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Abstract

This paper presents research results of our investigation of the imbalanced data problem in the classification of different types of weld
flaws, a multi-class classification problem. The one-against-all scheme is adopted to carry out multi-class classification and three algo-
rithms including minimum distance, nearest neighbors, and fuzzy nearest neighbors are employed as the classifiers. The effectiveness of 22
data preprocessing methods for dealing with imbalanced data is evaluated in terms of eight evaluation criteria to determine whether any
method would emerge to dominate the others. The test results indicate that: (1) nearest neighbor classifiers outperform the minimum
distance classifier; (2) some data preprocessing methods do not improve any criterion and they vary from one classifier to another;
(3) the combination of using the AHC_KM data preprocessing method with the 1-NN classifier is the best because they together produce
the best performance in six of eight evaluation criteria; and (4) the most difficult weld flaw type to recognize is crack.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Welding is a major joining process used to fabricate
many engineered artifacts and structures such as cars,
ships, space shuttles, off-shore drilling plate-forms, and
pipe lines. Flaws introduced into the material as a result
of welding are detrimental to the integrity of the fabricated
artifacts/structures. Commonly seen weld flaws include
lack of fusion, lack of penetration, gas holes, porosities,
cracks, inclusions, etc. Of course, some flaw types might
appear more often than others for a particular welding pro-
cess. To maintain the desirable level of structural integrity,
welds must be inspected according to the established stan-
dard. The results of weld inspection also provide useful
information for identifying the potential problem in the
fabrication process and for improving the welding opera-
tions. In the current industrial practice, weld inspection is
often carried out by certified inspectors.

For a welding process to be acceptable it should produce
far more good welds than flawed welds and it must be qual-
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ified to meet some standard. In fact, most industries today
are striving for six-sigma quality, which is known to mean
3.4 ppm (parts per million) defective. There are thus rela-
tively fewer instances of flawed welds than instances of
good welds. Moreover, different types of weld flaws might
not be equally distributed. The distribution of weld flaws
might actually change from a material problem to a work-
manship problem, and also from a welding process to
another. This characteristic that the number of examples
of one flaw type is much higher than the others is known
as the class imbalance problem or the problem of imbal-
anced data. The class imbalance problem is thus intrinsic
in the domain of weld inspection as in many other domains
such as fraud detection, oil spill detection, and text classi-
fication that have been studied. It has been reported in
machine learning research that when learning from imbal-
anced data sets, machine learning algorithms tend to pro-
duce high predictive accuracy over the majority class, but
poor predictive accuracy over the minority class. Learning
from imbalanced data thus becomes an important subfield
in machine learning research.

Efforts have been made in the past to develop computer-
aided weld inspection systems to improve the objectivity
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Table 1
Confusion matrix

Model predicted

Negative Positive

Actual Negative TN FP
Positive FN TP
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and productivity of weld inspection operations. Liao (2003)
decomposed the development of such a system into three
stages and grouped past work into three categories accord-
ingly as follows:

• Segmentation of welds from background: Felisberto,
Lopes, Centeno, and Arruda (2006), Liao and Ni
(1996), Liao and Tang (1997), Liao, Li, and Li (2000)
and Liao (2004).

• Detection of weld flaws in each weld: Carrasco and
Mery (2004), Daum, Rose, Heidt, and Builtjes (1987),
Gayer, Saya, and Shiloh (1990), Hyatt, Kechter, and
Nagashima (1996), Kaftandjian, Dupuis, Babot, and
Zhu (2003), Liao and Li (1998), Liao, Li, and Li
(1999), Murakami (1990) and Wang and Wong (2005).

• Classification of types of weld flaws: Aoki and Suga
(1999), Kato et al. (1992), Liao (2003), Murakami
(1990) and Wang and Liao (2002).

To the best of our knowledge none of the previous research
in developing a computer-aided weld inspection system,
including ours, has explicitly addressed the issue of imbal-
anced data. The reason is that this research on imbalanced
data gets started only recently. It did not catch the atten-
tion of researchers working in developing a computer-
aided weld inspection system until now.

The work reported in this paper continues our previous
research effort towards developing a computer-assisted
weld inspection system. Specifically, our objective is to
investigate the imbalanced data problem in the classifica-
tion of different types of weld flaws, which is a multi-class
classification problem. The effectiveness of several methods
for dealing with imbalanced data is evaluated to determine
whether any method will emerge to dominate the others.
The performance of three classifiers, which include mini-
mum distance, nearest neighbors, and fuzzy nearest neigh-
bors are also compared.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the evaluation criteria. Section 3 presents
our research methodology including data preprocessing
methods to be investigated for their effectiveness in balanc-
ing imbalanced data, multi-class classification strategies,
classification algorithms, and test method. Section 4 briefly
describes the weld flaws data used in this study. Section 5
presents the test results, analyses and discussion. Related
work is reviewed in Section 6, followed by the conclusions.

2. Evaluation criteria

Overall accuracy has been shown inadequate for mea-
suring the performance of a classifier when the data is
imbalanced. Therefore, much initial effort in machine
learning research with imbalance data was devoted to the
development of new evaluation criteria, primarily for
two-class classification problems.

The confusion matrix is often used to represent the
results of a two-class classification problem. Consider the
confusion matrix shown in Table 1, in which TN, FN,
TP, and FP denote the number of true negative examples,
the number of false negative examples, the number of true
positive examples, and the number of false positive exam-
ples, respectively. The sum of the two rows give the total
number of examples in each class, which is n� = FP + TN

and n+ = TP + FN, respectively. Accordingly, the tradi-
tional overall accuracy is computed as TNþTP

TNþFPþFNþTP. The

accuracy on positive examples, also called sensitivity, is
TP

FNþTP whereas the accuracy on negative examples, also

called specificity, is TN
TNþFP. To maximize the accuracy on

each of the two classes while keeping these accuracies bal-
anced, Kubat and Matwin (1997) proposed to use the geo-

metric mean of the two accuracies: g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN
TNþFP � TP

FNþTP

q
.

Receiver operating characteristics (ROC) curves are often
used to visualize the trade-off between true positive rates,
TP/n+, plotted on the y-axis and false positive rates, FP/
n�, plotted on the x-axis for a classification task. The point
(0,0) corresponds to the strategy of always predicting the
negative (majority) class (in other words, never making a
positive prediction) and the point (1, 1) to always predicting
the positive class. The line x = y represents the strategy
of randomly guessing the class. The area under the curve
(0,0)-(FPR, TPR)-(1,1) can be computed as
(TPR � FPR + 1)/2, where (FPR, TPR) is a particular
classification result. Cohen, Hilario, Sax, Hogonnet, and
Geissbuhler (2006) proposed the mean class weighted accu-
racy (CWA) for C-class classification that was defined as

CWA ¼
XC

i¼1

wiaccui; wi 2 ½0; 1� and
XC

i¼1

wi ¼ 1:

In binary classification, the above equation becomes

CWA ¼ w� sensitivityþ ð1� wÞ � specificity:

It is interesting to point out that when setting w = 0.5 the
CWA in binary classification is identical to the area under
the ROC curve for one-point classification result (FPR,
TPR).

