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Abstract

In the cellular phone OEM/ODM industry, reducing test time and cost are crucial due to fierce competition, short product life cycle, and a low

margin environment. Among the inspection processes, the radio frequency (RF) function test process requires more operation time than any other.

Hence, manufacturers need an effective method to reduce the RF test items so that the inspection time can be reduced while maintaining the quality

of the RF function test. However, traditional feature selection methods such as neural networks and genetic algorithm lead to a high level of Type II

error in the situation of imbalanced data where the amount of good products is far greater than the defective products. In this study, we propose a

neural network based information granulation approach to reduce the RF test items for the finished goods inspection process of a cellular phone.

Implementation results show that the RF test items were significantly reduced, and that the inspection accuracy remains very close to that of the

original testing process. In addition, the Type II errors decreased as well.
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1. Introduction

Personal wireless communication services have been avail-

able to the general public for only about 10 years, since the

breakthrough of cellular phones [12]. At the same time the

technology employed by mobile telecommunications is evolving

rapidly. New designs in cellular phones and novel functions are

being introduced at an ever-increasing pace. This is leading to

fierce competition and short product life cycles. Consequently,

one of the major concerns of original equipment manufacture

(OEM) and electronic manufacturing service (EMS) phone

manufacturers is how to decrease testing costs [1], especially in

the low margin environment in which they operate. This is

because testing equipment for mobile phones is expensive, and

the testing times are long. In one estimate, it costs around US$ 1

and 1–3 min per phone [28]. However, these testing costs and

time will increase dramatically because more and more newly

developed modules like digital camera, mp3 player, personal
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digital assistant (PDA), and blue-tooth transmitter are added to

cellular phones. We have to spend extra time and money to

inspect these new functions. These factors often hinder the

enhancement of the overall output of cellular phones [28].

In the manufacturing process of cellular phones shown as

Fig. 1, the radio frequency (RF) function is a crucial test and

needs more operation time than any of the other inspection

processes. In order to save inspection costs and shorten

production time, manufacturers need an effective method to

reduce the RF function test items. A number of soft computing

approaches, such as neural networks [27], genetic algorithms

(GA) [32], decision tree and rough sets [22,23] have been

widely used to remove irrelevant, unnecessary, and redundant

attributes (test items). However, when these methods are

applied to real world problems, there are many issues that need

to be addressed. One of them is the ‘‘imbalanced data’’ problem

which almost all the instances are labeled as one class while far

few instances are labeled as the other class [5,10]. When

learning from such imbalanced data, traditional classifiers often

produce high accuracy over the majority class, but poor

predictive accuracy over the minority class (usually the

important class).
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Fig. 1. A manufacturing process of a cellular phone.
In modern production systems, the defective rate of products

is becoming quite low. In the six-sigma quality management

system for example, we should use parts per million (‘‘ppm’’)

instead of ‘‘%’’ to calculate the defective rate. In a mature

manufacturing industry, the amount of good products far

exceeds the defective products. This type of data is so-called

‘‘imbalanced data.’’ When feature selection approaches

encounter imbalanced data such as this, it becomes difficult

to acquire knowledge from the few negative examples

(defective products). Fewer abnormal products will be viewed

as outliers or bias by feature selection methods [17]. This leads

to a high level of Type II errors (customer risks, the probability

that customers accept defective products) which are critical to

OEM/EMS companies. A high level of Type II errors will cause

great losses, requires compensation and may result in the loss of

orders from important customers.

In this study, we propose a neural network based information

granulation approach which can effectively reduce RF function

test items. A real case with imbalanced data is studied, and the

implementation results show that our proposed method can find

relevant test items without losing classification accuracy and

increasing the Type II errors.

2. Feature selection from imbalanced data

Reduction of pattern dimensionality via feature selection

belongs to the most fundamental steps in data processing [23].

A large feature set often contains redundant and irrelevant

information, and can actually degrade the performance of the

classifier [14]. The main purpose of feature selection is to

remove irrelevant or redundant attributes and improve the

performance of data mining.

Feature selection is often applied in pattern classification,

data mining, as well as machine learning. Among many feature

selection methods, GA, rough sets and neural networks have

attracted much attention, and have become popular techniques

for feature selection. However, when these methods are applied

to imbalanced data, they usually suffer from some drawbacks,

such as ignoring the minority examples and viewing them as

outliers. It was reported [5,10] that use of these methods in

seeking an accurate performance over a full range of instances

is not suitable to deal with imbalanced learning tasks since they
tend to classify all data into the majority class, which is usually

the less important class. This is because typical classifiers are

designed to optimize overall accuracy without taking into

account the relative distribution of each class.

