
Data Imbalance in Surveillance of Nosocomial

Infections
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Abstract. An important problem that arises in hospitals is the moni-
toring and detection of nosocomial or hospital acquired infections (NIs).
This paper describes a retrospective analysis of a prevalence survey of NIs
done in the Geneva University Hospital. Our goal is to identify patients
with one or more NIs on the basis of clinical and other data collected
during the survey. In this classification task, the main difficulty resides in
the significant imbalance between positive or infected (11%) and negative
(89%) cases. To remedy class imbalance, we propose a novel approach
in which both oversampling of rare positives and undersampling of the
non infected majority rely on synthetic cases generated via class-specific
subclustering. Experiments have shown this approach to be remarkably
more effective than classical random resampling methods.

1 Introduction

Surveillance is the cornerstone activity of infection control, whether nosocomial4

or otherwise. It provides data to assess the magnitude of the problem, detect
outbreaks, identify risk factors for infection, target control measures on high-
risk patients or wards, or evaluate prevention programs. Ultimately, the goal
of surveillance is to decrease infection risk and consequently improve patients’
safety. There are several ways to perform surveillance, each method having its ad-
vantages and drawbacks. The gold standard is hospital-wide prospective surveil-
lance, which consists in reviewing on a daily basis all available information on all
hospitalized patients in order to detect all nosocomial infections. This method is
labor-intensive, infeasible at a hospital level, and currently recommended only
4 A nosocomial infection is a disease that develops after a patient’s admission to the

hospital and is the consequence of treatment—not necessarily surgical—or work by
the hospital staff. Usually, a disease is considered a nosocomial infection if it develops
72 hours after admission.
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for high-risk, i.e., critically ill patients. As an alternative and more realistic ap-
proach, prevalence surveys are being recognized as a valid surveillance strategy
and are becoming increasingly performed. Their major limitations are their ret-
rospective nature, the dependency on readily available data, a prevalence bias,
the inability to detect outbreak (depending on the frequency the surveys are per-
formed), and the limited capacity to identify risk factors. However, they provide
sufficiently good data to measure the magnitude of the problem, evaluate a pre-
vention program, and help allocate resources. They give a snapshot of clinically
active NIs during a given index day and provide information about the frequency
and characterisitics of these infections. The efficacy of infection control policies
can be easily measured by repeated prevalence surveys [4].

2 Data Collection and Preparation

The University Hospital of Geneva (HUG) has been performing yearly prevalence
studies since 1994 [6]. The methodology of prevalence surveys is as follows. The
investigators visit all wards of the HUG over a period of approximately three
weeks. All patients hospitalized for 48 hours or more at the time of the study are
included. Medical records, kardex, X-ray and microbiology reports are reviewed,
and additional information eventually obtained by interviews with nurses or
physicians in charge of the patient. All nosocomial infections are recorded ac-
cording to modified Centres for Disease Control (CDC) criteria. Only infections
still active at any point during the six days preceding the visit are included. Col-
lected variables include demographic characteristics, admission date, admission
diagnosis, comorbidities, McCabe score, type of admission, provenance, hospi-
talization ward, functional status, previous surgery, previous intensive care unit
(ICU) stay, exposure to antibiotics, antacid and immunosuppressive drugs and
invasive devices, laboratory values, temperature, date and site of infection, ful-
filled criteria for infection. All this information (except those related to infection)
are collected for infected and non-infected patients.

Although less time-consuming than prospective surveillance, a prevalence
survey nevertheless requires considerable resources, i.e., approximately 800 hours
for data collection and 100 hours for entering data in a electronic data base. Due
to this important effort, we can afford to perform such studies only once a year.
What is particularly time-consuming is the careful examination of all available
information for all patients, in order to detect those who might be infected. The
aim of this pilot study is to apply data mining techniques to data collected in the
2002 prevalence study in order to detect vulnerability to nosocomial infections
on the basis of the factors described above.

The dataset consisted of 688 patient records and 83 variables. With the help
of hospital experts on nosocomial infections, we filtered out spurious records as
well as irrelevant and redundant variables, reducing the data to 683 cases and
49 variables. In addition, several variables had missing values, due mainly to
erroneous or missing measurements. We replaced these missing values with the
class-conditional mean for continuous variables and the class-conditional mode
for nominal ones.
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3 The Class Imbalance Problem

The major difficulty inherent in the data (as in many medical diagnostic ap-
plications) is the highly skewed class distribution. Out of 683 patients, only 75
(11% of the total) were infected and 608 were not. The class imbalance problem
is particularly crucial in applications where the goal is to maximize recognition
of the minority class5 The issue of class imbalance has been actively investigated
and remains largely open, but for lack of space we present the major trends very
briefly. The interested reader can refer to [7] for a more comprehensive state of
the art.