The information retrieval community prefers to work
with precision and recall, which are computed as TP

FPþTP

and TP
FNþTP, respectively. Sometimes the geometric mean of

precision and recall is used. A more sophisticated criterion
that considers both precision and recall is the F-measure
that is defined as

F -measure ¼ ð1þ b2Þ � recall � precision

b2 � recallþ precision
:
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If precision and recall are equally important, then b is set to
1. The F-measure with b = 1 is also known as the F1-mea-
sure in the literature.

The geometric mean of accuracies, F1-measure, and area
under the ROC curve (AUC) are three most commonly
used criteria to measure the classifier performance on
imbalanced data (see the Related Work reviewed in Section
6). In this study, eight evaluation criteria are used to eval-
uate the effectiveness of a data preprocessing method for
dealing with the imbalanced data problem; they include
area under the ROC curve, geometric mean of accuracies,
F1-measure, class weighted accuracy, sensitivity, specificity,
precision, and overall accuracy with notations AUC,
GM, F1, CWA, SENS, SPEC, PREC and ACCU,
respectively.

3. Research methodology

The methodology used in this research has four major
components: data preprocessing methods for dealing with
imbalanced data, multi-class classification strategies, classi-
fication algorithms, and testing method. Each component
is detailed in the following sections.

3.1. Data preprocessing methods

A data preprocessing method for dealing with imbal-
anced data falls into one of the following three catego-
ries: under-sampling the majority class, over-sampling
the minority class, or hybrid of over-sampling and
under-sampling. Many commonly used data preprocess-
ing methods are implemented in this study to investigate
their effectiveness in classifying welding flaws. We prefer
over-sampling methods over under-sampling methods
because only very limited amount of data is available.
A brief description of each implemented method is given
below.

3.1.1. Over-sampling methods

• Random Over-sampling (Rand_Over): This method ran-
domly select examples from the minority class with
replacement until the number of selected examples plus
the original examples of the minority class is identical
to that of the majority class.

• Synthetic Minority Over-sampling TEchnique
(SMOTE): This heuristic, originally developed by Cha-
wla, Bowyer, Hall, and Kegelmeyer (2002), generates
synthetic minority examples to be added to the original
set. For each minority example, its five nearest neigh-
bors of the same class are found. Some of these nearest
neighbors are randomly selected according to the over-
sampling rate. A new synthetic example is generated
along the line between the minority example and every
one of its selected nearest neighbors.

• Borderline-SMOTE1 (SMOTE1): This method modi-
fies the original SMOTE by over-sampling only those
minority class examples near the borderline. The
detailed procedure is not given here but can be found
in Han, Wang, and Mao (2005).

• Agglomerative Hierarchical Clustering Based (AHC):
This method was first used by Cohen et al. (2006).
It involves three major steps: (1) using an agglomera-
tive hierarchical clustering algorithm such as single
linkage to form a dendogram, (2) gathering clusters
from all levels of the dendogram and computing the
cluster centroids as synthetic examples, and (3) concate-
nating centroids with the original minority class exam-
ples. Though not clear whether it is in the original
procedure, we remove the redundancies of centroids
that might be found in more than one layer in our
implementation.

3.1.2. Under-sampling methods

• Random Under-sampling (RU): This is a non-heuristic
method that randomly select examples from the major-
ity class for removal without replacement until the
remaining number of examples is same as that of the
minority class.

• Bootstrap Under-sampling (BU): This method is similar
to random under-sampling, but with replacement. An
example thus can be selected more than once.

• Condensed Nearest Neighbor (CNN): This method first
randomly draw one example from the majority class to
be combined with all examples from the minority class
to form a training set S, then use a 1-NN over S to clas-
sify the examples in the training set and move every mis-
classified example from the training set to S (Hart,
1968).

• Edited Nearest Neighbor (ENN): This method was orig-
inally proposed by Wilson (1972). It works by removing
noisy examples from the original set. An example is
deleted if it is incorrectly classified by its k-nearest neigh-
bors (k = 3 in our implementation).

• Tomek Links (Tomek): Given two examples Ei = (xi,yi)
and Ej = (xj,yj) where yi 5 yj and d(Ei,Ej) being the dis-
tance between Ei and Ej. The (Ei,Ej) pair forms a Tomek
link if there exists no example El such that d(Ei,El) <
d(Ei,Ej) or d(Ej,El) < d(Ei,Ej) according to Tomek
(1976). This method removes examples belonging to
the majority class in each Tomek link found.

• One-Sided Selection (OSS): This method first applies
Tomek links then follows it with CNN (Kubat &
Matwin, 1997).

• Neighborhood Cleaning Rule (NCR): This method was
originally proposed by Laurikkala (2001) and it employs
the Wilsons Edited Nearest Neighbor Rule to remove
selected majority class examples. For each example
Ei = (xi,yi) in the training set, its three nearest neighbors
are found. If Ei belongs to the majority class and the
classification given by its three nearest neighbors is
the minority class, then remove Ei. If Ei belongs to the
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minority class and its three nearest neighbors misclassify
it, then remove the nearest neighbors that belong to the
majority class.

• One-Sided Selection Reversed (OSSR): This method
first applies the CNN rule then follows it with Tomek
links (Batista, Monard, & Bazzan, 2004; Batista, Prati,
& Monard, 2004). Since it uses the two methods in
reversed order as OSS, we thus name it OSS reversed.

• K-Means Based (KM): This method, first used by Cohen
et al. (2006), applies the k-means clustering algorithm to
group the majority class into sub-clusters and the result-
ing prototypes of sub-clusters are used as synthetic cases
to replace all the original majority class examples.

• Fuzzy-C-Means Based (FCM): This method is similar to
KM, except that the fuzzy c-means algorithm is used
instead of the k-means clustering algorithm.
3.1.3. Hybrid methods

• SMOTE-RU Hybrid: After over-sampling the minority
class with SMOTE, the majority class is under-sampled
by randomly removing samples from the majority class
until the minority class becomes some specified percent-
age of the majority class (Chawla et al., 2002).

• SMOTE-Tomek Hybrid: Following over-sampling with
SMOTE, examples from both majority and minority
classes that form Tomek links are removed as a data
cleaning method (Batista, Monard et al., 2004; Batista,
Prati et al., 2004).

• SMOTE-ENN Hybrid: This method first uses SMOTE
to generate synthetic minority examples and then applies
ENN to remove each majority/minority class example
from the data set that does not have at least two of its
three nearest neighbors from the same class (Batista,
Monard et al., 2004; Batista, Prati et al., 2004).

• AHC-KM Hybrid: This method combines AHC-based
over-sampling and KM-based under-sampling (Cohen
et al., 2006).

• SMOTE-Bootstrap Hybrid (SMOTE_BU): This
method was first used by Liu, Chawla, Harper, Shril-
berg, and Stolcke (2006) and it involves first using
SMOTE for over-sampling the minority class and then
Bootstrap sampling the majority class so that both clas-
ses have the same or similar number of examples.