Rough sets emerged as a major mathematical tool for

discovering knowledge and feature selection [29]. One of the

fundamental principles of a rough set-based learning system is

discovering redundancies and dependencies between the given

features of a problem to be classified. A reduct generated by the

rough sets approach is defined as the minimal subset of

attributes that enables the same classification of objects with

full attributes. When applying rough sets in practice, its

computational complexity increases dramatically with the

growth of the data. In addition, the deterministic mechanism for

the description of error is very simple in rough sets. Therefore,

the rules generated by rough sets are often unstable and have a

low classification accuracy [13].

Feature selection with neural networks can be thought of as a

special case of architectural pruning [21], where the input

features are pruned rather than the hidden neurons. Su et al. [24]

attempted to determine the important input nodes of a neural

network based on the sum of absolute multiplication values of

the weights between the layers. Unfortunately, the training of

neural networks when using imbalanced data is very slow [6].

Another common understanding is that some learning

algorithms have built-in feature selection, for example, ID3

[19], FRINGE and C4.5 [20]. Almuallim and Dietterich [3]

suggested that one should not rely on ID3 or FRINGE to filter

out irrelevant features. There are some cases in which ID3 and

FRINGE miss extremely simple hypotheses. In addition, the

negative examples of imbalanced data might be removed in the

pruning phase of the tree construction.

In other words, when faced with imbalanced data, the

performance of feature selection tools drops significantly [2].

Pendharkar et al. [17] mentioned that the ratio of the number of

objects belonging to positive and negative examples impacts

upon effective learning. If the data set contains many positive

examples and very few negative examples, there is a bias in the

discriminant function that the technique will identify, and it

therefore follows that this bias results in a lower reliability of the

technique. Application areas such as gene profiling, medical

diagnosis and credit card fraud detection, oil spill detection, risk

management, and medical diagnosis/monitoring [2,5,10,18]

have highly skewed datasets with very small number of negative

instances which are hard to classify correctly, but nevertheless

are very important that they be detected.

An and Wang [4] suggested to balance the data by sampling.

However, this is sometimes not feasible due to there being so

few negative examples. The concept of information granulation

may be the way to tackle problems caused by imbalanced data.

3. Information granulation

Information granulation, first pointed out by Zadeh [31], is

turning out to be a very important issue for computer science,

logic, philosophy, and others [30]. Information granulation is

the process of forming meaningful pieces of information, called
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Fig. 2. Basic idea of the proposed methodology.
information granules (IGs), that are regarded as entities

embracing collections of individual elements (e.g. numerical

data) that exhibit some functional or descriptive commonalities

[9]. Information granulation emphasizes the fact that a plethora

of details does not necessarily amount to knowledge. Granular

computing, which is oriented towards representing and

processing information granules, is a computing paradigm

that embraces a number of modeling frameworks.

In many situations, when describing a problem we tend to

shy away from numbers, and instead use aggregates to ponder

the question. This is especially true when a problem involves

incomplete, uncertain, or vague information. It may be difficult

sometimes to differentiate distinct elements, and so one is

forced to consider granules.

Most positive examples (good products) of production data

are similar, duplicated, or redundant [26]. If we gather similar

objects into information granules, then a large amount of data

will transform into fewer granules. This way, we can reduce the

ratio of positive to negative examples, and so possibly reduce

the level of Type II errors.

4. Proposed methodology

In this section, a neural network based information

granulation approach is proposed to construct information

granules, and acquire knowledge from these granules.

4.1. Neural network based information granulation

approach

Fig. 2 shows the basic idea of the proposed methodology. A

large amount of similar objects are gathered together to form

fewer granules. Information granulation can remove some

unnecessarily detailed information, avoid an enormous quantity

of knowledge rules being generated, and provides a better

insight into the data. Moreover, when the information

granulation approach is employed, numeric data will transfer

to information granules and the number of positive and negative

granules will be decreased compared with numeric data. The

ratio of negative to positive examples will be increased. It may

improve imbalanced data situation. Next, these granules are

described with appropriate form and then we can use feature

selection method to extract knowledge rules or key attributes

from these granules. The detailed procedure of the neural

network based information granulation approach is described

as follows:
Step 1: I
dentify condition attributes and class attributes
Step 2: D
ata preprocessing

Step 2.1: Data cleaning (fill in missing data and

remove noisy or inconsistent data)

Step 2.2: Data transformation (normalize or discretize

the data)
Step 3: M
easure the information granules

Step 3.1: Select the degree of similarity

Step 3.2: Check the suitability

Step 3.3: Determine the suitable similarity
Step 4: C
onstruct the information granules
Step 5: D
efine the information granules

Step 5.1: Describe the information granules

Step 5.2: Tackle the overlaps among the information

granules
Step 6: A
cquire key attributes and extract knowledge rules
Steps 1 and 2 are data preparing phases. In these phases, we

should identify the condition attributes (inputs) and the decision

attribute (output) first. Then, data should be prepared for the

process, like removing noisy data, filling missing data, and

discretizing data. In Step 3, the users need to determine suitable

level of granularity. After that, the Fuzzy adaptive resonance

theory (Fuzzy ART) [8] neural network can be utilized to

construct the IG, depending on the selected similarity

(granularity). Next, we describe these IGs using the appropriate

form. Finally, the relevant attributes can be found by feature

selection methods. A more detailed discussion of our proposed

approach is given in the following subsections.

