
3. The Facilitator passes a copy of the Instances to Agent 2
4. The Facilitator passes a copy of the Instances to Agent 3
5. Start three threads

• Thread 1: Agent 1 resamples data and returns prediction
for each instance back to the Facilitator.

• Thread 2: Agent 2 resamples data and returns prediction
for each instance back to the Facilitator.

• Thread 3: Agent 3 resamples data and returns prediction
for each instance back to the Facilitator.

6. Synchronize the threads
7. The Facilitator makes the final prediction according to ma-
jority voting.

It must be mentioned that JAM (Java Agents for
Meta-Learning over Distributed Databases) was the
first attempt that combined machine learning techniques
with agent technology [25]. JAM scope was to handle
more efficiently very large data sets.

In the following section, we empirically evaluate
the performance of our approach with the other well
known techniques for handling imbalanced data sets on
eight data sets. We demonstrate that it is promising
and advantageous to avoid commitment to a single
best classifier during system construction. Instead, our
approach can be used to build classification systems
from the available classifiers that will perform best
under any class distributions.

V. EXPERIMENTS

In Table II, there is a brief description of the data
sets that we used for our experiments. Except for the
“eap” data set, all were drawn from the UC Irvine
Repository [3]. Eap data is from Hellenic Open Uni-
versity and was used in order to determine whether
a student is about to drop-out or not [14]. The data
sets from UC Irvine Repository are from domains
of: image recognition (ionosphere), medical diagnosis
(breast-cancer, diabetes, haberman, hepatitis, sick) and
commodity trading (credit-g).

The performance of machine learning algorithms is
typically evaluated using predictive accuracy. However,
this is not appropriate when the data is imbalanced.
A simple but effective strategy for classification would
be to simply assign the majority class to all unknown
instances. Although this approach would achieve high
classification accuracy, it may not be desirable espe-
cially for applications that are more interested in de-
tecting the minority class than the majority class. Thus,
when comparing the performance of different classifiers
in imbalanced data sets, accuracy as a measure is not
enough.
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Fig. 1. Representation of our agent-based approach

TABLE II

DESCRIPTION OF THE DATA SETS

Data sets Instances Categorical features Numerical features Instances of minority class Classes
breast-cancer 286 9 0 85 2
credit-g 1000 13 7 300 2
Diabetes 768 0 8 268 2
Haberman 306 0 3 81 2
Hepatitis 155 13 6 32 2
Ionosphere 351 34 0 126 2
Eap 344 11 0 122 2
Sick 3772 22 7 231 2

A classifier’s performance of two class problems
can be separately calculated for its performance over
the positive instances (denoted asα+) and over the
negative instances (denoted asα−). The true positive
rate (α+) or sensitivity is the fraction of positive in-
stances predicted correctly by the model. Similarly, the
true negative rate (α−) or specificity is the fraction of
negative instances predicted correctly by the classifier.

Kubat et al. [16] propose the geometric mean of
the accuracies:g =

√
a+ × a− for imbalanced data

sets. The basic idea behind this measure is to maximize
the accuracy on both classes. Moreover, ROC curves
(Receiving Operator Characteristic) provide a visual
representation of the trade off between true positives
(α+) and false positives (α−). These are plots of the
percentage of correctly classified positive instancesα+

with respect to the percentage of incorrectly classified
negative instancesα− [21]. If the model is perfect,
then its area under the ROC curve would equal to 1.
If the model corresponds to random guessing, then its
area under ROC curve would be equal to 0.5. Anything
less than 0.5 would be worse than random guessing.

The most popular method for plotting a ROC curve
is threshold variation [27]: given a set of test instances
and a classifier, the numeric output for each test instance
is computed, and the instances are ordered according to
the corresponding numeric prediction. Then, for each
instance, a (1-α+, α+) point is obtained, that is, con-
sidering that instances before it are classified as positive
and instances after it are classified as negative. Subse-
quent (1-α+, α+) points are linked. The method for
plotting a ROC curve is closely related to a method for
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making algorithms cost-sensitive, that we call Threshold
method [27]. This method uses a threshold so as to
maximize the given performance measure in the curve.

The problem of determining which proportion of
positive/negative examples is the best for learning is
an open problem of learning from imbalanced data
sets. In order to make the experiment more realistic,
parameters of the cost models were not optimized for
each data set, the relationship between false negative
and false positive costs was chosen to be the inverse
of the assumed prior to compensate for the imbalanced
priors.