In principle, other under-sampling methods such as
CNN, OSS, and OSSR can also be used to hybridize with
SMOTE even though such hybridization has not been done
before. In addition, SMOTE can be replaced with
SMOTE1. To the best of our knowledge, no one has inves-
tigated the effectiveness of such hybrids as well. We thus
decide to include them in this study. A total of 23 methods
are tested including one without applying any preprocess-
ing method, named IM, and 22 data preprocessing meth-
ods. To give a better idea of how our study differ from
the previous studies, a more detailed review of previous
research using data preprocessing methods for dealing with
imbalanced data is given in Section 6 – Related Work.

3.2. Multi-class classification strategies

Since more than two types of welding flaws are often
involved in a welding process, classification of welding flaws
is naturally a multi-class pattern recognition problem. Due
to the lack of adequate evaluation criteria for multi-class
classification with imbalanced data, most researchers
focused only on two-class classification problems. For the
subject application, we choose to use a multi-class classifica-
tion strategy that is based on two-class classification. Two
possible schemes are one-against-all (OAA) and one-
against-one (OAO). Let the number of classes be C, the
OAA scheme essentially implements C numbers of two-class
classifiers whereas the OAO scheme requires a system of
C(C � 1)/2 two-class classifiers. Since half of the classes of
our data set have 10 or fewer examples (see Section 4 for
more detail), it would be difficult to learn a model for any
paired two-class classification involving those classes.
Therefore, the OAA scheme is adopted for this study.
Rifkin and Klautau (2004) argued that a simple OAA
scheme is as accurate as any other approach, assuming that
the underlying binary classifiers are well-tuned regularized
classifiers such as support vector machine. It, however,
should be noted that the OAA scheme unavoidably exacer-
bate the data imbalance problem, especially when C is large.

When it is desired to classify a new example with the
OAA scheme, each one of the C classifiers are run to deter-
mine whether the new example belongs to the class that the
classifier is trained for. Let fi = 1 if classifier i determines
that the new example belongs to the class while fi = 0 if
not. There are three possible patterns of output from the
C numbers of binary classifiers. The first output pattern
is the ideal one with fi = 1 and fj = 0 for "j 5 i. In this
case, the example clearly belongs to class i. The second out-
put pattern is that fi = 0 for "i. In this case, none of the C

classifiers claims the example be its class. The third output
pattern is that more than one classifier output ‘‘1’’. In this
case there is a ‘‘tie’’ among those classes. To force a deci-
sion in the last two cases, one could pick the class that its
corresponding binary classifier produces the highest output
value of belongingness, among all the candidates.

The problem with this testing method as described
above is that it does not provide the information needed
to compute most of those criteria mentioned in Section 2,
except overall accuracy. Therefore, we test each class data
separately by the corresponding binary classifier and take
the average of all class results as the performance of the
overall OAA scheme for the multi-class classification prob-
lem at hand, classification of weld flaws.

3.3. Classification algorithms

Various classification algorithms have been used in the
study of classifying imbalance data. They include decision



Table 2
Statistical test results of whether a data preprocessing method improves
the performance (1 for not and 0 for yes) when using the minimum
distance classifier

Classifier Preprocessing
method

auc gm f1 cwa sens spec prec accu

md im 1 1 1 1 1 1 1 1
md ahc 0 0 0 0 0 1 1 1
md ahc_fcm 0 0 0 0 0 0 1 1
md ahc_km 0 0 0 0 0 1 1 1
md rand_over 1 1 1 1 1 1 1 1
md smote 1 1 1 1 1 1 1 1
md smote_bu 0 0 0 0 0 0 0 0
md smote_cnn 0 0 0 0 0 0 0 0
md smote_enn 1 1 1 1 1 1 1 1
md smote_ncr 1 1 1 1 1 1 1 1
md smote_oss 0 0 0 0 0 1 0 1
md smote_ru 0 0 0 0 0 0 0 0
md smote_tomek 1 1 1 1 1 1 1 1
md smote1 1 1 1 1 1 1 1 1
md smote1_bu 1 1 1 1 0 0 0 0
md smote1_cnn 0 0 0 0 0 0 0 0
md smote1_enn 0 0 0 0 0 0 0 0
md smote1_ncr 1 1 1 1 1 1 1 1
md smote1_oss 0 0 1 0 0 0 0 0
md smote1_ossr 0 0 1 0 1 0 1 0
md smote1_ru 1 1 1 1 1 0 1 0
md smote1_tomek 0 0 0 0 0 0 0 1
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tree methods such as C4.5, C5.0, CART, neural networks
such as multi-layer perceptron (MLP), radial basis function
(RBF), and fuzzy ARTMAP, linear discriminant analysis,
naı̈ve Bayes, support vector machine, and neighbor neigh-
bors methods. Due to the relative high number of features
and fewer examples for some class of weld flaws, classifiers
that require more examples to learn such as linear discrim-
inant analysis, decision trees, and neural networks are not
applicable for this study. Therefore, we choose to use min-
imum distance classifier, nearest neighbor, and fuzzy near-
est neighbor algorithm.

3.4. Testing method

The k-fold cross-validation testing method is used. The
maximal number of folds is determined by the smallest
class. Since the smallest class of our data has only four
examples, the maximal number of folds is 4 to ensure
that there is at least one test example for the smallest
class in each fold. The k-fold cross-validation data is gen-
erated by stratified sampling to ensure that the propor-
tion of class data is kept. The k-fold cross-validation
testing procedure is repeated 25 times by randomizing
the entire data set before generating the k-fold cross-val-
idation data for each combination of data preprocessing
method and classifier. For each test, the average of each
evaluation criteria is computed based on the k-fold test
results.

4. Description of weld flaws data

The data set used in this study has 147 examples with
each example having 12 numeric input attributes and one
pattern attribute indicating the weld flaw type. Six types
of weld flaws are contained in the data set; they include
cracks, gas holes, hydrogen inclusions, lack of fusion, lack
of penetration, and porosities with 37, 10, 28, 8, 4, and 60
examples, respectively.

Each weld flaw is first extracted from a radiographic
image and 12 features describing its shape, size, location,
and intensity information are then extracted. The 12 fea-
tures are distance from the center of weld, mean radius,
standard deviation of radius, circularity, compactness,
major axis, width, length, elongation, Heywood diameter,
mean intensity, and standard deviation of intensity. More
detailed definition about each of the above 12 features
can be found in Wang and Liao (2002). Extracting discrim-
inant features is always important to the success of a pat-
tern recognition task. The set of features extracted is
definitely imperfect. Nevertheless, the feature set is good
enough judging from the relative high accuracy achievable,
as presented in the next section.