One solution to class imbalance is oversampling the majority class. Typically,
cases from the minority class are replicated until the desired class proportions
are attained. Recently, Chawla et al. [1] replaced straightforward case cloning
by generating synthetic minority class cases from real ones, using a technique
based on nearest neighbors. The opposite approach consists in undersampling,
i.e., subsampling the majority class until its size matches that of the minority
class. Although subsampling is often be done randomly, more guided strategies
have been proposed; for instance, Kubat et al. [9] eliminate redundant, noisy
and borderline cases to downsize the majority class. A third alternative, known
as recognition-based learning, consists in simply ignoring one of the two classes
and learning from a single class; one-class SVMs [10] illustrate this approach
A fourth class of methods involves adjusting misclassification costs: failure to
recognize a positive case (false negative) is penalized more than erroneously
classifying a negative case as positive (false positive) [2]. Contrary to sampling
approaches, cost-based approaches to imbalance involve modifying the learning
algorithm’s objective function. However, there are other ways of biasing the
inductive process to boost sensitivity (i.e., capacity to recognize positives). Joshi
et al. [8] decompose set-covering rule induction into a two-stage process: the first
phase maximizes recall of the positive class, while the second phase refines results
of the first phase in order to improve precision.

In this paper we propose an approach in which both oversampling and un-
dersampling (and their combination) are performed using synthetic cases gen-
erated in the form of cluster prototypes. The first variant of this approach is
K-means based undersampling of the majority class. This strategy appears un-
necessary and even counterintuitive at first sight; one could indeed understand-
ably question the need to generate artificial examples to represent an already
over-represented class. The rationale is that since the artificial examples are built
as centroids of subclusters of the majority class, they thus distill the essential
discriminating properties of that class. For a given cardinality, one could there-
fore legitimately expect a set of these prototypes to be more informative than a
set of real cases. To shrink the majority class, we ran K-means clustering on the
training instances of this class with K = Nmin, the size of the minority class.
These Nmin prototypes were then used as sole representatives of the minority

5 For convenience we identify positive cases with the minority and negative cases the
majority class.
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class so that training was performed on equally distributed classes. The second
variant involves oversampling the minority class using agglomerative hierarchical
clustering (AHC). Partitional clustering methods like K-means are less adequate
for this task due to the small number of clusters (and therefore of prototypes)
that can be created. The number of clusters K should be considerably less than
Nmin; with K=Nmin each cluster will have a single member which will natu-
rally be its centroid. This is inacceptable since the idea is precisely to synthesize
examples that are different from the existing cases (otherwise we revert to stan-
dard case duplication). Given this limit on K, the number of synthetic cases
generated will be insufficient to attain inter-class equilibrium. Hierarchical clus-
tering does not share this limitation, since the number of (eventually nested)
clusters can be augmented at will by increasing the number of levels and vary-
ing the inter-cluster distance metrics used. We therefore turned to AHC using
single- and complete-linkage in succession to vary the clusters produced. Clus-
ters were gathered from all levels of the resulting dendograms. Their centroids
were computed and concatenated with the original positive cases, thus upsizing
the positive class to match the negative class. Finally, the third variant is the
combination of AHC-based oversampling and K-means based undersampling.
Experiments conducted to assess these variants are described in Section 4 and
results are discussed in Section 5.

4 Experimental Setup

4.1 Learning Algorithms

We compared alternative solutions to the class imbalance problem using five
learning algorithms with clearly distinct inductive biases. Decision trees such
as those built by C4.5 are models in which each node is a test on an individual
variable and a path from the root to a leaf is a conjunction of conditions required
for a given classification [11]. Naive Bayes computes the posterior probability of
each class given a new case, then assigns the case to the most probable class. IB1
is basically a K-nearest-neighbors [3] classification algorithm, while Adaboost
builds a single-node decision tree iteratively, focusing at each step on previously
misclassified cases [5]. Support vector machines (SVMs) [12] represent a powerful
learning method based on the theory of Structural Risk Minimisation (SRM).
SVMs learn a decision boundary between two classes by mapping the training
data onto a higher dimensional space and then finding the maximal margin
hyperplane within that space.