4.2. Data preprocessing

After identifying input and output variables (Step 1), data

need to be preprocessed. Step 2 is to clean data and transform

data. Real-world data tend to be incomplete, noisy, and

inconsistent. Data cleaning attempt to fill in missed values,

smooth out noise while identifying outliers, and correct
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Fig. 4. The centrality of IG A and IG B.
inconsistencies in the data. Discretization techniques of Step

2.2 can be used to reduce the number of values for a given

continuous attribute, by dividing the range of the attribute into

intervals. In this study, ‘‘equal frequency bining’’ approach is

utilized to discretize data. This unsupervised method is to

divide the range into b bins of equal frequency. This method is

less susceptible to outliers, and the intervals would be closer to

each other in regions where there are more elements and farther

apart in sparsely populated regions, which represents the

distribution of each variable better than the equal-width

method. In summary, data preprocessing techniques can

improve the quality of the data, thereby helping to improve

the accuracy and efficiency of data mining process.

4.3. Measurement of information granules

If we want to extract knowledge from granules, the first

question that needs to be answered is: how should similar objects

be gathered to form granules? In other words, we must determine

what kind of similarity the objects must have to form a granule.

In this section, we introduce two indexes, purity and

centrality, to measure information granules. The purity

expresses the uniqueness of the IG. There are two IGs, A

and B, shown in Fig. 3. The purity of A is defined by Eq. (1):

PurityðAÞ ¼
PP

X¼1 NðAX \BXÞ=NðAXÞ
P

(1)

where NðA\BÞ is the amount of objects in the intersection

between A and B; N(A) the amount of objects in A; B the

complementary set of B; X denotes the attributes, and P is the

number of attributes.

In Fig. 3, we can clearly see that the higher the purity, the

smaller the overlap between A and B is. If A and B are totally

separated, NðA\BÞ will be equal to N(A). In this situation,

purity is equal to 1.

Centrality is used to measure the ‘within variation’ in the IG.

This index is defined by Eq. (2):

Centrality ¼
XN

i¼1

XM

j¼1

ðmaxXi j �minXi j=R jÞ
N

(2)
Fig. 3. The overlap between IG A and IG B.
where N is the number of information granules; M is the number

of attributes; X denotes the attribute value; Rj is the range of the

jth attribute value; max Xij represents the upper limit of the jth

attribute in the ith information granule, and min Xij is the lower

limit of the jth attribute in the ith information granule.

The more similar to each other the objects are in an IG the

smaller the centrality of that IG will be. As Fig. 4 shows, if the

upper limit (max Xij) and the lower limit (min Xij) are close,

than this situation represents that the ‘within variation’ is small.

Therefore, the centrality will be small.

4.4. Construction of information granules

This study suggests using Fuzzy ART to construct IGs.

Fuzzy ART is not only a well-established neural network

theory, but also a well known clustering method. Instead of

clustering by a given number of clusters, it assigns patterns onto

the same cluster by comparing their similarity. The major

difference between Fuzzy ART and other unsupervised neural

networks is the so-called vigilance parameter (r). The Fuzzy

ART network allows the user to control the degree of similarity

of patterns placed on the same cluster.

Two other similar types of architectures exist as well,

namely ART 1 and ART 2. ART 1 is designed for binary-valued

input patterns, and ART 2 is designed for continuous-valued

patterns. Fuzzy ART provides a unified architecture for both

binary and continuous valued inputs. In addition, Fuzzy ART

possesses the same desirable stability properties as ART1 and a

simpler architecture than that of ART2. With ART1, there is a

serious dependency of the classification results on the sequence

of input presentation and ART2 experiences difficulty in

achieving good categorizations, if the input patterns are not all

normalized to a constant length [7]. As a result, Fuzzy ART was

utilized to construct information granules in this study.

Fuzzy ART has three parameters: (1) the choice parameter,

a > 0, which is suggested to be close to zero; (2) the learning

parameter, b, which defines the degree to which the weight

vector is updated with respect to an input vector, and (3) the

vigilance parameter, r, which defines the required level of
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Fig. 5. The overlapping situation between IGs A and B.

Table 2

Information granules with the addition of sub-attributes

Original attributes

X1 X2

X11
a X12

a X13
a X21

a X22
a X23

a

½a�1 ; b�1 � ½b�1 ; aþ1 � ½aþ1 ; bþ1 � ½a�2 ; b�2 � ½b�2 ; aþ2 � ½aþ2 ; bþ2 �

IGs

A 1 1 0 1 1 0

B 0 1 1 0 1 1

a Sub-attributes.
similarity of patterns within clusters. The vigilance parameter is

usually defined by the user.