5. Results, analyses and discussion

The test results obtained in this study are organized by
the classifier used in the following sections. For each data
preprocessing method, the average of 25 runs and the
associated confidence interval are computed for each
one of the eight evaluation criteria. Two analyses are then
carried out. The first analysis serves to determine whether
each data preprocessing method improves the perfor-
mance of each criterion, compared to using the imbalance
data set. Specifically, we compute the 95% one-sided con-
fidence interval of the difference between the mean of a
data preprocessing method and the mean of no data pre-
processing method, and conclude that both methods are
statistically indifferent if zero is below the upper confi-
dence bound. The second analysis intends to determine
the statistically indifferent best data preprocessing meth-
ods. For the second analysis, the data preprocessing
method that produces the highest average is first identified
and then statistical testing is carried out to determine
whether each other data preprocessing method statisti-
cally differ from the best identified. Specifically, we com-
pute the 95% confidence interval of the difference
between two means and conclude that both methods are
statistically indifferent if zero is within the confidence
interval.
5.1. Minimum distance classifier

Table 2 gives the statistical test results for determining
whether a data preprocessing method is effective in improv-
ing the performance of each evaluation criterion, when the
minimum distance classifier is used. The results indicate
that out of 22 preprocessing methods, seven do not



Table 3
Best data preprocessing methods identified when using the minimum
distance classifier

Evaluation
criterion

Best data pre-
processing
method

Statistically indifferent best data
preprocessing methods

Area under the
ROC curve
(auc)

ahc ahc_fcm, ahc_km

Geometric mean
of accuracies
(gm)

ahc ahc_fcm, ahc_km

F1 measure (f1) ahc ahc_fcm, ahc_km
Class weighted

accuracy
(cwa)

ahc ahc_fcm, ahc_km

Sensitivity (sens) ahc_fcm ahc, ahc_km, smote_bu, smote_ru,
smote1_bu

Specificity (spec) smote_cnn smote1_cnn, smote1_enn,
smote1_oss, smote1_tomek

Precision (prec)
smote1_oss smote_cnn, smote_oss,

smote1_cnn, smote1_enn,
smote1_tomek

Overall accuracy
(accu)

smote1_oss ahc, smote, smote_cnn, smote_oss,
smote1_cnn, smote1_enn,
smote1_tomek

Table 4
Statistical test results of whether a data preprocessing method improves
the performance (1 for not and 0 for yes) when using the 1-NN classifier

Classifier Preprocessing
methods

auc gm f1 cwa sens spec prec accu

1nn im 1 1 1 1 1 1 1 1
1nn ahc 1 1 1 1 0 1 1 1
1nn ahc_fcm 0 0 0 0 0 0 0 0
1nn ahc_km 0 0 1 0 0 0 0 1
1nn rand_over 1 1 1 1 1 1 1 1
1nn smote 1 1 1 1 0 1 1 1
1nn smote_bu 0 0 0 0 0 0 0 0
1nn smote_cnn 1 0 0 1 0 0 0 0
1nn smote_enn 1 1 1 1 1 0 0 0
1nn smote_ncr 1 1 1 1 0 0 0 0
1nn smote_oss 1 0 0 1 0 0 0 0
1nn smote_ossr 0 0 0 0 0 0 0 0
1nn smote_ru 0 0 0 0 0 0 0 0
1nn smote_tomek 0 0 1 0 0 0 1 0
1nn smote1 1 0 1 1 1 1 1 1
1nn smote1_bu 1 1 0 1 0 0 0 0
1nn smote1_cnn 1 0 1 1 0 0 0 0
1nn smote1_enn 0 0 0 0 0 1 1 0
1nn smote1_ncr 1 1 1 1 1 1 1 1
1nn smote1_oss 1 1 0 1 0 0 0 0
1nn smote1_ossr 1 1 0 1 0 0 0 0
1nn smote1_ru 1 1 0 1 0 0 0 0
1nn smote1_tomek 0 0 0 0 0 1 1 1
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improve any criterion, nine improve at least one criterion
but not all criteria, and five methods improve all of the cri-
teria. Note that the preprocessing method SMOTE_OSSR,
short for the SMOTE and OSSR hybrid, did not work on
our data; hence no result for it was given in the table. Table
3 summarizes the best and statistically indifferent best pre-
processing methods by each evaluation criterion. The
results indicate that the best preprocessing methods
improve all criteria (because IM is not one of the statisti-
cally indifferent best in any criterion) but none emerges
as the dominant method (because there is more than one
statistically indifferent best). It will become clear in Section
5.4 that the best results obtained by using the minimum dis-
tance classifier are not comparable to those obtained by
nearest neighbor classifiers.
5.2. K-nearest neighbors

Table 4 gives the statistical test results for determining
whether a data preprocessing method is effective in
improving the performance of each evaluation criterion,
when 1-NN is used as the classifier. The results indicate
that out of 22 preprocessing methods, two do not improve
any criterion, eighteen improve some criteria, and four
methods improve all of the criteria. Table 5 summarizes
the best and statistically indifferent best preprocessing
methods by each evaluation criterion. The results indicate
that the best preprocessing methods improve on four of
the eight criteria and none emerges as the dominant
method. The four criteria that no improvement was made
are the F1-measure, specificity, precision, and overall accu-
racy; for them without using any preprocessing method
(im in bold) is also one of the statistically indifferent best
methods.

5.3. Fuzzy k-nearest neighbors

Table 6 gives the statistical test results for determining
whether a data preprocessing method is effective in improv-
ing the performance of each evaluation criterion, when
fuzzy 1-NN is used as the classifier. The results indicate
that out of 22 preprocessing methods, four do not improve
any criterion, sixteen improve some criteria, and no
method improves all of the criteria. Note that two prepro-
cessing methods, SMOTE_OSSR and SMOTE1_OSSR,
did not work on our data; hence they did not produce
any result. Table 7 summarizes the best and statistically
indifferent best preprocessing methods by each evaluation
criterion. The results indicate that the best preprocessing
methods improve on five of the eight criteria and none
emerges as the dominant method. The three criteria with-
out improvement made are the F1-measure, specificity
and overall accuracy; for them without using any prepro-
cessing method is either the best or one of the statistically
indifferent best methods (im in bold).

5.4. Putting all three classifiers together

Table 8 summarizes the best and statistically indifferent
best preprocessing methods among all results obtained by
all three classifiers for each evaluation criterion. The



Table 5
Best data preprocessing methods identified when 1-NN is used as the classifier

Evaluation criterion Best data pre-processing
method

Statistically indifferent best data preprocessing methods

Area under the ROC
curve

ahc_km ahc, smote_tomek, smote1_cnn

Geometric mean of
accuracies

ahc_km ahc, smote_tomek, smote1_cnn, smote1_oss

F1 measure smote1 im, ahc, ahc_km, rand_over, smote_enn, smote_ncr, smote_tomek, smote1_ncr
Class weighted accuracy ahc_km ahc, smote_tomek, smote1_cnn
Sensitivity smote_oss ahc_fcm, ahc_km, smote_bu, smote_cnn, smote_ossr, smote_ru, smote1_bu, smote1_cnn,

smote1_oss, smote1_ossr, smote1_ru
Specificity smote1_enn im, ahc, rand_over, smote, smote1
Precision smote1_enn im, ahc, smote1, smote1_ncr, smote1_tomek
Overall accuracy smote1 im, ahc, ahc_km, rand_over, smote, smote1_ncr, smote1_tomek