Classification ability of the learning methods in our
experiments was measured with geometric mean of the
accuracies. In the following Tables, win (v) indicates
that the specific method along with the learning al-
gorithm performed statistically better than the single
classifier according to t-test with p<0.05. Loss (*) in-
dicates that the specific method along with the learning
algorithm performed statistically worse than the single
classifier according to t-test with p<0.05. In all the
other cases, there is no significant statistical difference
between the results.

In Table III, one can see the comparisons of the
proposed mixture of expert agents with other attempts
that have tried to obtain the best performance of a given
imbalance data set using Naive Bayes (NB) as base
classifier. Five well-known algorithms were used for
the comparison: Threshold method [27], Reweighing
and Cost Sensitive method [5], Adaboost cost sensitive
method [23] and Metacost algorithm [7]. We also
present the accuracy of the simple Bayes algorithm as
borderline. It must be mentioned that we used the free
available source code for these methods by Witten and
Frank [27] for our experiments.

In Table III, except for geometric mean, we also
present the true-positive rate, and true-negative rate.
It must be mentioned that positive class for our ex-
periments is the majority class. In the last row of the
Table 2, the mean value of the geometric means is also
calculated in all data sets.

In general, all the tested techniques give better results
than the single Naive Bayes. The most remarkable im-
provement is from our technique (ABKD), even though
the Threshold method gives, on average, the best accu-
racy in the minority class. The Metacost cannot improve
the results of the NB as his author suspects. It must be
mentioned that for Näıve Bayes classifier, modifying the
decision boundary (Cost Sensitive method) is equivalent
to reweighing training instances so as the relationship
between false negative and false positive costs to be the
inverse of the imbalanced priors. Moreover, Adaboost
cost sensitive method cannot give better results than
Cost Sensitive and reweighing method, even though it

is a more time consuming technique.
In Table IV, one can see the comparisons of the

proposed mixture of expert agents with other attempts
that have tried to obtain the best performance of a given
imbalance data sets using C4.5 as base classifier. The
same five well-known techniques for handling imbal-
anced data sets were also used for this comparison.

Likewise with the previous experiment, our method
has better performance than the other techniques. How-
ever, Metacost has really better performance with C4.5
than NB. It must also be mentioned that Threshold
method gives worst performance than single C4.5.
For C4.5 classifier, modifying the decision boundary
(Cost Sensitive method) is less efficient than reweighing
training instances so as the relationship between false
negative and false positive costs to be the inverse of the
imbalanced priors. The reason may be that the pruned
decision trees cannot estimate very well the probability
of class prediction. Adaboost cost sensitive method, as
in the previous experiment, cannot give better results
than reweighing method even though it uses more time
for training.

Similarly to our results, on several experiments per-
formed in [21], decision tree classifiers generated
from balanced distributions obtained results that were,
frequently, better than those obtained from the naturally
occurring distributions. Especially, these experiments
were conducted with no pruning. Many of the results in
both papers can be explained by understanding the role
of small disjuncts in learning. Decision tree algorithms
tend to form large disjuncts to cover general cases and
small disjuncts to cover rare cases. Concepts with many
rare cases are harder to learn than those with few,
since general cases can be accurately sampled with less
training data.

In Table V, one can see the comparisons of the
proposed mixture of expert agents with other attempts
that have tried to obtain the best performance of a
given imbalance data sets using 5NN as base classifier.
The same five well-known techniques for handling
imbalanced data sets were used for this comparison,
too.

All the techniques gave better results than single
5NN algorithm. However, our method has the best
geometric mean of accuracies in this experiment, too. It
must be mentioned that Adaboost cost sensitive method
and Metacost algorithm are extremely time consuming
techniques if they are combined with lazy algorithm
5NN without offering spectacular improvement in the
performance. For 5NN classifier, modifying the decision
boundary (Cost Sensitive method) is similarly efficient
to reweighing training instances to the inverse of the
imbalanced priors. Threshold method gives, on average,
the least improvement in the performance of 5NN.
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TABLE III