4.2 Performance Metrics

In classification tasks, the most commonly used performance metric by far is
predictive accuracy. This metric is however close to meaningless in applications
with significant class imbalance. To see this, consider a dataset consisting of 5%
positive and 95% negatives. The simple rule of assigning a case to the majority
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class would result in an impressive 95% accuracy whereas the classifier would
have failed to recognize a single positive case—an inacceptable situation in med-
ical diagnosis. The reason for this is that the contribution of a class to the overall
accuracy rate is a function of its cardinality, with the effect that rare positives
have an almost insignificant impact on the performance measure.

To discuss alternative performance criteria we adopt the standard definitions
used in binary classification. TP and TN stand for the number of true positives
and true negatives respectively, i.e., positive/negative cases recognized as such
by the classifier. FP and FN represent respectively the number of misclassified
positive and negative cases. In two-class problems, the accuracy rate on the pos-
itives, called sensitivity, is defined as TP/(TP +FN), whereas the accuracy rate
on the negative class, also known as specificity, is TN/(TN+FP). Classification
accuracy is simply (TP +TN)/N , where N = TP +TN +FP +FP is the total
number of cases.

To overcome the shortcomings of accuracy and put all classes on an equal
footing, some have suggested the use of the geometric mean of class accuracies,
defined as gm =

√
TP

TP+FN ∗ TN
TN+FP =

√
sensitivity ∗ specificity. The draw-

back of the geometric mean is that there is no way of giving higher priority to
the rare positive class. In information retrieval, a metric that allows for this is
the F-measure Fβ = PR

βP+(1−β)R , where R (recall) is no other than sensitivity
and P (precision) is defined as P = TP/(TP + FP ), i.e., the proportion of true
positives among all predicted positives. The β parameter, 0 < β < 1, allows the
user to assign relative weights to precision and recall, with 0.5 giving them equal
importance. However, the F-measure takes no account of performance on the
negative class, due to the near impossibility of identifying negatives in informa-
tion retrieval. In medical diagnosis tasks, however, what is needed is a relative
weighting of recall and specificity. To combine the advantages and overcome the
drawbacks of the geometric mean accuracy and the F-measure, we propose the
mean class-weighted accuracy (CWA), defined formally for the K-class setting
as cwa = 1�k

i=1 wi

∑k
i=1 wiaccui, where wi ∈ ℵ is the weight assigned to class i

and accui is the accuracy rate computed over class i. If we normalize the weights
such that 0 ≤ wi ≤ 1 and

∑
wi = 1, we get cwa =

∑k
i=1 wiaccui which simplifies

to cwa = wi ∗ sensitivity + (1 − wi) ∗ specificity in binary classification.

4.3 Evaluation Strategy

The experimental goal was to measure the relative performance of different ap-
proaches to adjusting class distribution. Given the limited amount of data, we
adopted 5-fold stratified cross-validation in all the experiments. To evaluate our
approach, we ran the five learning algorithms (1) on the original class distribu-
tion, then on training data balanced via (2) random subsampling,(3) random
oversampling, and (4) different variants of our approach as described in Section
3. All learned models were validated on a test set with the original class distri-
bution. In this way, it was ensured that the validation stage was not influenced
by any bias introduced by the various class resampling strategies.
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5 Results

Table 1 summarizes performance results on the original skewed class distribution
and illustrates clearly the inadequacy of accuracy for this task. For instance, Ad-
aBoost exhibits the highest accuracy of 90% but actually performs more poorly
than Naive Bayes in detecting positive cases of nosocomial infections. In fact,
Naive Bayes ranks last in terms of accuracy rate due to its poor performance on
the majority class (specificity of 0.88, lower than all the others) but attains the
highest sensitivity, 12% higher than that of AdaBoost. Accuracy clearly under-
estimates the merit of recognizing rare positives.

Table 1. Baseline performance (original class distribution: 0.11 pos, 0.89 neg)

Classifier Sensitivity Specificity CWA Accuracy

IB1 0.19 0.96 0.38 0.88
NaiveBayes 0.57 0.88 0.65 0.85
C4.5 0.28 0.95 0.45 0.88
AdaBoost 0.45 0.95 0.58 0.90
SVM 0.43 0.92 0.55 0.86

We then tested classical methods of random undersampling and oversam-
pling. At each cross-validation cycle, the training set contained 60 positive cases
and 486 negative cases. A random sample of 60 negative cases was drawn and
used with the 60 available positive cases to train the classifiers. In a separate ex-
periment, positive cases were randomly duplicated until the size of the minority
class matched that of the majority class. Table 2 (a) and (b) show performance
measures obtained on test data with the original class distribution by classifiers
trained on the adjusted class distribution.