Table 6
Statistical test results of whether a data preprocessing method improves
the performance (1 for not and 0 for yes) when using the fuzzy 1-NN
classifier

Classifier Preprocessing
methods

auc gm f1 cwa sens spec prec accu

f1nn im 1 1 1 1 1 1 1 1
f1nn ahc 0 0 1 0 0 1 1 1
f1nn ahc_fcm 0 0 1 0 0 1 1 1
f1nn ahc_km 0 0 1 0 0 1 1 1
f1nn rand_over 1 1 1 1 1 1 1 1
f1nn smote 0 0 1 0 0 1 1 1
f1nn smote_bu 1 1 1 1 0 1 1 1
f1nn smote_cnn 1 0 1 1 0 1 1 1
f1nn smote_enn 0 0 1 0 0 1 1 1
f1nn smote_ncr 1 1 1 1 0 1 1 1
f1nn smote_oss 1 0 1 1 0 1 1 1
f1nn smote_ru 1 1 1 1 0 1 1 1
f1nn smote_tomek 0 0 1 0 0 1 1 1
f1nn smote1 1 1 1 1 1 1 1 1
f1nn smote1_bu 1 1 1 1 0 1 1 1
f1nn smote1_cnn 1 1 1 1 0 1 1 1
f1nn smote1_enn 1 1 1 1 1 1 0 1
f1nn smote1_ncr 1 1 1 1 1 1 1 1
f1nn smote1_oss 1 0 1 1 0 1 1 1
f1nn smote1_ru 1 1 1 1 0 1 1 1
f1nn smote1_tomek 1 1 1 1 1 1 1 1

Table 7
Best data preprocessing methods identified when fuzzy 1-NN is used as the
classifier

Evaluation
criterion

Best data pre-
processing
method

Statistically indifferent best data
preprocessing methods

Area under the
ROC curve

Ahc_km smote_tomek

Geometric
mean of
accuracies

Ahc_km smote_tomek

F1 measure Smote_tomek im, ahc, rand_over, smote,
smote_enn, smote1

Class weighted
accuracy

Ahc_km smote_tomek

Sensitivity smote_bu ahc_fcm, ahc_km, smote_oss,
smote_ru, smote1_bu, smote1_ru

Specificity smote1_enn im, rand_over, smote1,
smote1_tomek

Precision smote1_enn smote1_tomek
Overall

accuracy
Im ahc, rand_over, smote, smote1,

smote1_tomek
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results indicate that the best preprocessing methods
improve on five of the eight criteria and none emerges as
the dominant method. The three criteria without improve-
ment made are the F1-measure, specificity and overall
accuracy, for either one of them both 1nn-im and f1nn-
im (in bold in the table) are also the statistically indifferent
best. A total of 29 classifier-preprocessing method combi-
nations do not produce the best or statistically indifferent
best for any criteria, which include all those using the min-
imum distance classifier (22 of them), one using 1-NN
(1NN-SMOTE_NCR), and six using Fuzzy 1-NN. There-
fore, the nearest neighbor algorithms clearly outperform
the minimum distance classifier and 1-NN has a slight
edge over fuzzy 1-NN.
To give some idea about the best performance attained
in this study, the 95% confidence interval of the best combi-
nation of classifier and preprocessing method is given in the
second column of Table 8 as well (inside the parenthesis) for
each evaluation criterion. Note that the accuracy related
criteria all have pretty high values: 0.937 ± 0.011 for
geometric mean, 0.940 ± 0.011 for class weighted accuracy,
0.961 ± 0.018 for sensitivity, 0.948 ± 0.005 for specificity
and 0.945 ± 0.007 for overall accuracy. Compared to the
above criteria, precision of 0.860 ± 0.017 is not as good,
which brings down the F1-measure to 0.833 ± 0.017. The
AUC value is identical to the CWA value because we set
w = 0.5 in computing the class weighted average; this
verifies what we discussed earlier in Section 2.
5.5. Discussion

Among all those combinations of classifier-preprocess-
ing method tested in this study, 1NN-AHC_KM seems



Table 8
Best combinations of classifier and data preprocessing methods identified

Evaluation criterion Best classifier-
preprocessing method

Statistically indifferent best classifier-preprocessing methods

Area under the ROC
curve

1nn-ahc_km
(0.940 ± 0.011)

1nn-ahc, 1nn-smote_tomek, 1nn-smote1_cnn, f1nn-ahc_km

Geometric mean of
accuracies

1nn-ahc_km
(0.937 ± 0.011)

1nn-ahc, 1nn-smote_tomek, 1nn-smote1_cnn, 1nn-smote1_oss, f1nn-ahc_km

F1 measure f1nn-smote_tomek
(0.833 ± 0.017)

1nn-im, 1nn-ahc, 1nn-ahc_km, 1nn-rand_over, 1nn-smote, 1nn-smote_enn, 1nn-smote_tomek, 1nn-
smote1, 1nn-smote1_ncr, f1nn-im, f1nn-ahc, f1nn-rand_over, f1nn-smote, f1nn-smote_enn, f1nn-
smote1

Class weighted
accuracy

1nn-ahc_km
(0.940 ± 0.011)

1nn-ahc, 1nn-smote_tomek, 1nn-smote1_cnn, f1nn-ahc_km

Sensitivity 1nn-smote_oss
(0.961 ± 0.018)

1nn-ahc_fcm, 1nn-ahc_km, 1nn-smote_bu, 1nn-smote_cnn, 1nn-smote_ossr, 1nn-smote_ru, 1nn-
smote1_bu, 1nn-smote1_cnn, 1nn-smote1_oss, 1nn-smote1_ossr, 1nn-smote1_ru, f1nn-ahc_fcm,
f1nn-ahc_km, f1nn-smote_bu, f1nn-smote_oss, f1nn-smote1_bu, f1nn-smote1_ru

Specificity f1nn-smote1_enn
(0.948 ± 0.005)

1nn-im, 1nn-rand_over, 1nn-smote, 1nn-smote1, 1nn-smote1_enn, 1nn-smote1_tomek, f1nn-im,
f1nn-rand_over, f1nn-smote1, f1nn-smote1_enn, f1nn-smote1_tomek

Precision f1nn-smote1_enn
(0.860 ± 0.017)

1nn-smote1, 1nn-smote1_enn, 1nn-smote1_tomek, f1nn-smote1_tomek

Overall accuracy 1nn-smote
(0.945 ± 0.007)

1nn-im, 1nn-ahc, 1nn-ahc_km, 1nn-rand_over, 1nn-smote1, 1nn-smote1_ncr, 1nn-smote1_tomek,
f1nn-im, f1nn-ahc, f1nn-rand_over, f1nn-smote, f1nn-smote1, f1nn-smote1_tomek