ACCURACY ON MAJORITY CLASS(α+), ACCURACY ON MINORITY CLASS (α−) AND GEOMETRIC MEAN (G) WITH NB AS BASE

CLASSIFIER

Data sets ABKD ThresNB ReWNB CostNB AdabcosNB MetacostNB NB

breast-cancer
g 0.62 0.63v 0.66v 0.66v 0.63v 0.65v 0.6
α+ 0.72 0.62 0.74 0.74 0.72 0.79 0.85
α− 0.53 0.65 0.58 0.58 0.56 0.54 0.43

credit-g
g 0.67 0.71v 0.72v 0.72v 0.71v 0.66 0.65
α+ 0.7 0.69 0.75 0.75 0.75 0.77 0.86
α− 0.65 0.74 0.69 0.69 0.67 0.57 0.49

diabetes
g 0.7 0.72 0.73 0.73 0.73 0.70 0.71
α+ 0.72 0.65 0.78 0.78 0.77 0.75 0.84
α− 0.69 0.8 0.68 0.68 0.69 0.66 0.6

haberman
g 0.61v 0.59v 0.56v 0.56v 0.56v 0.57v 0.44
α+ 0.77 0.64 0.89 0.89 0.88 0.87 0.94
α− 0.49 0.55 0.35 0.35 0.36 0.38 0.21

hepatitis
g 0.79 0.76 0.8 0.8 0.78 0.81v 0.78
α+ 0.84 0.87 0.83 0.83 0.86 0.79 0.87
α− 0.75 0.67 0.78 0.78 0.71 0.84 0.7

ionosphere
g 0.9v 0.88v 0.82 0.82 0.91v 0.77* 0.83
α+ 0.96 0.93 0.78 0.78 0.93 0.68 0.8
α− 0.84 0.81 0.87 0.87 0.9 0.88 0.86

eap
g 0.83 0.83 0.85 0.85 0.83 0.85 0.84
α+ 0.87 0.86 0.87 0.87 0.85 0.88 0.9
α− 0.8 0.81 0.83 0.83 0.82 0.83 0.78

sick
g 0.93v 0.76* 0.86 0.86 0.87 0.8* 0.86
α+ 0.95 0.98 0.82 0.82 0.88 0.73 0.94
α− 0.91 0.59 0.9 0.9 0.86 0.87 0.78

MEAN g 0.76 0.74 0.75 0.75 0.75 0.73 0.71

TABLE IV

ACCURACY ON MAJORITY CLASS(α+), ACCURACY ON MINORITY CLASS (α−) AND GEOMETRIC MEAN (G) WITH C4.5AS BASE

CLASSIFIER

Data sets ABKD ThresC4.5 ReWC4.5 CostC4.5 Adabcos C4.5 Metacost C4.5 C4.5

breast-cancer
g 0.62v 0.45* 0.57v 0.5 0.56v 0.55v 0.5
α+ 0.72 0.8 0.72 0.85 0.77 0.84 0.95
α− 0.53 0.25 0.45 0.3 0.41 0.36 0.26

credit-g
g 0.67v 0.64v 0.66v 0.61v 0.62v 0.64v 0.58
α+ 0.7 0.7 0.67 0.82 0.81 0.76 0.85
α− 0.65 0.58 0.65 0.46 0.47 0.54 0.4

diabetes
g 0.7 0.7 0.72 0.72 0.67* 0.73v 0.7
α+ 0.72 0.69 0.72 0.78 0.79 0.78 0.82
α− 0.69 0.71 0.73 0.67 0.57 0.67 0.6

haberman
g 0.61v 0.56v 0.63v 0.58v 0.57v 0.62v 0.52
α+ 0.77 0.61 0.68 0.66 0.76 0.76 0.85
α− 0.49 0.51 0.58 0.51 0.43 0.52 0.32

hepatitis
g 0.79v 0.62v 0.73v 0.64v 0.7v 0.68v 0.58
α+ 0.84 0.78 0.62 0.86 0.9 0.83 0.9
α− 0.75 0.49 0.85 0.48 0.55 0.56 0.37

ionosphere
g 0.9v 0.88 0.89 0.88 0.90 0.9 0.88
α+ 0.96 0.95 0.94 0.94 0.94 0.98 0.94
α− 0.84 0.81 0.85 0.82 0.86 0.82 0.82

eap
g 0.83 0.69* 0.81 0.83 0.79* 0.82 0.83
α+ 0.87 0.91 0.86 0.94 0.85 0.89 0.94
α− 0.8 0.53 0.77 0.74 0.74 0.76 0.74

sick
g 0.93 0.92 0.97v 0.96v 0.95 0.96v 0.93
α+ 0.95 0.99 0.99 0.99 1 0.98 0.99
α− 0.91 0.85 0.95 0.92 0.9 0.95 0.87