Table 2. Random subsampling and oversampling (0.5 pos, 0.5 neg)

(a) Random subsampling (b) Random oversampling

Classifier Sens Spec CWA Accu Classifier Sens Spec CWA Accu

IB1 0.01 0.99 0.26 0.88 IB1 0.19 0.96 0.38 0.88
NaiveBayes 0.21 0.96 0.40 0.88 NaiveBayes 0.68 0.83 0.72 0.81
C4.5 0.00 1.00 0.25 0.89 C4.5 0.49 0.87 0.59 0.83
AdaBoost 0.04 1.00 0.28 0.89 AdaBoost 0.73 0.87 0.77 0.85
SVM 0.05 0.99 0.29 0.88 SVM 0.60 0.89 0.67 0.86

The results are contrasted: while random subsampling drastically degraded
prediction of positives with respect to the original imbalanced data, random
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oversampling clearly improved the sensitivity and CWA of all the classifiers
except (understandably) IB1. Note that contrary to CWA, accuracy misleadingly
decreases with random oversampling.

As explained in Section 3, our approach differs from these random approaches
in its principled generation of synthetic samples. In the first variant, we use K-
means clustering to subsample the majority class. Results shown in Table 3 (a)
support clearly the efficacy of K-means based subsampling. Sensitivity ranges
from 0.56 for IB1 to 0.83 and 0.84 for SVM and Adaboost respectively—a visible
leap from the 0.19-0.57 interval on the original class distribution and especially
from the 0.01-0.21 range attained with random subsampling. More remarkably,
specificity did not degrade considerably, so that CWA rates vary between 0.67
and 0.81, definitely better than all previous performance.

Table 3. Oversampling and undersampling based on synthetic examples

(a) K-means subsampling (b) AHC oversampling
0.5 pos 0.5 neg 0.38 pos 0.62 neg

Classifier Sens Spec CWA Accu Classifier Sens Spec CWA Accu

IB1 0.56 0.88 0.64 0.84 IB1 0.33 0.91 0.48 0.85
NaiveBayes 0.75 0.78 0.76 0.78 NaiveBayes 0.64 0.85 0.69 0.82
C4.5 0.72 0.67 0.71 0.68 C4.5 0.45 0.87 0.56 0.83
AdaBoost 0.84 0.74 0.81 0.75 AdaBoost 0.65 0.89 0.71 0.86
SVM 0.83 0.74 0.81 0.75 SVM 0.53 0.88 0.62 0.84

We have explained (Section 3) why we chose agglomerative hierarchical clus-
tering to create prototypical instances for oversampling. By combining multilevel
clusterings based on single and complete linkage, we were able to compute a total
of 234 synthetic instances of the minority class. Added to the 60 original train-
ing positives and 486 negatives, they produced a 0.38-0.62 class distribution for
training. Results of this operation are shown in Table 3 (b). Here again, sen-
sitivity rates improve significantly over the baseline for all classifiers. However,
AHC oversampling improves sensitivity over random oversampling for only 2 out
of the 5 classifiers. This can be explained by the fact that in random oversam-
pling positives are as numerous as negatives while they remain outnumbered in
0.38-0.62 AHC distribution.

Finally, we investigated the impact of combining AHC based oversampling
and K-means based subsampling. As seen in Table 4, sensitivity and class-
weighted accuracy improve over simple AHC oversampling for all classifiers but
degrade over K-means subsampling for 4 out of 5 classifiers. For Naive Bayes,
however, sensitivity reaches 0.87 and class-weight accuracy 0.84, yielding the
maximum performance level recorded over all our experiments.
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Table 4. Combined AHC oversampling and K-Means subsampling (0.5 pos 0.5
neg)

Classifier Sensitivity Specificity CWA Accuracy

IB1 0.49 0.86 0.59 0.82
NaiveBayes 0.87 0.74 0.84 0.75
C4.5 0.68 0.79 0.71 0.78
AdaBoost 0.77 0.85 0.79 0.84
SVM 0.69 0.82 0.73 0.81

6 Conclusion

We analysed the results of a prevalence study of nosocomial infections in order to
predict infection risk on the basis of patient records. The major hurdle, typical in
medical diagnosis, is the problem of rare positives. We addressed this problem
via a novel approach based on the generation of synthetic instances for both
oversampling and undersampling. Generation of artificial cases must however
meet a hard constraint: the synthetic cases generated must remain within the
frontiers of a given class. This constraint is met by the use of prototypes of class
subclusters. Results are indeed promising: whereas the sensitivity range of the 5
classifiers was [0.19-0.57] on the original class distribution, it increased to [0.49-
0.87] after combined AHC based oversampling and K-means based subsampling.
This suggests that both oversampling and undersampling become more effective
when performed using synthetic samples instead of the true instances.
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