Table 9
Sorted classifier-preprocessing method combinations by the number of
best or statistically indifferent best performances

auc gm f1 cwa sens Spec prec accu total

1nn ahc_km 1 1 1 1 0 0 1 1 6
1nn ahc 1 1 1 0 0 0 1 1 5
1nn smote1 0 1 0 0 1 1 1 1 5
1nn im 0 1 0 0 1 0 1 1 4
1nn rand_over 0 1 0 0 1 0 1 1 4
1nn smote 0 1 0 0 1 0 1 1 4
1nn smote_tomek 1 1 1 0 0 0 0 1 4
1nn smote1_cnn 1 0 1 1 0 0 0 1 4
1nn smote1_tomek 0 0 0 0 1 1 1 1 4
f1nn im 0 1 0 0 1 0 1 1 4
f1nn ahc_km 1 0 1 1 0 0 0 1 4
f1nn rand_over 0 1 0 0 1 0 1 1 4
f1nn smote1 0 1 0 0 1 0 1 1 4
f1nn smote1_tomek 0 0 0 0 1 1 1 1 4
1nn smote1_enn 0 0 0 0 1 1 0 1 3
1nn smote1_ncr 0 1 0 0 0 0 1 1 3
1nn smote1_oss 1 0 0 1 0 0 0 1 3
f1nn ahc 0 1 0 0 0 0 1 1 3
f1nn smote 0 1 0 0 0 0 1 1 3
f1nn smote1_enn 0 0 0 0 1 1 0 1 3
1nn ahc_fcm 0 0 0 1 0 0 0 1 2
1nn smote_bu 0 0 0 1 0 0 0 1 2
1nn smote_cnn 0 0 0 1 0 0 0 1 2
1nn smote_enn 0 1 0 0 0 0 0 1 2
1nn smote_oss 0 0 0 1 0 0 0 1 2
1nn smote_ossr 0 0 0 1 0 0 0 1 2
1nn smote_ru 0 0 0 1 0 0 0 1 2
1nn smote1_bu 0 0 0 1 0 0 0 1 2
1nn smote1_ossr 0 0 0 1 0 0 0 1 2
1nn smote1_ru 0 0 0 1 0 0 0 1 2
f1nn ahc_fcm 0 0 0 1 0 0 0 1 2
f1nn smote_bu 0 0 0 1 0 0 0 1 2
f1nn smote_enn 0 1 0 0 0 0 0 1 2
f1nn smote_oss 0 0 0 1 0 0 0 1 2
f1nn smote_tomek 0 1 0 0 0 0 0 1 2
f1nn smote1_bu 0 0 0 1 0 0 0 1 2
f1nn smote1_ru 0 0 0 1 0 0 0 1 2
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to be the best because it produces the highest numbers of
best performances, six out of eight evaluation criteria.
Assuming that all criteria are equally important, two
combinations are tie for the second place: 1NN-AHC
and 1NN-SMOTE1. The tie can be broken if one consid-
ers one criterion is weighted more than others. Eleven
combinations are tie for the third place and so on. The
rankings of all combinations of classifier-preprocessing
methods that have at least one statistically indifferent
best are given in Table 9. To give some idea about the
performance difference between different classes (weld
flaws), Table 10 gives the breakdown of the performance
of 1NN-AHC_KM by class in terms of 95% confidence
interval of the averages of four-fold cross-validation
tests. In the table, the class that has the worst perfor-
mance for each criterion is highlighted in bold. The
results indicate that crack is most difficult to recognize
among all six types of weld flaws, followed by gas hole
and porosity.

Now that we have identified 1NN-AHC_KM be the
best combination of classifier and preprocessing method,
the next question naturally is whether using more than
one nearest neighbor would further improve its perfor-
mance. To study its effect, the number of nearest neigh-
bors, k, was varied from 1 to 4. The reason that we
cannot go higher is due to the limitation of the number
of examples for the smallest class. Table 11 summarizes
the results in terms of 95% confidence interval of the aver-
ages of four-fold cross-validation tests. The results indi-
cate that as k increases no improvement can be made
on the six criteria that 1NN-AHC_KM have the best per-
formance (in bold). There is also no improvement on the
specificity criterion as k increases. The only improvement
is seen on the sensitivity criterion, for which k = 2 is bet-
ter than k = 1.



Table 10
Break down by class (weld flaw) for the best combination, 1nn-ahc_km

Criterion Class 1 (crack) Class 2 (gas hole) Class 3 (hydrogen
inclusion)

Class 4 (lack of
fusion)

Class 5 (lack of
penetration)

Class 6
(porosity)

Auc 0.869 ± 0.011 0.926 ± 0.024 0.981 ± 0.011 0.963 ± 0.002 0.993 ± 0.004 0.906 ± 0.011
Gm 0.867 ± 0.011 0.918 ± 0.028 0.980 ± 0.010 0.962 ± 0.002 0.993 ± 0.004 0.902 ± 0.011
F1 0.776 ± 0.016 0.684 ± 0.067 0.956 ± 0.023 0.709 ± 0.020 0.892 ± 0.049 0.887 ± 0.011
CWA 0.869 ± 0.011 0.926 ± 0.024 0.981 ± 0.011 0.963 ± 0.002 0.993 ± 0.004 0.906 ± 0.011
Sens 0.867 ± 0.018 0.900 ± 0.043 0.979 ± 0.015 1.000 ± 0.000 1.000 ± 0.000 0.977 ± 0.015
Spec 0.870 ± 0.012 0.951 ± 0.006 0.983 ± 0.011 0.926 ± 0.004 0.986 ± 0.008 0.836 ± 0.018

Prec 0.714 ± 0.023 0.605 ± 0.064 0.939 ± 0.037 0.616 ± 0.034 0.860 ± 0.061 0.817 ± 0.016
Accu 0.869 ± 0.010 0.949 ± 0.008 0.982 ± 0.010 0.931 ± 0.004 0.986 ± 0.007 0.894 ± 0.011

Table 11
Effect of k on the best combination, 1nn-ahc_km

Criterion K = 1 2 3 4

Auc 0.940 ± 0.011 0.906 ± 0.012 0.923 ± 0.012 0.897 ± 0.009
Gm 0.937 ± 0.011 0.900 ± 0.014 0.920 ± 0.013 0.891 ± 0.010
F1 0.817 ± 0.027 0.704 ± 0.026 0.764 ± 0.025 0.678 ± 0.029
CWA 0.940 ± 0.011 0.906 ± 0.012 0.923 ± 0.012 0.897 ± 0.009
Sens 0.954 ± 0.015 0.976 ± 0.014 0.951 ± 0.013 0.960 ± 0.013
Spec 0.925 ± 0.009 0.836 ± 0.018 0.894 ± 0.015 0.834 ± 0.015
Prec 0.759 ± 0.004 0.602 ± 0.037 0.686 ± 0.032 0.573 ± 0.038
Accu 0.935 ± 0.008 0.869 ± 0.014 0.909 ± 0.012 0.866 ± 0.013
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6. Related work

Previous work in classifying imbalanced data can be
roughly grouped into four categories: data preprocessing
(or sampling), modification of standard classifier, one-class
learning, feature selection, and ensemble approaches. To
limit the scope, only work related to the first category is
reviewed here in this section.