4.5. Description of the information granules

Another issue when extracting knowledge from granules is

how to describe IGs. In this study, we utilize hyperboxes to

represent IGs [16]. A granule usually contains more than one

object. We use the upper boundary and the low limit of the value

of the attributes to represent whole objects within a granule.

The overlaps described in Fig. 5 always occur among IGs,

and they are difficult to deal with by data mining algorithms

which are not designed to deal with IGs, especially when an

overlapping situation occurs. In this study, the concept of ‘‘sub-

attributes’’ is utilized to tackle this problem, where we divided

the original condition attributes into sub-attributes. By

introducing the sub-attributes, we can easily extract key

attributes or knowledge rules from these overlapping IGs.

Consider two IGs A and B which contain two original

condition attributes, X1 and X2. In Table 1, IG A(B) are fully

described by its lower a�(b�) and upper boundary a+(b+),

where a�(b�) and a+(b+) are vectors. More specific, we follow

a full notation ½IG A� ¼ ½a�i ; aþi � and ½IG B� ¼ ½b�i ; bþi � to

represent those two IGs, where i is the attribute index. We

separate the overlapping and non-overlapping parts into

independent intervals ½a�1 ; b�1 �, ½b�1 ; aþ1 � and ½aþ1 ; bþ1 �;
½a�2 ; b�2 �, ½b�2 ; aþ2 � and ½aþ2 ; bþ2 � which are the so-called sub-

attributes (labeled X11, X12, X13; X21, X22, X23). Then we utilize

the Boolean variable, 0 or 1, to be the values of sub-attributes. If

the value of a sub-attribute is ‘‘0’’, that means this sub-attribute

does not contain an independent intervals such as ½a�1 ; b�1 �, etc.

Table 2 lists the results of adding sub-attributes. By using the
Table 1

IGs A and B described as a hyperbox form

Attributes

X1 X2

IGs

A ½a�1 ; aþ1 � ½a�2 ; aþ2 �
B ½b�1 ; bþ1 � ½b�2 ; bþ2 �
concept of sub-attributes, we can acquire knowledge from the

IGs.

4.6. Feature selection and knowledge extraction

In Step 6 of the proposed procedure, we employ decision

tree, rough sets, and neural network based methods to acquire

attributes and to extract knowledge rules. These three methods

are briefly described in the following.

4.6.1. Decision tree

The decision tree method is one of the most popular

knowledge acquisition algorithms, and has been successfully

applied in many areas. Decision tree algorithms, such as ID3

and C4.5, were originally intended for classification purposes.

The core of C4.5 contains recursive partitioning of the training

examples. Whenever a node is added to a tree, some subsets of

the input features are used to pick the logical test at that node.

The feature that results in the maximum information gain is

selected for testing at that node. In other words, the algorithm

chooses the ‘‘best’’ attribute to partition the data into individual

classes at each node. After the test has been determined, it is

used to partition the examples, and the process is continued

recursively until each subset contains examples of one class or

satisfies some statistical criteria [25].

When decision tree induction is used for feature selection, a

tree is constructed from the given data. All attributes that do not

appear in the tree are assumed to be irrelevant. The set of

attributes appearing in the tree form the reduced subset of

attributes [11].

4.6.2. Rough sets

The rough sets theory was introduced by Pawlak [15] to deal

with imprecise or vague concepts [23,29]. Rough sets deal with

information represented by a table called the information

system which contains objects and attributes. An information

system is composed of a 4-tuple as follows:

S ¼ hU;Q;V ; f i;

where U is the universe, a finite set of N objects {x1, x2, . . .xN},

Q is the finite set of attributes, V ¼ [ q2QVq, where Vq is the

value of attribute q, and f: U � Q! V is the total decision

function called the information function such that f(x, q) 2 Vq
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for every q 2 Q, x 2 U. For a given subset of attributes A � Q

the IND(A)

INDðAÞ ¼ fðx; yÞ 2U : for all a2A; f ðx; aÞ ¼ f ðy; aÞg

is an equivalence relation on universe U (called an indiscern-

ibility relation).

Some of the information systems can be designed as a

decision table

Decision table ¼ hU;C [D;V ; f i

where C is the set of condition attributes, D is the set of decision

attributes, V = Uq2C[DVq, where Vq is the set of values of

attribute q 2 Q, and f: U � (C[D)!V is the total decision

function (decision rule in a decision table) such that f(x, q) 2 Vq

for every q 2 Q and x 2 V.

For a given information system S, a given subset of attributes

A � Q determines the approximation space AS = (U, IND(A))

in S. For a given A � Q and X � U (a concept of X), the A-lower

approximation AX of set X in AS and A-upper approximation

AX of set X in AS are defined as follows:

AX ¼ fx2U : ½x�A�Xg ¼ [fY 2A� : Y �Xg;

AX ¼ fx2U : ½x�A \X 6¼?g ¼ [fY 2A� : Y \X 6¼?g

where A* denotes the set of all equivalence classes of IND(A).