MEAN g 0.76 0.68 0.75 0.72 0.72 0.74 0.69

VI. CONCLUSION

Several aspects may influence the performance
achieved by a classifier created by a Machine Learning
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TABLE V

ACCURACY ON MAJORITY CLASS(α+), ACCURACY ON MINORITY CLASS (α−) AND GEOMETRIC MEAN (G) WITH 5NN AS BASE

CLASSIFIER

Data sets ABKD Thres
5NN

ReW
5NN

Cost
5NN

Adabcos
5NN

Metacost
5NN

5NN

breast-cancer
g 0.62v 0.6v 0.62v 0.61v 0.61v 0.51v 0.45
α+ 0.72 0.57 0.73 0.72 0.7 0.86 0.96
α− 0.53 0.63 0.52 0.52 0.53 0.3 0.21

credit-g
g 0.67v 0.59 0.66v 0.66v 0.63v 0.63v 0.57
α+ 0.7 0.84 0.69 0.69 0.7 0.73 0.89
α− 0.65 0.42 0.63 0.63 0.56 0.55 0.37

diabetes
g 0.7 0.69 0.71v 0.71v 0.66 0.71v 0.68
α+ 0.72 0.79 0.69 0.69 0.71 0.75 0.83
α− 0.69 0.61 0.74 0.74 0.62 0.68 0.56

haberman
g 0.61v 0.58v 0.57v 0.57v 0.53v 0.59v 0.39
α+ 0.77 0.52 0.68 0.68 0.68 0.66 0.9
α− 0.49 0.65 0.47 0.47 0.41 0.52 0.17

hepatitis
g 0.79v 0.68 0.69v 0.73v 0.58* 0.8v 0.66
α+ 0.84 0.91 0.79 0.85 0.8 0.84 0.94
α− 0.75 0.51 0.6 0.62 0.42 0.76 0.46

ionosphere
g 0.9v 0.82v 0.83v 0.83v 0.83v 0.79 0.78
α+ 0.96 0.97 0.97 0.97 0.95 0.98 0.98
α− 0.84 0.7 0.71 0.71 0.72 0.63 0.62

eap
g 0.83v 0.79 0.8 0.8 0.78 0.77 0.78
α+ 0.87 0.83 0.84 0.84 0.79 0.87 0.9
α− 0.8 0.75 0.76 0.76 0.77 0.69 0.68

sick
g 0.93v 0.62 0.84v 0.84v 0.87v 0.79v 0.61
α+ 0.95 0.99 0.89 0.89 0.98 0.9 0.99
α− 0.91 0.39 0.79 0.79 0.77 0.7 0.37

MEAN g 0.76 0.67 0.72 0.72 0.69 0.7 0.62

system. One of these aspects is related to the difference
between the numbers of instances belonging to each
class. When this difference is large, the learning system
may have difficulties to learn the concept related to the
minority class.

The problem of imbalanced data sets arises fre-
quently. It is a problem in medical diagnosis, robotics,
industrial production processes, communication net-
work troubleshooting, machinery diagnosis, automated
testing of electronic equipment, and many other areas.
In this work, we survey some methods proposed by
the Machine Learning community to solve the problem,
we discuss some limitations of these methods and we
propose a mixture of expert agents as a more effective
solution to problem.

Our method allows improved identification of diffi-
cult small classes in predictive analysis, while keeping
the classification ability of the other classes in an
acceptable level. Furthermore, it is important to note
that this method is not particularly computationally
intensive. In particular, its computation costs are compa-
rable to those of commonly used combination methods,
such as Metacost. Thus, we demonstrate that it is
possible and desirable to avoid complete commitment
to a single best classifier during system construction.
Instead, our approach can be used to build from the
available classifiers a classification system that will

perform best under any class distributions.
One of the most promising research lines refers to

creating ensembles of classifiers by distributing the
training set to reach balance in each of the resulting
training samples. This involves a great variety of pos-
sibilities that we will cover in the near future. We will
also examine the efficiency of our approach in larger
and multi-class data sets.
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