Focusing on two-class imbalanced data problems,
Kubat and Matwin (1997) proposed a under-sampling
method called one-sided selection (OSS), which is adapted
from the technique of Tomek links by allowing only the
removal of examples from the majority class while leaving
the examples from the minority class untouched. The mer-
its of OSS were evaluated based on k-fold cross-validations
in terms of overall accuracy, accuracy of positive examples,
accuracy of negative examples, and the geometric mean of
the last two. Stratified sampling was carried out to ensure
that each of the k subsets had the same proportion of posi-
tive and negative examples. 1-NN and C4.5 were selected
as the classifiers. The test results suggested that OSS should
be used only if one of the classes has prohibitively few
examples. For the oil spill detection application, Kubat,
Holte, and Matwin (1998) developed the SHRINK algo-
rithm that is insensitive to imbalanced data. SHRINK
was found to outperform 1-NN, but not C4.5 with OSS.
Laurikkala (2001) proposed a new method, called neigh-
borhood cleaning rule, for balancing imbalanced class dis-
tribution with data reduction. The new method was found
to outperform simple random selection within classes and
one-sided selection method in their experiments with 10
real-world data sets from UCI machine learning repository
using the 3-NN and C4.5 classifiers. The 10-fold CV test
results were measured by overall accuracies, true positive
rates, true negative rates, and true positive rates for class
of interest; and the statistical significance of performance
differences was determined based on the two-tailed Wilco-
xon signed ranks test due to small sample sizes (10 pairs in
each comparison).

Chawla et al. (2002) proposed an over-sampling method
called SMOTE, which involves creating synthetic minority
class examples. Using C4.5 as the learner, they experi-
mented nine different datasets with the 10-fold cross-vali-
dation test scheme and showed that a combination of
SMOTE and under-sampling the majority class could
achieve better classifier performance (in ROC space) than
varying the ratios in Ripper or class priors in Naı̈ve Bayes.
Han et al. (2005) presented two new minority over-sam-
pling methods, borderline-SMOTE1 and borderline-
SMOTE2, in which only the minority examples near the
borderline are over-sampled. Four over-sampling methods
including SMOTE, random over-sampling, and the two
new methods were applied to four different data sets. True
positive rates and F-measure values computed for these
methods are the average results of three independent 10-
fold cross-validation experiments using C4.5 as the learner.
As a whole, border-SMOTE1 was the best performer
among all four tested.

Japkowicz and Stephen (2002) carried out a system-
atic study of the class imbalance problem. First, they
tested the C5.0 decision tree induction system with a ser-
ies of artificial concept-learning domains with various
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combinations of concept complexity, training set size, and
degree of imbalance. The results suggested that a huge
class imbalance will not hinder classification of a domain
whose concept is very easy to learn or the training set is
large. Conversely, a small class imbalance could greatly
harm a very small data set or one representing a very
complex concept. In addition, they reported that as long
as all the sub-clusters of a domain have a reasonable size,
the class imbalance problem is of no consequence for
C5.0; whereas if some sub-clusters are very small, then
C5.0’s performance will deteriorate. Secondly, they com-
pared the performance of three methods for dealing with
class imbalances: over-sampling, under-sampling, and
cost-modifying, with C5.0 as the classifier. The cost-mod-
ifying method was found to be most effective among all.
Thirdly, they investigated whether two other learning
algorithms: multi-layer perceptron (MLP) and support
vector machine (SVM) are affected by class imbalance.
It was found that compared to C5.0, MLP was less sensi-
tive and SVM was not sensitive at all. For each experi-
ment, four types of results were reported: (1) the
corrected results in which no matter what degree of class
imbalance is present in the training set, the contribution
of the false positive error rate is the same as that of the
false negative one in the overall report; (2) the uncor-
rected results in which the reported error rate reflects
the same imbalance as the one present in the training
set; (3) the false positive error rate; and (4) the false neg-
ative error rate.

Barandela, Sánchez, Garcı́a, and Rangel (2003) studied
several selection algorithms for downsizing the training
data (majority class alone or both majority and minority
classes) and proposed a weighted distance function for
internally biasing the discrimination procedure. Two selec-
tion algorithms are in the group of editing: the classical
Wilson’s editing rule, and the k-NCN (nearest centroid
neighborhood) scheme. The third selection algorithm is
the modified selective condensing. Two combinations of
editing-condensing were also employed. The preprocessed
training examples were classified with the NN rule, using
both Euclidean and weighted distance measures. Four
datasets taken from the UCI Repository were tested with
five-fold cross-validation and the averaged results of the
geometric mean were computed. Applying k-NCN on the
majority class together with the use of weighted distance
measure produced the best results. Murphey, Guo, and
Feldkamp (2004) conducted a study on three neural net-
work learners, multi-layered back-propagation, radial basis
function, and fuzzy ARTMAP, to learn from unbalanced
and noisy data using three different training methods:
duplicating minority class examples, Snowball technique
(Wang & Jean, 1993), and multidimensional Gaussian
modeling of data noise. The last training method was pro-
posed by the authors to generate new minority data exam-
ples near the classification boundary. The authors showed
through experimental results that their noise modeling
algorithm was effective in the training of both BP and fuzzy
ARTMAP neural networks when the noise level is high on
unbalanced data.

In their Editorial for the Special Issue on Learning from
Imbalanced Data Sets, Chawla, Japlowicz, and Kotcz
(2006) gave a short overview of the papers that were pre-
sented at the 2000 AAAI Conference and the 20003 ICML
Conference and briefly described the papers contained in
the Special Issue. Weiss (2004) presented an overview of
the field of learning from imbalanced data. He discussed
the role that rare classes and rare cases play in data min-
ing, described the problems caused by these two forms of rar-
ity, and the methods for addressing these problems. Using 13
UCI datasets and C4.5 as the learner, Batista, Prati et al.
(2004) performed a broad experimental evaluation involving
ten methods, three of them proposed by the authors, to cope
with the class imbalance problem. The experimental results
indicated that: (1) in general, over-sampling methods provide
more accurate results than under-sampling methods consid-
ering the area under the ROC curve; (2) two of their proposed
methods, SMOTE + Tomek and SMOTE + ENN, pro-
duced very good results for data sets with a small number
of positive examples; and (3) decision trees induced from
over-sampled data are usually more complex than the ones
induced from original imbalanced data. Using experimental
results on data taken from the SWISS-PROT database,
Batista, Monard et al. (2004) showed that the symbolic clas-
sifiers induced by C4.5 with the balanced data sets using
SMOTE + ENN, random over-sampling, and random
under-sampling outperformed the ones induced using the ori-
ginal skewed data sets.