The process of finding a set of attributes smaller than the

original one with the same classificatory power as the original

set is called attribute reduction. A reduct is the essential part of

an information system (subset of attributes) which can discern

all objects discernible by the original information system. By

means of the dependent properties of the attributes we can find a

reduced set of attributes, providing that by removing the super-

fluous attributes there is no loss in classification accuracy.

4.6.3. Feature selection from a trained neural network

Su et al. [24] proposed an algorithm to remove unimportant

input nodes from a trained back-propagation neural network

(BPNN). The essence of this method is to compare the

multiplication values of the weights between the input-hidden

layer and the hidden-output layer. Only the multiplication

weights with large absolute values are kept and the rests are

removed. The equation for calculating the sum of absolute

multiplication values is defined as follows.

Nodei ¼
X

j

����Wi j � V jk

���� (3)

where Wij is the weight between the ith input node and the jth

hidden node, and Vjk is the weight between the jth hidden node

and the kth output node. Then, we must set a threshold to remove

the irrelevant input nodes. The threshold should be determined by

the user to obtain a suitable number of input nodes.

5. Case study

The actual case comes from a cellular phone OEM/ODM

company which was established in 1984. It is located in Taiwan

and the company owns several factories in mainland China. In
2003, its total annual revenue reached US$ 4.713 billion, and it

has a worldwide workforce of over 10,000. The production

volume of cellular phones in 2004 was about 7.5 million units.

5.1. The problem

In this case, the objectives of the cellular phone manufacturer

are to reduce test time and consequently cost. Fig. 1 provides the

manufacturing process of the cellular phone including the

operation time of each process. We find that the RF functional test

is the bottleneck of entire process. The RF test is aimed at

inspecting whether or not the mobile phone receive/transmit

signal satisfies the enabled transmission interval (ETI) protocol

on different channels and different power levels. In order to

ensure the quality of communication of mobile phones, the

manufacturers usually add extra inspection items, such as several

different frequency channels and power levels, resulting in the

inspection time being increased and as a result the test procedure

becomes a bottleneck.

If we can reduce the numbers of items tested in the RF

function test, without losing inspection accuracy, then the

inspection time will be shortened. At the same time, this

reduction of test items will help lower the cost of testing and the

manufacturing time.

5.2. Data collection

The 1006 RF function test data containing 62 test items (27

are continuous attributes and 35 are discrete attributes) as

described in Table 3 are collected. There are eight major RF

functional tests: the power versus time (PVT; symbol: A), the

power level (TXP; symbol: B), the phase error and the

frequency error (PEFR; symbol: C), the bit error rate (BER

�20; symbol: D and BER �102; symbol: E), the ORFS-

spectrum due to the switching transient (ORFS_SW; symbol:

F), the ORFS-spectrum due to modulation (ORFS_MO;

symbol: G), the Rx level report accuracy (RXP_Lev_Err;

symbol: H), and the Rx level report quality (RXP_QUALITY;

symbol: I). According to different channels and power levels,

each test item has several separate test attributes. Each form of

the test attributes is to be represented as: test item-channel-

power level. In the 1006 collected objects, there are only 44

negative examples (defective products) and the rests are

positive examples (normal products). The defective rate is

about 4%. We separate the 1006 examples into a training set

which includes 756 objects (722 objects are normal and 34

objects are defective) and a test set that includes 250 objects

(240 objects are normal and 10 objects are defective).

5.3. Data preparation

In this case, the inspection data are collected automatically

by computers, and there are no missing values. In the data

preparation phase we remove 11 attributes (D105, I10–102,

D725, I72–102, D1145, I114–102, D9655, I965–102, D6880,

I688–102, D8750) that have the same value. These 11 attributes

have no classification ability. Consequently, only 51 attributes
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Table 3