In an attempt to build more effective classifiers for the
prosody model that is implemented as a CART decision
tree classifier, Liu et al. (2006) investigated four different
sampling approaches and a bagging scheme to cope with
the imbalanced data distribution. The four sampling
approaches are random down-sampling, over-sampling
using replication, SMOTE, and ensemble down-sampling.
The ensemble down-sampling approach first split the
majority class into N subsets with each having roughly
the same number of examples as the minority class, then
use each of these subsets together with the minority class
to train a classifier, and the results of N classifiers are aver-
aged to obtain the final decision. Empirical evaluations in a
pilot study showed that down-sampling the dataset works
reasonably well, while requiring less training time. Both
SMOTE and ensemble down-sampling outperformed the
down-sampling approach when the prosody model used
alone, but not when the prosody model is combined with
the language model. Evaluation was also performed on
two corpora that differ in speaking style: conversational
phone speech and broadcast news. It was found that: (1)
when the prosody model used alone, applying bagging on
the original training set achieves significantly better results
than ensemble bagging on both corpora; (2) the perfor-
mance difference mentioned in (1) disappears when the
prosody model is combined with the language model; and
(3) there is a computational advantage of using down-sam-
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pled training sets compared to using the original training
set. To remedy class imbalance in monitoring and detection
of nosocomial or hospital acquired infections (NIs), Cohen
et al. (2006) explored a new re-sampling approach in which
class-specific sub-clustering was used to generate synthetic
cases by over-sampling of rare positives or/and under-
sampling of the non-infected majority. They conducted
stratified five-fold cross-validation experiments on a data-
set of 683 patient records with each having 49 variables
(75 infected cases out of a total of 683). Five learning algo-
rithms, which include IB1, Naive Bayes, C4.5, AdaBoost,
and SVM, were run first on the original class distribution,
then on training data balanced via random sub-sampling,
random over-sampling and different variants of their
approach. Among all five algorithms, Naı̈ve Bayes was
found to have the highest sensitivity (87%) and class
weighted accuracy (84%), when agglomerative hierarchical
clustering (AHC)-based over-sampling is combined with
K-means sub-sampling.

Huang, Hung, and Jiau (2006) first analyzed different
classification algorithms that were employed to predict
the creditworthiness of a bank’s customers based on check-
ing account information and then proposed a data cleaning
strategy that uses a classifier as a filter that filters out spe-
cific instances in the training dataset. Various combinations
of methods, such as C4.5, ID3, Naı̈ve Bayes, and PRISM,
were tested with either two classes: declined and good
(including risky) or three classes: declined, risky, and good.
Garcia and Cano (2006) proposed an evolutionary under-
sampling (EUS) method to tackle the problem of imbal-
anced data. EUS codes chromosomes in binary with length
equaling to the number of total training examples. An
example is selected if its corresponding gene is coded in
‘1.’ The fitness function is defined as

FitnessðSÞ ¼ g � 1� nþ
n�

����
���� � P ;

where g is geometric mean of balanced accuracies pro-
duced by a subset of examples selected S, n+ (n�) is the
number of positive (negative) examples selected from the
minority (majority) class, and P is a penalty factor.
Two versions of evolutionary operator: heterogeneous
recombinations and cataclysmic mutation (CHC) and
PBIL, denoted as CHC-US and PBIL-US, were applied.
Seven data sets taken from the UCI Repository were
tested with 1-NN using 10-fold cross-validation. It was
found that: (1) CHC-US and PBIL-US had higher values
of average geometric means than four prototype selection
methods and six other under-sampling methods, and (2)
EUS obtained better reduction than non-evolutionary
under-sampling methods based on the Wilcoxon Signed
Ranks Test.

Alejo, Garcı́a, Sotoca, Mollineda, and Sánchez (2006)
utilized the classical Wilson’s editing rule to filter out noise
or atypical patterns and to study its effect on the perfor-
mance of two neural networks: RBF and MLP. Using six
synthetic data sets generated with different levels of over-
lapping and three data sets taken from the UCI Reposi-
tory, the classification performance of the two neural
networks were evaluated in terms of the average values
of the geometric mean. The application of the editing tech-
nique was found to improve the performance of the RBF
neural network but not that of the MLP. Xie and Qiu
(2007) showed theoretically and experimentally that imbal-
anced data had a negative effect on the performance of lin-
ear discriminant analysis (LDA) for binary classification.
Ten data sets taken from UCI were tested using four-fold
cross-validation and AUC was calculated for each test.
Four sampling methods including random over-sampling,
random under-sampling, Tomek links, and SMOTE were
used to rebalance the original data sets. The experimental
results indicated that LDA performed better with balanced
data sets, especially those balanced with over-sampling
methods.

7. Conclusions

This paper has presented the details of a study carried
out to investigate the effectiveness of 22 data preprocessing
methods for dealing with the imbalanced data problem
inherent to the classification of six different types of weld
flaws. The consideration of imbalanced data is new in clas-
sifying weld flaws. In addition, many of these data prepro-
cessing methods are new and have not been used by
previous researchers in any other applications.

The one-against-all scheme was used to perform multi-
class classification using minimum distance, k-nearest
neighbors, and fuzzy k-nearest neighbors as the classifiers.
The effectiveness was measured using eight evaluation cri-
teria developed primarily for binary classification. K-fold
cross-validation data were repeatedly generated by strati-
fied sampling for testing. Based on the test results and sub-
sequent analyses, the following observations can be made:

(1) Nearest neighbor classifiers outperform the minimum
distance classifier. When putting all the results
obtained by all three classifiers together, none of
the results obtained by the minimum distance classi-
fier is in the list of statistically indifferent best in
any one of the eight criteria.

(2) The number of data preprocessing methods that do
not improve any criterion is 7, 2, and 4 when the clas-
sifier is minimum distance, k-nearest neighbors, and
fuzzy k-nearest neighbors, respectively.

(3) The number of data preprocessing methods that
improve all eight criteria is 5, 4, and 0 when the clas-
sifier is minimum distance, k-nearest neighbors, and
fuzzy k-nearest neighbors, respectively.

(4) The combination of using the AHC_KM data pre-
processing method with the 1-NN classifier is the best
among all because they together produce the best per-
formance in six of eight evaluation criteria.

(5) The most difficult weld flaw type to recognize is
crack.
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(6) 1-NN seems to be better than higher k values for
most criteria, except the sensitivity criterion.

Possible topics for future study include:

(1) Developing evaluation criteria appropriate for multi-
class classification with imbalanced data.

(2) Applying feature selection/weighting method alone
or together with data preprocessing method for deal-
ing with imbalanced data.

(3) Extracting other features from radiographic images
with the hope to find more discriminant features.

(4) Trying other classifiers or learning algorithms to
obtain better than 1-NN results.

References

Alejo, R., Garcı́a, V., Sotoca, J. M., Mollineda, R. A., & Sánchez, J. S.
(2006). Improving the classification accuracy of RBF and MLP neural
networks trained with imbalanced samples. In E. Corchado et al.
(Eds.), IDEAL 2006, LNCS 4224 (pp. 464–471).

Aoki, L., & Suga, Y. (1999). Application of artificial neural network to
discrimination of defect type in automatic radiographic testing of
welds. ISIJ International, 39(10), 1081–1087.

Barandela, R., Sánchez, J. S., Garcı́a, V., & Rangel, E. (2003). Strategies
for learning in class imbalance problems. Pattern Recognition, 36,
849–851.

Batista, G. E. A. P. A., Monard, M. C., & Bazzan, L. C. (2004).
Improving rule induction precision for automated annotation by
balancing skewed data sets. In J. A. López et al. (Eds.), KELSI 2004,
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