Test items of the RF function

No. Test items Code

1 TXP B105

2 PEFR C105

3 BER(�20) D105

4 BER(�102) E105

5 ORFS_SW F105

6 ORFS_MO G105

7 RXP_Lev_Err H10–102

8 RXP_QUALITY I10–102

9 TXP B725

10 PFER C725

11 BER(�20) D725

12 BER(�120) E725

13 ORFS_SW F725

14 ORFS_MO G725

15 TXP B727

16 TXP B7211

17 TXP B7219

18 RXP_Lev_Err H72–102

19 RXP_QUALITY I72–102

20 TXP B1145

21 PFER C1145

22 BER(�20) D1145

23 BER(�102) E1145

24 ORFS_SW F1145

25 ORFS_MO G1145

26 RXP_Lev_Err H114–102

27 RXP_QUALITY I114–102

28 TXP B9655

29 PFER C9655

30 BER(�20) D9655

31 BER(�102) E9655

32 ORFS_SW F9655

33 ORFS_MO G9655

34 RXP_Lev_Err H965–102

35 RXP_QUALITY I965–102

36 TXP B5220

37 PEFR C5220

38 BER(�20) D5220

39 BER(�102) E5220

40 ORFS_SW F5220

41 ORFS_MO G5220

42 RXP_Lev_Err H522–102

43 RXP_QUALITY I522–102

44 TXP B6880

45 PFER C6880

46 BER(�20) D6880

47 BER(102) E6880

48 ORFS_SW F6880

49 ORFS_MO G6880

50 TXP B6883

51 TXP B6887

52 TXP B68815

53 RXP_Lev_Err H688–102

54 RXP_QUALITY I688–102

55 TXP B8750

56 PEFR C8750

57 BER(�20) D8750

58 BER(�102) E8750

59 ORFS_SW F8750

60 ORFS_MO G8750

61 RXP_Lev_Err H875–102

62 RXP_QUALITY I875–102

Fig. 6. The purities of IGs in different similarity.
labeled X1–X51 are left to be analyzed further. Before

implementation, these collected data need to be normalized

due to different scale of attributes’ value, which may affect the

performance of Fuzzy ART. All values of attributes were

normalized to the interval [0,1] by employing a min–max

normalization equation, shown as Eq. (4). In this equation, maxi

is the maximum and mini is the minimum of the ith attribute

values, and vi j is the value of ith attribute of jth objects and v0i j is

the normalized value.
v0i j ¼
vi j �mini

maxi �mini
(4)

5.4. Information granulation

Next, we utilize the Fuzzy ART to construct IGs. The propo-

sed procedure is programmed with the use of the software of

Matlab 6.1. The purities of different similarities are shown in

Fig. 6. The purities of similarities 0.8 and 0.9 are very close to

each other. The centralities of the two similarities described in

Fig. 7 are in a similar situation. However, the similarity 0.8 owns

fewer data size than that of similarity 0.9. This means that

similarity 0.8 can reduce more detailed information than

similarity 0.9. It is also evident that a turning point exists at

the similarity 0.8 in Fig. 6.
Fig. 7. The centralities of IGs in different similarity.
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Table 4

The information granules described as hyperbox form

X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

L1 4 3 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 5 2 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 2 3 2 1 5 2 1 1 1 1 1 1

U1 4 4 1 1 1 1 2 1 1 1 1 2 2 4 1 3 2 1 1 1 1 5 2 1 1 1 1 3 5 2 1 2 1 2 1 3 7 1 1 1 2 3 3 1 5 4 1 2 2 1 1 1

L2 3 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 4 1 1 1 1 1 3 2 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 4 1 1 1 1 1 1 1

U2 4 3 1 1 1 1 2 1 1 1 1 3 3 4 1 3 2 1 2 1 1 5 1 1 2 1 1 3 4 1 3 2 1 2 1 3 5 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L3 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 2 1 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 1 1 2 1 1 1 1 2 3 3 1 3 1 1 1 1 1 1 1

U3 4 3 1 1 1 1 2 1 1 1 1 2 4 4 1 4 2 1 1 1 1 5 2 1 2 1 1 3 4 3 2 2 1 2 1 3 5 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L4 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 5 2 1 1 1 1 1 1

U4 4 3 1 1 1 1 2 2 1 1 1 2 3 3 1 4 2 1 1 1 1 5 2 1 2 1 1 3 4 1 2 2 1 2 1 3 7 1 1 1 2 3 3 1 5 4 2 2 2 1 1 1

L5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 5 1 1 1 1 1 3 1 1 1 2 1 1 1 3 1 1 1 1 2 3 2 1 5 1 1 1 1 1 1 1

U5 4 4 1 1 1 1 2 1 1 1 1 2 3 4 1 3 2 1 1 1 1 5 2 1 2 1 1 3 5 1 2 2 1 2 1 3 6 1 1 1 2 3 3 1 5 4 3 2 2 1 1 1

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

L31 3 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 3 2 1 1 1 1 3 1 1 1 2 1 3 1 3 1 1 1 1 2 3 3 1 5 2 1 1 1 2 1 2

U31 4 3 1 1 1 2 1 1 1 1 1 2 2 4 2 3 2 1 1 1 2 5 2 1 1 1 2 3 4 1 1 2 1 3 1 3 1 1 1 1 2 3 3 2 5 3 2 2 1 2 1 2

L32 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 4 1 2 1 2 2

U32 3 3 2 1 1 1 1 1 5 1 1 2 3 2 1 3 2 2 1 1 1 1 1 5 1 1 1 1 2 1 4 1 1 2 2 1 4 2 1 1 1 1 1 1 1 4 4 1 2 1 2 2

L33 3 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 1 1 4 1 1 1 1 1 3 1 1 1 2 1 1 1 3 1 1 1 1 2 3 3 1 1 1 1 1 1 1 1 2

U33 4 2 1 1 1 2 2 1 1 1 1 2 2 4 1 3 2 1 1 1 2 5 2 1 2 1 2 3 4 1 1 2 1 2 1 3 1 1 1 1 3 3 3 2 5 2 2 2 1 1 1 2

Notes: (1) L1 and U1 represent the lower limit and upper limit of the 1st IG. (2) X represents the condition attributes, and Y is the decision attribute. (3) The data shown in the table are discretized.

Table 5

The IGs with the addition of sub-attributes

Original attributes

X1 X2 X3 X4 X5 X6 � � � � � � � � � X51 Y

X11a

(X1 = 1)

X12a

(X1 = 2)

X13a

(X1 = 3)

X14a

(X1 = 4)

X15a

(X1 = 5)

X21a

(X2 = 1)

X22a

(X2 = 2)

X23a

(X2 = 3)

X24a

(X2 = 4)

X25a

(X2 = 5)

X31a

(X3 = 1)

X32a

(X3 = 2)

X41a

(X4 = 1)

X42a

(X4 = 2)

X51a

(X5 = 1)

X52a

(X5 = 2)

X61a

(X6 = 1)

X62a

(X6 = 2)

� � � � � � � � � X175a

(X51 = 1)

X176a

(X51 = 2)

IG #1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #2 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #3 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #4 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #5 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #6 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

IG #7 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 � � � � � � � � � 1 0 1

..

. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

..

. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

IG #27 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 � � � � � � � � � 1 1 2

IG #28 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 � � � � � � � � � 1 0 2

IG #29 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 0 � � � � � � � � � 1 0 2

IG #30 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 � � � � � � � � � 0 1 2

IG #31 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 � � � � � � � � � 1 0 2

IG #32 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 � � � � � � � � � 0 1 2

IG #33 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 � � � � � � � � � 1 0 2

a
Sub-attributes.
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Fig. 8. Sensitivity analysis in different similarities.
In order to choose a better solution, we carry out the

sensitivity analysis in different similarities. The result is shown

in Fig. 8. The classification accuracy at similarity 0.8 (99.6%) is

slightly higher than that at similarity 0.9 (97.6%). Also, at

similarity 0.8, we have a lower level of Type II errors with the

same level of Type I errors (0%). Hence, it seems that the

similarity of 0.8 is a better choice compared to similarity 0.9 in

this case. It is a difficult to determine a suitable similarity. In

this case, we not only consider the classification accuracy, but

also the level of Type II error. Consequently the results should

be better than the original one.

Once the similarity is determined, Fuzzy ART is again

utilized to construct IGs. We set the Fuzzy ART parameters a,

b, r to be 0.01, 1, 0.8, respectively. Thirty-three IGs are

constructed. Twenty-four of them are IGs of good products
Table 6

The implementation results by rough sets

Method After granulation

Training phase Tes

Data size (good:bad) 33 (24:9) 14

Type I error (%) 0 0

Type II error (%) 0 10

Accuracy (%) 100 99.6

No. of rules 4

Extracted features B725, H114-102

Note: (24:9) is the proportion of good products to bad products.

Table 7

The implementation results by decision tree (C4.5)

Method After granulation

Training phase Tes

Data size (good:bad) 33 (24:9) 14

Type I error (%) 0 0

Type II error (%) 0 10

Accuracy (%) 100 99.6

No. of rules 3

Extracted features B725, H114-102
and the rest belong to the defective products. Each IG is

described by using the lower limit and upper boundary

(hyperbox form) as shown in Table 4. In addition, the

overlapping parts among granules are separated from the

original attribute by designating them as new attributes or so-

called ‘‘sub-attributes.’’ We divide the original attribute X1

into sub-attributes X11, X12, X13, X14, X15 and the same

happens for the other attributes. These 33 granules are

rewritten as Table 5.

5.5. Feature selection and knowledge acquisition

Now three feature selection algorithms, rough sets method,

decision tree (C4.5 algorithm) and neural network, are

implemented. The computation of rough sets is executed using

the ROSETTA software (http://www.idi.ntnu.no/�aleks/

rosetta/). See5 (C4.5 commercial version) software was utilized

to construct a decision tree. In See5 there are two parameters

that can be tuned during the pruning phase: the minimal number

of examples represented at any branch of any feature-value test

and the confidence level of pruning. To avoid the occurrence of

over-fitting and generating a simple tree, 2 was set as the

minimum number of instances at each leaf, and the confidence

level for pruning was set at 25%. The inputs and outputs of the

decision tree and rough sets are 176 sub-attributes and defined

classes respectively. In the neural network based method, the

back-propagation neural network with one hidden layer is

adopted and implemented using Professional II PLUS software.

All parameters of the BPNN are obtained by trial and error,

including the number of training iterations and the structure of

the network.
Before granulation

t phase Training phase Test phase

(9:5) 756 (722:34) 250 (240:10)

0.7 0.4

0 90

99.34 96

433

C105, B727, B1145, H114-102, C9655, H522-

102, B8750, E8750

Before granulation

t phase Training phase Test phase

(9:5) 756 (722:34) 250 (240:10)

0 0

23.53 40

98.9 98.4

7

E105, C725, G725, H72-102, H965-102, H688-

102

mailto:ctsu@mx.nthu.edu.tw
mailto:ctsu@mx.nthu.edu.tw
mailto:ctsu@mx.nthu.edu.tw
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Table 8

The implementation results by BPNN (full attributes)

Method After granulation Before granulation

Training phase Test phase Training phase Test phase

Data size (good:bad) 33 (24:9) 14 (9:5) 756 (720:34) 250 (240:10)

Type I error (%) 0.5 0 0.14 0

Type II error (%) 11.76 0 29.41 50

Accuracy (%) 98.9 100 98.54 98

Structure 16-15-1 17-4-1

Parameters Learning rate: 0.2 Learning rate: 0.2

Momentum: 0.9 Momentum: 0.8

50000 iterations 2000 iterations

Extracted features B7211, H114-102, E8750, B8750, C8750,

B725, H965-102, H688-102, H10-102, B727,

E5220, B7219, C105, C6880, C9655, B68815

C9655, B725, C725, B8750, B105, B727, C8750,

F1145, B5220, B7211, H114-102, B6880,

B68815, F725, B6887, E1145, I522-102
Implementation results are shown in Tables 6–8. In

Tables 6 and 7, our proposed approach obviously outperforms

the traditional approach without granulation, in both

classification accuracy and Type II error. In addition, fewer

knowledge rules and attributes are obtained. In Table 8, the

classification accuracy and Type II error of our approach are

still better than those by the original BPNN. All the attributes,

kept and ranked by priority, are listed in Table 8. By

comparing the implementation results of these three methods,

six attributes {B7211, H114–102, B725, B8750, C8750 and

E8750} are reserved as final test items for the RF functional

test. The knowledge rules listed in Fig. 9(a and b) are

generated by using rough sets and decision tree methods.

These rules may not only help engineers to predict the yield

rate of products, but may also enhance the performance of

knowledge management.
Fig. 9. (a) Knowledge rules extracted by rough sets. (b)
5.6. The benefits

By implementing the proposed method, test items are

reduced from 62 to 6 items. The test time is reduced from 190 to

95 s. The amount of employed test equipment is reduced from

eight machines to four machines. As a result the company will

save about US$ 200,000 per year. In addition we should not

forget the resulting rise in customer satisfaction and the

reduction in risk for the customers. The potential benefits of

implementation are substantial.

6. Discussions

In most cases of inspection data, the amount of good

products is far greater than the amount of defective products.

The few defective products are usually viewed as outliers and
Knowledge rules extracted by decision tree (C4.5).
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are removed in the generalization phase of the classification

tools. Actually, all normal products look alike, and the

abnormal products have individual styles. That phenomenon

is also noted by Taguchi and Jugulum [26]. We should pay more

attention to this, and consider the categories of instances instead

of the data size when developing feature selection algorithms.

Classification accuracy is widely utilized to evaluate the

performance of classification tools. But, in modern manufac-

turing systems, this becomes meaningless due to the fact that

the defective rate of products is so extremely low. Therefore, it

becomes necessary to consider Type II error together.

7. Conclusions

Traditional data mining tools tend to generate a huge amount

of knowledge rules and lead to a high level of Type II errors

when dealing with imbalanced data. This study proposed a

neural network based information granulation approach which

removes unnecessary details and provides a better insight into

the essence of the data. The proposed approach not only

extracts fewer knowledge rules, but also outperforms the

traditional methods regarding the amount of Type II errors and

classification accuracy.

A real case study of a cellular phone test process was

employed to demonstrate the effectiveness of our proposed

approach. When encountering imbalanced data, our proposed

method is effective in removing unnecessary RF function test

items, saving testing costs and shortening the inspection time. It

is suitable for reducing the inspection process in the high

technology industry, especially now that we are facing the six-

sigma age, i.e. the defective rate of products is becoming

extremely low.

The experimental results also show that there is a trade-off

relationship between the Type I and Type II errors. The

proposed method can reduce the level of Type II errors without

increasing the level of Type I errors. This is very important to

OEM/ODM manufacturers because a high level of Type II

errors will inevitably lead to orders being lost.

The inconsistency of the extracted attributes when using

different feature selection methods is an important issue for

future research, because it might confuse users (engineers)

when applying these feature selection techniques in practice. To

solve the inconsistence, a robust approach is needed to be

developed in the future.
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